Plotting

Attentional Modulation of Human Pattern Discrimination Psychophysics Reproduced by a Quantitative Model

Neural Information Processing Systems

We previously proposed a quantitative model of early visual processing in primates, based on non-linearly interacting visual filters and statistically efficient decision. We now use this model to interpret the observed modulation of a range of human psychophysical thresholds with and without focal visual attention. Our model - calibrated by an automatic fitting procedure - simultaneously reproduces thresholds for four classical pattern discrimination tasks, performed while attention was engaged by another concurrent task. Our model then predicts that the seemingly complex improvements of certain thresholds, which we observed when attention was fully available for the discrimination tasks, can best be explained by a strengthening of competition among early visual filters. 1 INTRODUCTION What happens when we voluntarily focus our attention to a restricted part of our visual field? Focal attention is often thought as a gating mechanism, which selectively allows a certain spatial location and and certain types of visual features to reach higher visual processes.


Mechanisms of Generalization in Perceptual Learning

Neural Information Processing Systems

The learning of many visual perceptual tasks has been shown to be specific to practiced stimuli, while new stimuli require re-Iearning from scratch. Here we demonstrate generalization using a novel paradigm in motion discrimination where learning has been previously shown to be specific. We trained subjects to discriminate the directions of moving dots, and verified the previous results that learning does not transfer from the trained direction to a new one. However, by tracking the subjects' performance across time in the new direction, we found that their rate of learning doubled. Therefore, learning generalized in a task previously considered too difficult for generalization.


A Model for Associative Multiplication

Neural Information Processing Systems

Despite the fact that mental arithmetic is based on only a few hundred basic facts and some simple algorithms, humans have a difficult time mastering the subject, and even experienced individuals make mistakes. Associative multiplication, the process of doing multiplication by memory without the use of rules or algorithms, is especially problematic.


Barycentric Interpolators for Continuous Space and Time Reinforcement Learning

Neural Information Processing Systems

In order to find the optimal control of continuous state-space and time reinforcement learning (RL) problems, we approximate the value function (VF) with a particular class of functions called the barycentric interpolators. We establish sufficient conditions under which a RL algorithm converges to the optimal VF, even when we use approximate models of the state dynamics and the reinforcement functions.


Tractable Variational Structures for Approximating Graphical Models

Neural Information Processing Systems

Graphical models provide a broad probabilistic framework with applications in speech recognition (Hidden Markov Models), medical diagnosis (Belief networks) and artificial intelligence (Boltzmann Machines). However, the computing time is typically exponential in the number of nodes in the graph. Within the variational framework for approximating these models, we present two classes of distributions, decimatable Boltzmann Machines and Tractable Belief Networks that go beyond the standard factorized approach. We give generalised mean-field equations for both these directed and undirected approximations. Simulation results on a small benchmark problem suggest using these richer approximations compares favorably against others previously reported in the literature. 1 Introduction Graphical models provide a powerful framework for probabilistic inference[l] but suffer intractability when applied to large scale problems.


Maximum-Likelihood Continuity Mapping (MALCOM): An Alternative to HMMs

Neural Information Processing Systems

We describe Maximum-Likelihood Continuity Mapping (MALCOM), an alternative to hidden Markov models (HMMs) for processing sequence data such as speech. While HMMs have a discrete "hidden" space constrained by a fixed finite-automaton architecture, MALCOM has a continuous hidden space-a continuity map-that is constrained only by a smoothness requirement on paths through the space. MALCOM fits into the same probabilistic framework for speech recognition as HMMs, but it represents a more realistic model of the speech production process. To evaluate the extent to which MALCOM captures speech production information, we generated continuous speech continuity maps for three speakers and used the paths through them to predict measured speech articulator data. The median correlation between the MALCOM paths obtained from only the speech acoustics and articulator measurements was 0.77 on an independent test set not used to train MALCOM or the predictor.


Exploiting Generative Models in Discriminative Classifiers

Neural Information Processing Systems

On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often result in classification performance superior to that of the model based approaches. An ideal classifier should combine these two complementary approaches. In this paper, we develop a natural way of achieving this combination by deriving kernel functions for use in discriminative methods such as support vector machines from generative probability models.



Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm

Neural Information Processing Systems

We present the CEM (Conditional Expectation Maximi::ation) algorithm as an extension of the EM (Expectation M aximi::ation) algorithm to conditional density estimation under missing data. A bounding and maximization process is given to specifically optimize conditional likelihood instead of the usual joint likelihood. We apply the method to conditioned mixture models and use bounding techniques to derive the model's update rules. Monotonic convergence, computational efficiency and regression results superior to EM are demonstrated.


Non-Linear PI Control Inspired by Biological Control Systems

Neural Information Processing Systems

A nonlinear modification to PI control is motivated by a model of a signal transduction pathway active in mammalian blood pressure regulation. This control algorithm, labeled PII (proportional with intermittent integral), is appropriate for plants requiring exact set-point matching and disturbance attenuation in the presence of infrequent step changes in load disturbances or set-point. The proportional aspect of the controller is independently designed to be a disturbance attenuator and set-point matching is achieved by intermittently invoking an integral controller. The mechanisms observed in the Angiotensin 11/ AT1 signaling pathway are used to control the switching of the integral control. Improved performance over PI control is shown on a model of cyc1opentenol production. A sign change in plant gain at the desirable operating point causes traditional PI control to result in an unstable system.