Inductive Learning


Fast and Free Music Separation with Deezer's Machine Learning Library – Waxy.org

#artificialintelligence

Cleanly isolating vocals from drums, bass, piano, and other musical accompaniment is the dream of every mashup artist, karaoke fan, and producer. Commercial solutions exist, but can be expensive and unreliable. Techniques like phase cancellation have very mixed results. The engineering team behind streaming music service Deezer just open-sourced Spleeter, their audio separation library built on Python and TensorFlow that uses machine learning to quickly and freely separate music into stems. The team at @Deezer just released #Spleeter, a Python music source separation library with state-of-the-art pre-trained models!


A Comprehensive Guide to Random Forest in R

#artificialintelligence

Classification is the method of predicting the class of a given input data point. Classification problems are common in machine learning and they fall under the Supervised learning method.


r/MachineLearning - [R] Announcing the release of StellarGraph version 0.8.1 open-source Python Machine Learning Library for graphs

#artificialintelligence

PyTorch Geometric is a great library and people should definitely give it a go for themselves. Both libraries implement some of the same algorithms. One of the main differences is that StellarGraph is Tensorflow-based and PyTorch Geometric is, obviously, PyTorch-based. Also, the selection of algorithms is not exactly the same. We are carefully selecting algorithms that achieve state-of-the-art results on common benchmark datasets but also we aim for variety.


SUPER Learning: A Supervised-Unsupervised Framework for Low-Dose CT Image Reconstruction

#artificialintelligence

Recent years have witnessed growing interest in machine learning-based models and techniques for low-dose X-ray CT (LDCT) imaging tasks. The methods can typically be categorized into supervised learning methods and unsupervised or model-based learning methods. Supervised learning methods have recently shown success in image restoration tasks. However, they often rely on large training sets. Model-based learning methods such as dictionary or transform learning do not require large or paired training sets and often have good generalization properties, since they learn general properties of CT image sets.


@Scale 2019: Unique challenges and opportunities for self-supervised learning in autonomous driving

#artificialintelligence

Autonomous vehicles generate a lot of raw (unlabeled) data every minute. But only a small fraction of that data can be labeled manually. Ashesh focuses on how we leverage unlabeled data for tasks on perception and prediction in a self-supervised manner. He touches on a few unique ways to achieve this goal in the AV land, including cross-modal self-supervised learning, in which one modality can serve as a learning signal for another modality without the need for labeling. Another approach he touches on is using outputs from large-scale optimization as a learning signal to train neural networks, which is done by mimicking their outputs but running in real-time on the AV.


5 Types of Machine Learning Algorithms You Should Know

#artificialintelligence

If you're a beginner, machine learning can be confusing for you– how to choose which algorithms to use, from the apparently limitless options, and how to know which one will provide the right predictions (data outputs). The machine learning is a way for computers to run various algorithms without direct human oversight in order to learn from data. So, just before starting with Machine learning algorithms, let's have a look at types of Machine learning which clarify these algorithms. Machine learning algorithms are programs that can learn from data and improve from experience, without human interference. Learning tasks may include learning the function that drafts the input to the output, learning the hidden structure in unlabeled data; or'instance-based learning', where a class label is produced for a new instance by analyzing the new instance (row) to instances from the training data, which were stored in memory.


SUPER Learning: A Supervised-Unsupervised Framework for Low-Dose CT Image Reconstruction

arXiv.org Machine Learning

Recent years have witnessed growing interest in machine learning-based models and techniques for low-dose X-ray CT (LDCT) imaging tasks. The methods can typically be categorized into supervised learning methods and unsupervised or model-based learning methods. Supervised learning methods have recently shown success in image restoration tasks. However, they often rely on large training sets. Model-based learning methods such as dictionary or transform learning do not require large or paired training sets and often have good generalization properties, since they learn general properties of CT image sets. Recent works have shown the promising reconstruction performance of methods such as PWLS-ULTRA that rely on clustering the underlying (reconstructed) image patches into a learned union of transforms. In this paper, we propose a new Supervised-UnsuPERvised (SUPER) reconstruction framework for LDCT image reconstruction that combines the benefits of supervised learning methods and (unsupervised) transform learning-based methods such as PWLS-ULTRA that involve highly image-adaptive clustering. The SUPER model consists of several layers, each of which includes a deep network learned in a supervised manner and an unsupervised iterative method that involves image-adaptive components. The SUPER reconstruction algorithms are learned in a greedy manner from training data. The proposed SUPER learning methods dramatically outperform both the constituent supervised learning-based networks and iterative algorithms for LDCT, and use much fewer iterations in the iterative reconstruction modules.


Papers With Code : Billion-scale semi-supervised learning for image classification

#artificialintelligence

This paper presents a study of semi-supervised learning with large convolutional networks. We propose a pipeline, based on a teacher/student paradigm, that leverages a large collection of unlabelled images (up to 1 billion)... Our main goal is to improve the performance for a given target architecture, like ResNet-50 or ResNext. We provide an extensive analysis of the success factors of our approach, which leads us to formulate some recommendations to produce high-accuracy models for image classification with semi-supervised learning. As a result, our approach brings important gains to standard architectures for image, video and fine-grained classification. For instance, by leveraging one billion unlabelled images, our learned vanilla ResNet-50 achieves 81.2% top-1 accuracy on the ImageNet benchmark.


Billion-scale semi-supervised learning for state-of-the-art image and video classification

#artificialintelligence

Accurate image and video classification is important for a wide range of computer vision applications, from identifying harmful content, to making products more accessible to the visually impaired, to helping people more easily buy and sell things on products like Marketplace. Facebook AI is developing alternative ways to train our AI systems so that we can do more with less labeled training data overall, and also deliver accurate results even when large, high-quality labeled data sets are simply not available. Today, we are sharing details on a versatile new model training technique that delivers state-of-the-art accuracy for image and video classification systems. This approach, which we call semi-weak supervision, is a new way to combine the merits of two different training methods: semi-supervised learning and weakly supervised learning. It opens the door the door to creating more accurate, efficient production classification models by using a teacher-student model training paradigm and billion-scale weakly supervised data sets.