Goto

Collaborating Authors

 Machine Learning


Machine Learning, Neural and Statistical Classification

Classics

This book (originally published in 1994 by Ellis Horwood) is now out of print. The copyright now resides with the editors who have decided to make the material freely available on the web.This book is based on the EC (ESPRIT) project StatLog which compare and evaluated a range of classification techniques, with an assessment of their merits, disadvantages and range of application. This integrated volume provides a concise introduction to each method, and reviews comparative trials in large-scale commercial and industrial problems. It makes accessible to a wide range of workers the complex issue of classification as approached through machine learning, statistics and neural networks, encouraging a cross-fertilization between these discplines.



Neural Network Perception for Mobile Robot Guidance

Classics

Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This thesis describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task. But real world problems like vision based mobile robot guidance presents a different set of challenges for the connectionist paradigm.



The Gardens of Learning: A Vision for AI

Classics

The field of AI is directed at the fundamental problem of how the mind works; its approach, among other things, is to try to simulate its working -- in bits and pieces. History shows us that mankind has been trying to do this for certainly hundreds of years, but the blooming of current computer technology has sparked an explosion in the research we can now do. The center of AI is the wonderful capacity we call learning, which the field is paying increasing attention to. Learning is difficult and easy, complicated and simple, and most research doesn't look at many aspects of its complexity. However, we in the AI field are starting. Let us now celebrate the efforts of our forebears and rejoice in our own efforts, so that our successors can thrive in their research. This article is the substance, edited and adapted, of the keynote address given at the 1992 annual meeting of the Association for the Advancement of Artificial Intelligence on 14 July in San Jose, California. AI Magazine 14(2): 36-48.





Learning Problem-Solving Heuristics by Experimentation

Classics

Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems.