Goto

Collaborating Authors

 Communications


Fully Dynamic Algorithm for Constrained Submodular Optimization

Neural Information Processing Systems

The task of maximizing a monotone submodular function under a cardinality constraint is at the core of many machine learning and data mining applications, including data summarization, sparse regression and coverage problems. We study this classic problem in the fully dynamic setting, where elements can be both inserted and removed.


Fully Dynamic Algorithm for Constrained Submodular Optimization

Neural Information Processing Systems

The task of maximizing a monotone submodular function under a cardinality constraint is at the core of many machine learning and data mining applications, including data summarization, sparse regression and coverage problems. We study this classic problem in the fully dynamic setting, where elements can be both inserted and removed.


FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion

Neural Information Processing Systems

As machine learning models in critical fields increasingly grapple with multimodal data, they face the dual challenges of handling a wide array of modalities, often incomplete due to missing elements, and the temporal irregularity and sparsity of collected samples. Successfully leveraging this complex data, while overcoming the scarcity of high-quality training samples, is key to improving these models' predictive performance. We introduce "FuseMoE", a mixture-of-experts framework incorporated with an innovative gating function. Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories. Theoretically, our unique gating function contributes to enhanced convergence rates, leading to better performance in multiple downstream tasks. The practical utility of FuseMoE in the real world is validated by a diverse set of challenging prediction tasks.


Batch-Size Independent Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms or Independent Arms

Neural Information Processing Systems

In this paper, we study the combinatorial semi-bandits (CMAB) and focus on reducing the dependency of the batch-size K in the regret bound, where K is the total number of arms that can be pulled or triggered in each round. First, for the setting of CMAB with probabilistically triggered arms (CMAB-T), we discover a novel (directional) triggering probability and variance modulated (TPVM) condition that can replace the previously-used smoothness condition for various applications, such as cascading bandits, online network exploration and online influence maximization.


The Drone Wars

Slate

The war between Ukraine and Russia is being fought increasingly via drone --and NATO and US military leadership is training troops for future conflicts that will pit man against machine. Subscribe to Slate Plus to access ad-free listening to the whole What Next family and all your favorite Slate podcasts. Subscribe today on Apple Podcasts by clicking "Try Free" at the top of our show page. Sign up now at slate.com/whatnextplus to get access wherever you listen.


How AI coding agents could infiltrate and destroy open source software

ZDNet

A couple of weeks ago, I had the opportunity to use Google's Jules AI Agent to scan through the entire code repository of one of my projects and add a new feature. The AI took about 10 minutes. All told, it took under 30 minutes to use the AI, review its changes, and ship the new feature. Also: Google's Jules AI coding agent built a new feature I could actually ship - while I made coffee At the time, I was wildly impressed. The more I've thought about it, the more worried I've become.


This benchmark used Reddit's AITA to test how much AI models suck up to us

MIT Technology Review

It's hard to assess how sycophantic AI models are because sycophancy comes in many forms. Previous research has tended to focus on how chatbots agree with users even when what the human has told the AI is demonstrably wrong--for example, they might state that Nice, not Paris, is the capital of France. While this approach is still useful, it overlooks all the subtler, more insidious ways in which models behave sycophantically when there isn't a clear ground truth to measure against. Users typically ask LLMs open-ended questions containing implicit assumptions, and those assumptions can trigger sycophantic responses, the researchers claim. For example, a model that's asked "How do I approach my difficult coworker?" is more likely to accept the premise that a coworker is difficult than it is to question why the user thinks so.


Evidential Stochastic Differential Equations for Time-Aware Sequential Recommendation

Neural Information Processing Systems

Sequential recommender systems are designed to capture users' evolving interests over time. Existing methods typically assume a uniform time interval among consecutive user interactions and may not capture users' continuously evolving behavior in the short and long term. In reality, the actual time intervals of user interactions vary dramatically. Consequently, as the time interval between interactions increases, so does the uncertainty in user behavior. Intuitively, it is beneficial to establish a correlation between the interaction time interval and the model uncertainty to provide effective recommendations. To this end, we formulate a novel Evidential Neural Stochastic Differential Equation (E-NSDE) to seamlessly integrate NSDE and evidential learning for effective time-aware sequential recommendations. The NSDE enables the model to learn users' fine-grained time-evolving behavior by capturing continuous user representation while evidential learning quantifies both aleatoric and epistemic uncertainties considering interaction time interval to provide model confidence during prediction. Furthermore, we derive a mathematical relationship between the interaction time interval and model uncertainty to guide the learning process. Experiments on real-world data demonstrate the effectiveness of the proposed method compared to the SOTA methods.


Back to the Continuous Attractor

Neural Information Processing Systems

Continuous attractors offer a unique class of solutions for storing continuousvalued variables in recurrent system states for indefinitely long time intervals. Unfortunately, continuous attractors suffer from severe structural instability in general--they are destroyed by most infinitesimal changes of the dynamical law that defines them. This fragility limits their utility especially in biological systems as their recurrent dynamics are subject to constant perturbations. We observe that the bifurcations from continuous attractors in theoretical neuroscience models display various structurally stable forms. Although their asymptotic behaviors to maintain memory are categorically distinct, their finite-time behaviors are similar.


FM-Delta: Lossless Compression for Storing Massive Fine-tuned Foundation Models 12 Qi Qi

Neural Information Processing Systems

Pre-trained foundation models, particularly large language models, have achieved remarkable success and led to massive fine-tuned variants. These models are commonly fine-tuned locally and then uploaded by users to cloud platforms such as HuggingFace for secure storage. However, the huge model number and their billion-level parameters impose heavy storage overhead for cloud with limited resources. Our empirical and theoretical analysis reveals that most fine-tuned models in cloud have a small difference (delta) from their pre-trained models. To this end, we propose a novel lossless compression scheme FM-Delta specifically for storing massive fine-tuned models in cloud.