Batch-Size Independent Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms or Independent Arms

Neural Information Processing Systems 

In this paper, we study the combinatorial semi-bandits (CMAB) and focus on reducing the dependency of the batch-size K in the regret bound, where K is the total number of arms that can be pulled or triggered in each round. First, for the setting of CMAB with probabilistically triggered arms (CMAB-T), we discover a novel (directional) triggering probability and variance modulated (TPVM) condition that can replace the previously-used smoothness condition for various applications, such as cascading bandits, online network exploration and online influence maximization.