Goto

Collaborating Authors

 Information Technology


An Alternative Model for Mixtures of Experts

Neural Information Processing Systems

Hinton Dept. of Computer Science University of Toronto Toronto, M5S lA4, Canada Abstract We propose an alternative model for mixtures of experts which uses a different parametric form for the gating network. The modified model is trained by the EM algorithm. In comparison with earlier models-trained by either EM or gradient ascent-there is no need to select a learning stepsize. We report simulation experiments which show that the new architecture yields faster convergence. We also apply the new model to two problem domains: piecewise nonlinear function approximation and the combination of multiple previously trained classifiers. 1 INTRODUCTION For the mixtures of experts architecture (Jacobs, Jordan, Nowlan & Hinton, 1991), the EM algorithm decouples the learning process in a manner that fits well with the modular structure and yields a considerably improved rate of convergence (Jordan & Jacobs, 1994).


Reinforcement Learning Methods for Continuous-Time Markov Decision Problems

Neural Information Processing Systems

Semi-Markov Decision Problems are continuous time generalizations ofdiscrete time Markov Decision Problems. A number of reinforcement learning algorithms have been developed recently for the solution of Markov Decision Problems, based on the ideas of asynchronous dynamic programming and stochastic approximation. Amongthese are TD(,x), Q-Iearning, and Real-time Dynamic Programming. After reviewing semi-Markov Decision Problems and Bellman's optimality equation in that context, we propose algorithms similarto those named above, adapted to the solution of semi-Markov Decision Problems. We demonstrate these algorithms by applying them to the problem of determining the optimal control fora simple queueing system. We conclude with a discussion of circumstances under which these algorithms may be usefully applied. 1 Introduction A number of reinforcement learning algorithms based on the ideas of asynchronous dynamic programming and stochastic approximation have been developed recently for the solution of Markov Decision Problems.


Associative Decorrelation Dynamics: A Theory of Self-Organization and Optimization in Feedback Networks

Neural Information Processing Systems

This paper outlines a dynamic theory of development and adaptation inneural networks with feedback connections. Given input ensemble, the connections change in strength according to an associative learning rule and approach a stable state where the neuronal outputs are decorrelated. We apply this theory to primary visualcortex and examine the implications of the dynamical decorrelation of the activities of orientation selective cells by the intracortical connections. The theory gives a unified and quantitative explanationof the psychophysical experiments on orientation contrast and orientation adaptation. Using only one parameter, we achieve good agreements between the theoretical predictions and the experimental data. 1 Introduction The mammalian visual system is very effective in detecting the orientations of lines and most neurons in primary visual cortex selectively respond to oriented lines and form orientation columns [1) . Why is the visual system organized as such? We *Present address: Rockefeller University, B272, 1230 York Avenue, NY, NY 10021-6399.


Catastrophic Interference in Human Motor Learning

Neural Information Processing Systems

Biological sensorimotor systems are not static maps that transform input (sensory information) into output (motor behavior). Evidence frommany lines of research suggests that their representations are plastic, experience-dependent entities. While this plasticity is essential for flexible behavior, it presents the nervous system with difficult organizational challenges. If the sensorimotor system adapts itself to perform well under one set of circumstances, will it then perform poorly when placed in an environment with different demands (negative transfer)? Will a later experience-dependent change undo the benefits of previous learning (catastrophic interference)?


Sample Size Requirements for Feedforward Neural Networks

Neural Information Processing Systems

We estimate the number of training samples required to ensure that the performance of a neural network on its training data matches that obtained when fresh data is applied to the network. Existing estimates are higher by orders of magnitude than practice indicates. This work seeks to narrow the gap between theory and practice by transforming the problem into determining the distribution of the supremum of a random field in the space of weight vectors, which in turn is attacked by application of a recent technique called the Poisson clumping heuristic.



Factorial Learning by Clustering Features

Neural Information Processing Systems

We introduce a novel algorithm for factorial learning, motivated by segmentation problems in computational vision, in which the underlying factors correspond to clusters of highly correlated input features. The algorithm derives from a new kind of competitive clustering model, in which the cluster generators compete to explain eachfeature of the data set and cooperate to explain each input example, rather than competing for examples and cooperating onfeatures, as in traditional clustering algorithms. A natural extension of the algorithm recovers hierarchical models of data generated from multiple unknown categories, each with a different, multiplecausal structure. Several simulations demonstrate the power of this approach.


Predictive Coding with Neural Nets: Application to Text Compression

Neural Information Processing Systems

To compress text files, a neural predictor network P is used to approximate theconditional probability distribution of possible "next characters", given n previous characters. P's outputs are fed into standard coding algorithms that generate short codes for characters with high predicted probability and long codes for highly unpredictable characters.Tested on short German newspaper articles, our method outperforms widely used Lempel-Ziv algorithms (used in UNIX functions such as "compress" and "gzip").


Multidimensional Scaling and Data Clustering

Neural Information Processing Systems

Visualizing and structuring pairwise dissimilarity data are difficult combinatorial optimization problemsknown as multidimensional scaling or pairwise data clustering. Algorithms for embedding dissimilarity data set in a Euclidian space, for clustering these data and for actively selecting data to support the clustering process are discussed in the maximum entropy framework. Active data selection provides a strategy to discover structure in a data set efficiently with partially unknown data. 1 Introduction Grouping experimental data into compact clusters arises as a data analysis problem in psychology, linguistics,genetics and other experimental sciences. The data which are supposed to be clustered are either given by an explicit coordinate representation (central clustering) or, in the non-metric case, they are characterized by dissimilarity values for pairs of data points (pairwise clustering). In this paper we study algorithms (i) for embedding non-metric data in a D-dimensional Euclidian space, (ii) for simultaneous clustering and embedding of non-metric data, and (iii) for active data selection to determine a particular cluster structure with minimal number of data queries. All algorithms are derived from the maximum entropy principle (Hertz et al., 1991) which guarantees robust statistics (Tikochinsky et al., 1984).


Glove-TalkII: Mapping Hand Gestures to Speech Using Neural Networks

Neural Information Processing Systems

There are many different possible schemes for converting hand gestures to speech. The choice of scheme depends on the granularity of the speech that you want to produce. Figure 1 identifies a spectrum defined by possible divisions of speech based on the duration of the sound for each granularity. What is interesting is that in general, the coarser the division of speech, the smaller the bandwidth necessary for the user. In contrast, where the granularity of speech is on the order of articulatory musclemovements (i.e. the artificial vocal tract [AVT]) high bandwidth control is necessary for good speech. Devices which implement this model of speech production are like musical instruments which produce speech sounds.