Goto

Collaborating Authors

 Auvergne-Rhône-Alpes


MerGen: Micro-electrode recording synthesis using a generative data-driven approach

arXiv.org Artificial Intelligence

The analysis of electrophysiological data is crucial for certain surgical procedures such as deep brain stimulation, which has been adopted for the treatment of a variety of neurological disorders. During the procedure, auditory analysis of these signals helps the clinical team to infer the neuroanatomical location of the stimulation electrode and thus optimize clinical outcomes. This task is complex, and requires an expert who in turn requires significant training. In this paper, we propose a generative neural network, called MerGen, capable of simulating de novo electrophysiological recordings, with a view to providing a realistic learning tool for clinicians trainees for identifying these signals. We demonstrate that the generated signals are perceptually indistinguishable from real signals by experts in the field, and that it is even possible to condition the generation efficiently to provide a didactic simulator adapted to a particular surgical scenario. The efficacy of this conditioning is demonstrated, comparing it to intra-observer and inter-observer variability amongst experts. We also demonstrate the use of this network for data augmentation for automatic signal classification which can play a role in decision-making support in the operating theatre.


Structured Knowledge Accumulation: An Autonomous Framework for Layer-Wise Entropy Reduction in Neural Learning

arXiv.org Artificial Intelligence

We introduce the Structured Knowledge Accumulation (SKA) framework, which reinterprets entropy as a dynamic, layer-wise measure of knowledge alignment in neural networks. Instead of relying on traditional gradient-based optimization, SKA defines entropy in terms of knowledge vectors and their influence on decision probabilities across multiple layers. This formulation naturally leads to the emergence of activation functions such as the sigmoid as a consequence of entropy minimization. Unlike conventional backpropagation, SKA allows each layer to optimize independently by aligning its knowledge representation with changes in decision probabilities. As a result, total network entropy decreases in a hierarchical manner, allowing knowledge structures to evolve progressively. This approach provides a scalable, biologically plausible alternative to gradient-based learning, bridging information theory and artificial intelligence while offering promising applications in resource-constrained and parallel computing environments.


Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation

arXiv.org Artificial Intelligence

Three-dimensional biological microscopy has significantly advanced our understanding of complex biological structures. However, limitations due to microscopy techniques, sample properties or phototoxicity often result in poor z-resolution, hindering accurate cellular measurements. Here, we introduce ZAugNet, a fast, accurate, and self-supervised deep learning method for enhancing z-resolution in biological images. By performing nonlinear interpolation between consecutive slices, ZAugNet effectively doubles resolution with each iteration. Compared on several microscopy modalities and biological objects, it outperforms competing methods on most metrics. Our method leverages a generative adversarial network (GAN) architecture combined with knowledge distillation to maximize prediction speed without compromising accuracy. We also developed ZAugNet+, an extended version enabling continuous interpolation at arbitrary distances, making it particularly useful for datasets with nonuniform slice spacing. Both ZAugNet and ZAugNet+ provide high-performance, scalable z-slice augmentation solutions for large-scale 3D imaging. They are available as open-source frameworks in PyTorch, with an intuitive Colab notebook interface for easy access by the scientific community.


Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection

arXiv.org Artificial Intelligence

Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.


A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation

arXiv.org Artificial Intelligence

Coalition structure generation (CSG), i.e. the problem of optimally partitioning a set of agents into coalitions to maximize social welfare, is a fundamental computational problem in multiagent systems. This problem is important for many applications where small run times are necessary, including transportation and disaster response. In this paper, we develop SALDAE, a multiagent path finding algorithm for CSG that operates on a graph of coalition structures. Our algorithm utilizes a variety of heuristics and strategies to perform the search and guide it. It is an anytime algorithm that can handle large problems with hundreds and thousands of agents. We show empirically on nine standard value distributions, including disaster response and electric vehicle allocation benchmarks, that our algorithm enables a rapid finding of high-quality solutions and compares favorably with other state-of-the-art methods.


Vibravox: A Dataset of French Speech Captured with Body-conduction Audio Sensors

arXiv.org Artificial Intelligence

Vibravox is a dataset compliant with the General Data Protection Regulation (GDPR) containing audio recordings using five different body-conduction audio sensors : two in-ear microphones, two bone conduction vibration pickups and a laryngophone. The data set also includes audio data from an airborne microphone used as a reference. The Vibravox corpus contains 38 hours of speech samples and physiological sounds recorded by 188 participants under different acoustic conditions imposed by an high order ambisonics 3D spatializer. Annotations about the recording conditions and linguistic transcriptions are also included in the corpus. We conducted a series of experiments on various speech-related tasks, including speech recognition, speech enhancement and speaker verification. These experiments were carried out using state-of-the-art models to evaluate and compare their performances on signals captured by the different audio sensors offered by the Vibravox dataset, with the aim of gaining a better grasp of their individual characteristics.


Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping

arXiv.org Artificial Intelligence

Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics model and in vivo Doppler acquisitions, both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm. The efficiency of PINNs is boosted through dual-stage optimization and pre-optimized weights. On the other hand, the nnU-Net method excels in generalizability and real-time capabilities. Notably, nnU-Net shows superior robustness on sparse and truncated Doppler data while maintaining independence from explicit boundary conditions. Overall, our results highlight the effectiveness of these methods in reconstructing intraventricular vector blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.


The Kinetics Observer: A Tightly Coupled Estimator for Legged Robots

arXiv.org Artificial Intelligence

In this paper, we propose the "Kinetics Observer", a novel estimator addressing the challenge of state estimation for legged robots using proprioceptive sensors (encoders, IMU and force/torque sensors). Based on a Multiplicative Extended Kalman Filter, the Kinetics Observer allows the real-time simultaneous estimation of contact and perturbation forces, and of the robot's kinematics, which are accurate enough to perform proprioceptive odometry. Thanks to a visco-elastic model of the contacts linking their kinematics to the ones of the centroid of the robot, the Kinetics Observer ensures a tight coupling between the whole-body kinematics and dynamics of the robot. This coupling entails a redundancy of the measurements that enhances the robustness and the accuracy of the estimation. This estimator was tested on two humanoid robots performing long distance walking on even terrain and non-coplanar multi-contact locomotion.


Efficient Algorithms for Regularized Nonnegative Scale-invariant Low-rank Approximation Models

arXiv.org Artificial Intelligence

Regularized nonnegative low-rank approximations such as sparse Nonnegative Matrix Factorization or sparse Nonnegative Tucker Decomposition are an important branch of dimensionality reduction models with enhanced interpretability. However, from a practical perspective, the choice of regularizers and regularization coefficients, as well as the design of efficient algorithms, is challenging because of the multifactor nature of these models and the lack of theory to back these choices. This paper aims at improving upon these issues. By studying a more general model called the Homogeneous Regularized Scale-Invariant, we prove that the scale-invariance inherent to low-rank approximation models causes an implicit regularization with both unexpected beneficial and detrimental effects. This observation allows to better understand the effect of regularization functions in low-rank approximation models, to guide the choice of the regularization hyperparameters, and to design balancing strategies to enhance the convergence speed of dedicated optimization algorithms. Some of these results were already known but restricted to specific instances of regularized low-rank approximations. We also derive a generic Majorization Minimization algorithm that handles many regularized nonnegative low-rank approximations, with convergence guarantees. We showcase our contributions on sparse Nonnegative Matrix Factorization, ridge-regularized Canonical Polyadic decomposition and sparse Nonnegative Tucker Decomposition.


Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs

arXiv.org Artificial Intelligence

In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback. In a conversational setting such signals are usually unavailable due to the nature of the interactions, and, instead, the evaluation often relies on crowdsourced evaluation labels. The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied. We focus on how the evaluation of task-oriented dialogue systems (TDSs), is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated. We explore and compare two methodologies for assessing TDSs: one includes the user's follow-up utterance and one without. We use both crowdworkers and large language models (LLMs) as annotators to assess system responses across four aspects: relevance, usefulness, interestingness, and explanation quality. Our findings indicate that there is a distinct difference in ratings assigned by both annotator groups in the two setups, indicating user feedback does influence system evaluation. Workers are more susceptible to user feedback on usefulness and interestingness compared to LLMs on interestingness and relevance. User feedback leads to a more personalized assessment of usefulness by workers, aligning closely with the user's explicit feedback. Additionally, in cases of ambiguous or complex user requests, user feedback improves agreement among crowdworkers. These findings emphasize the significance of user feedback in refining system evaluations and suggest the potential for automated feedback integration in future research. We publicly release the annotated data to foster research in this area.