Goto

Collaborating Authors

 Machine Learning


STeLLA: A Scheme for a Learning Machine

Classics

Electrical and Computer Engineering will give you the power to change the world. From providing clean, efficient energy to controlling digital data, from global communication to nanotechnologies, from robotics to entertainment, the future is being created by our graduates today. If you want to make a difference, study Electrical and Electronic Engineering or Computer Engineering at UC - the future is in your hands.


Experiments with a heuristic compiler

Classics

"This report describes some experiments in constructing a compiler that makes use of heuristic problem~solving techniques such as those incorporated in the General Problem Solver (GPS). The experiments were aimed at the dual objectives of throwing light on some of the problems of constructing more powerful programming languages and compilers, and of testing whether the task of writing a computer program can be regarded as a "problem" in the sense in which that term is used in GPS. The present paper is concerned primarily with the second objective--with analyzing some of the problem-solving processes that are involved in writing computer programs. At the present stage of their development, no claims will be made for the heuristic programming procedures described here as practical approaches to the construction of compilers. Their interest lies in what they teach us about the nature of the programming task." JACM, 10, 493-506. See also: Artificial intelligence and self-organizing systems: Experiments with a Heuristic Compiler. (http://dl.acm.org/citation.cfm?id=806076)


Computers and Thought

Classics

E.A. Feigenbaum and J. Feldman (Eds.). Computers and Thought. McGraw-Hill, 1963. This collection includes twenty classic papers by such pioneers as A. M. Turing and Marvin Minsky who were behind the pivotal advances in artificially simulating human thought processes with computers. All Parts are available as downloadable pdf files; most individual chapters are also available separately. COMPUTING MACHINERY AND INTELLIGENCE. A. M. Turing. CHESS-PLAYING PROGRAMS AND THE PROBLEM OF COMPLEXITY. Allen Newell, J.C. Shaw and H.A. Simon. SOME STUDIES IN MACHINE LEARNING USING THE GAME OF CHECKERS. A. L. Samuel. EMPIRICAL EXPLORATIONS WITH THE LOGIC THEORY MACHINE: A CASE STUDY IN HEURISTICS. Allen Newell J.C. Shaw and H.A. Simon. REALIZATION OF A GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter. EMPIRICAL EXPLORATIONS OF THE GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter, J.R. Hansen, and D. W. Loveland. SUMMARY OF A HEURISTIC LINE BALANCING PROCEDURE. Fred M. Tonge. A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC INTEGRATION PROBLEMS IN FRESHMAN CALCULUS. James R. Slagle. BASEBALL: AN AUTOMATIC QUESTION ANSWERER. Green, Bert F. Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. INFERENTIAL MEMORY AS THE BASIS OF MACHINES WHICH UNDERSTAND NATURAL LANGUAGE. Robert K. Lindsay. PATTERN RECOGNITION BY MACHINE. Oliver G. Selfridge and Ulric Neisser. A PATTERN-RECOGNITION PROGRAM THAT GENERATES, EVALUATES, AND ADJUSTS ITS OWN OPERATORS. Leonard Uhr and Charles Vossler. GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT. Allen Newell and H.A. Simon. THE SIMULATION OF VERBAL LEARNING BEHAVIOR. Edward A. Feigenbaum. PROGRAMMING A MODEL OF HUMAN CONCEPT FORMULATION. Earl B. Hunt and Carl I. Hovland. SIMULATION OF BEHAVIOR IN THE BINARY CHOICE EXPERIMENT Julian Feldman. A MODEL OF THE TRUST INVESTMENT PROCESS. Geoffrey P. E. Clarkson. A COMPUTER MODEL OF ELEMENTARY SOCIAL BEHAVIOR. John T. Gullahorn and Jeanne E. Gullahorn. TOWARD INTELLIGENT MACHINES. Paul Armer. STEPS TOWARD ARTIFICIAL INTELLIGENCE. Marvin Minsky. A SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY TO THE LITERATURE ON ARTIFICIAL INTELLIGENCE. Marvin Minsky.




Concept Formation: An Information Processing Problem

Classics

A model of human information processing during concept formation has been constructed, using a list processing, digital computer program. The program's input consists of descriptions of objects in terms of dimensions and values. The universe of objects is divided into two or more sets. The program attempts to form a decision rule, based upon the descriptions of the objects, which can be used to assign any previously presented or new object to its correct set. The program is a model for human information processing, rather than an artificial intelligence system.



A selected descriptor indexed bibliography to the literature on artificial intelligence

Classics

This listing is intended as an introduction to the literature on Artificial Intelligence, €”i.e., to the literature dealing with the problem of making machines behave intelligently. We have divided this area into categories and cross-indexed the references accordingly. Large bibliographies without some classification facility are next to useless. This particular field is still young, but there are already many instances in which workers have wasted much time in rediscovering (for better or for worse) schemes already reported. In the last year or two this problem has become worse, and in such a situation just about any information is better than none. This bibliography is intended to serve just that purpose-to present some information about this literature. The selection was confined mainly to publications directly concerned with construction of artificial problem-solving systems. Many peripheral areas are omitted completely or represented only by a few citations.IRE Trans. on Human Factors in Electronics, HFE-2, pages 39-55


Steps Toward Artificial Intelligence

Classics

... The literature does not include any general discussion of the outstanding problems of this field. In this article, an attempt will be made to separate out, analyze, and find the relations between some of these problems. Analysis will be supported with enough examples from the literature to serve the introductory function of a review article, but there remains much relevant work not described here.Proc. Institute of Radio Engineers 49, p. 8-30


Suggestions for self-adapting computer models of brain functions

Classics

This paper describes an attempt to make use of machine learning or self-organizing processes in the design of a pattern-recognition program. The program starts not only without any knowledge of specific patterns to be input, but also without any operators for processing inputs. Operators are generated and refined by the program itself as a function of the problem space and of its own successes and failures in dealing with the problem space. Not only does the program learn information about different patterns, it also learns or constructs, in part at least, a secondary code appropriate for the analysis of the particular set of patterns input to it.