Goto

Collaborating Authors

 Communications: Instructional Materials


Livestock feeding behavior: A tutorial review on automated techniques for ruminant monitoring

arXiv.org Artificial Intelligence

Livestock feeding behavior is an influential research area for those involved in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behavior of ruminants. Despite the developments accomplished in the last decade, there is still much to do and learn about the methods for measuring and analyzing livestock feeding behavior. Automated monitoring systems mainly use motion, acoustic, and image sensors to collect animal behavioral data. The performance evaluation of existing methods is a complex task and direct comparisons between studies are difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. To the best of our knowledge, this work represents the first tutorial-style review on the analysis of the feeding behavior of ruminants, emphasizing the relationship between sensing methodologies, signal processing and computational intelligence methods. It assesses the main sensing methodologies (i.e. based on movement, sound, images/videos and pressure) and the main techniques to measure and analyze the signals associated with feeding behavior, evaluating their use in different settings and situations. It also highlights the potentiality of automated monitoring systems to provide valuable information that improves our understanding of livestock feeding behavior. The relevance of these systems is increasingly important due to their impact on production systems and research. Finally, the paper closes by discussing future challenges and opportunities in livestock feeding behavior monitoring.


FairGen: Towards Fair Graph Generation

arXiv.org Artificial Intelligence

There have been tremendous efforts over the past decades dedicated to the generation of realistic graphs in a variety of domains, ranging from social networks to computer networks, from gene regulatory networks to online transaction networks. Despite the remarkable success, the vast majority of these works are unsupervised in nature and are typically trained to minimize the expected graph reconstruction loss, which would result in the representation disparity issue in the generated graphs, i.e., the protected groups (often minorities) contribute less to the objective and thus suffer from systematically higher errors. In this paper, we aim to tailor graph generation to downstream mining tasks by leveraging label information and user-preferred parity constraints. In particular, we start from the investigation of representation disparity in the context of graph generative models. To mitigate the disparity, we propose a fairness-aware graph generative model named FairGen. Our model jointly trains a label-informed graph generation module and a fair representation learning module by progressively learning the behaviors of the protected and unprotected groups, from the `easy' concepts to the `hard' ones. In addition, we propose a generic context sampling strategy for graph generative models, which is proven to be capable of fairly capturing the contextual information of each group with a high probability. Experimental results on seven real-world data sets, including web-based graphs, demonstrate that FairGen (1) obtains performance on par with state-of-the-art graph generative models across nine network properties, (2) mitigates the representation disparity issues in the generated graphs, and (3) substantially boosts the model performance by up to 17% in downstream tasks via data augmentation.


Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives

arXiv.org Artificial Intelligence

We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.


Generative AI for Physical Layer Communications: A Survey

arXiv.org Artificial Intelligence

The recent evolution of generative artificial intelligence (GAI) leads to the emergence of groundbreaking applications such as ChatGPT, which not only enhances the efficiency of digital content production, such as text, audio, video, or even network traffic data, but also enriches its diversity. Beyond digital content creation, GAI's capability in analyzing complex data distributions offers great potential for wireless communications, particularly amidst a rapid expansion of new physical layer communication technologies. For example, the diffusion model can learn input signal distributions and use them to improve the channel estimation accuracy, while the variational autoencoder can model channel distribution and infer latent variables for blind channel equalization. Therefore, this paper presents a comprehensive investigation of GAI's applications for communications at the physical layer, ranging from traditional issues, including signal classification, channel estimation, and equalization, to emerging topics, such as intelligent reflecting surfaces and joint source channel coding. We also compare GAI-enabled physical layer communications with those supported by traditional AI, highlighting GAI's inherent capabilities and unique contributions in these areas. Finally, the paper discusses open issues and proposes several future research directions, laying a foundation for further exploration and advancement of GAI in physical layer communications.


Toward Energy-Efficient Massive MIMO: Graph Neural Network Precoding for Mitigating Non-Linear PA Distortion

arXiv.org Artificial Intelligence

Massive MIMO systems are typically designed assuming linear power amplifiers (PAs). However, PAs are most energy efficient close to saturation, where non-linear distortion arises. For conventional precoders, this distortion can coherently combine at user locations, limiting performance. We propose a graph neural network (GNN) to learn a mapping between channel and precoding matrices, which maximizes the sum rate affected by non-linear distortion, using a high-order polynomial PA model. In the distortion-limited regime, this GNN-based precoder outperforms zero forcing (ZF), ZF plus digital pre-distortion (DPD) and the distortion-aware beamforming (DAB) precoder from the state-of-the-art. At an input back-off of -3 dB the proposed precoder compared to ZF increases the sum rate by 8.60 and 8.84 bits/channel use for two and four users respectively. Radiation patterns show that these gains are achieved by transmitting the non-linear distortion in non-user directions. In the four user-case, for a fixed sum rate, the total consumed power (PA and processing) of the GNN precoder is 3.24 and 1.44 times lower compared to ZF and ZF plus DPD respectively. A complexity analysis shows six orders of magnitude reduction compared to DAB precoding. This opens perspectives to operate PAs closer to saturation, which drastically increases their energy efficiency.


Peer attention enhances student learning

arXiv.org Artificial Intelligence

Human visual attention is susceptible to social influences. In education, peer effects impact student learning, but their precise role in modulating attention remains unclear. Our experiment (N=311) demonstrates that displaying peer visual attention regions when students watch online course videos enhances their focus and engagement. However, students retain adaptability in following peer attention cues. Overall, guided peer attention improves learning experiences and outcomes. These findings elucidate how peer visual attention shapes students' gaze patterns, deepening understanding of peer influence on learning. They also offer insights into designing adaptive online learning interventions leveraging peer attention modelling to optimize student attentiveness and success.


Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2023): Workshop and Shared Task Report

arXiv.org Artificial Intelligence

We provide a summary of the sixth edition of the CASE workshop that is held in the scope of RANLP 2023. The workshop consists of regular papers, three keynotes, working papers of shared task participants, and shared task overview papers. This workshop series has been bringing together all aspects of event information collection across technical and social science fields. In addition to contributing to the progress in text based event extraction, the workshop provides a space for the organization of a multimodal event information collection task.


Strategies for Parallelizing the Big-Means Algorithm: A Comprehensive Tutorial for Effective Big Data Clustering

arXiv.org Artificial Intelligence

This study focuses on the optimization of the Big-means algorithm for clustering large-scale datasets, exploring four distinct parallelization strategies. We conducted extensive experiments to assess the computational efficiency, scalability, and clustering performance of each approach, revealing their benefits and limitations. The paper also delves into the trade-offs between computational efficiency and clustering quality, examining the impacts of various factors. Our insights provide practical guidance on selecting the best parallelization strategy based on available resources and dataset characteristics, contributing to a deeper understanding of parallelization techniques for the Big-means algorithm.


Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

arXiv.org Artificial Intelligence

Hybrid storage systems (HSS) use multiple different storage devices to provide high and scalable storage capacity at high performance. Recent research proposes various techniques that aim to accurately identify performance-critical data to place it in a "best-fit" storage device. Unfortunately, most of these techniques are rigid, which (1) limits their adaptivity to perform well for a wide range of workloads and storage device configurations, and (2) makes it difficult for designers to extend these techniques to different storage system configurations (e.g., with a different number or different types of storage devices) than the configuration they are designed for. We introduce Sibyl, the first technique that uses reinforcement learning for data placement in hybrid storage systems. Sibyl observes different features of the running workload as well as the storage devices to make system-aware data placement decisions. For every decision it makes, Sibyl receives a reward from the system that it uses to evaluate the long-term performance impact of its decision and continuously optimizes its data placement policy online. We implement Sibyl on real systems with various HSS configurations. Our results show that Sibyl provides 21.6%/19.9% performance improvement in a performance-oriented/cost-oriented HSS configuration compared to the best previous data placement technique. Our evaluation using an HSS configuration with three different storage devices shows that Sibyl outperforms the state-of-the-art data placement policy by 23.9%-48.2%, while significantly reducing the system architect's burden in designing a data placement mechanism that can simultaneously incorporate three storage devices. We show that Sibyl achieves 80% of the performance of an oracle policy that has complete knowledge of future access patterns while incurring a very modest storage overhead of only 124.4 KiB.


Semantics-Empowered Communication: A Tutorial-cum-Survey

arXiv.org Artificial Intelligence

Along with the springing up of the semantics-empowered communication (SemCom) research, it is now witnessing an unprecedentedly growing interest towards a wide range of aspects (e.g., theories, applications, metrics and implementations) in both academia and industry. In this work, we primarily aim to provide a comprehensive survey on both the background and research taxonomy, as well as a detailed technical tutorial. Specifically, we start by reviewing the literature and answering the "what" and "why" questions in semantic transmissions. Afterwards, we present the ecosystems of SemCom, including history, theories, metrics, datasets and toolkits, on top of which the taxonomy for research directions is presented. Furthermore, we propose to categorize the critical enabling techniques by explicit and implicit reasoning-based methods, and elaborate on how they evolve and contribute to modern content & channel semantics-empowered communications. Besides reviewing and summarizing the latest efforts in SemCom, we discuss the relations with other communication levels (e.g., conventional communications) from a holistic and unified viewpoint. Subsequently, in order to facilitate future developments and industrial applications, we also highlight advanced practical techniques for boosting semantic accuracy, robustness, and large-scale scalability, just to mention a few. Finally, we discuss the technical challenges that shed light on future research opportunities.