
COMPUTERS
THOUGHT

Hans?
Hovland

fridge

Wolf

/Wi

Newell

EDWARD A. FEIGENBAUM
JULIAN FELDMAN

COMPUTERS
AND THOUGHT

This unique collection makes available
in one volume twenty research reports
and discussions of outstanding accom-
plishments in the use of computers to
simulate human thought processes and
to perform tasks previously only within
the range of human intelligence.
The implications of research in artifi-
cial intelligence and simulation of cog-
nitive processes are important and
far-reaching. Unfortunately the discus-
sion of these topics has suffered from
a widespread lack of knowledge and
understanding of the progress that has
been made and the problems that re-
main. This volume gives the interested
nonspecialist a factual introduction to
the field. The editors have provided
him with special introductory sections
as a guide to a thorough understand-
ing of the reports. For the specialist,
this collection is aconvenient reference
volume which includes important,
much-referenced, and often inacces-
sible reports, (continued on back flap)

Computers
and

Thought

&

1

)

f

COMPUTERS
and THOUGHT

S
|

a collection of articles bya
1 ARMER HANSEN

HOVLAND
HUNT

SELFRIDGE
SHAWCHOMSKY

CLARKSON

\i

SIMON
SLAGLE
TONGE
TURING
UHR

FEIGENBAUM
FELDMAN

LAUGHERY
LINDSAYj.

GELERNTER
GREEN

LOVELAND
MINSKY1

%ap
s

GULLAHORN
GULLAHORN

NEISSER
NEWELL
SAMUEL

VOSSLER

WOLF

(i

?! edited by

EDWARD A. FEIGENBAUM & JULIAN FELDMAN

1 University of

California,

Berkeley

III McGraw-Hill Book Company

NEW

YORK SAN FRANCISCO TORONTO LONDON

SYDNEY

11 12 13 14 15 16-MAMM-7543 2
20370

Computers and Thought
Copyright © 1963 by

McGraw-Hill,

Inc. All Rights Reserved.
Printed in the United States of America. This book, or parts

thereof,

may not be reproduced in any form without permission of
the publishers. Library of Congress Catalog CardNumber 63-17596

Preface
These research reports and discussions are concerned with the informa-

tion processing activity that underlies intelligent behavior in human beingsand computers. We were motivated to prepare such an anthology for threereasons.
First, since the topic is of general interest, controversial, and of po-tentially great scientific and social significance, we wished to make avail-able to a wide audience a collection of the significant research papers.

Most have been available only in relatively inaccessible technical journals,
and most are reprinted here just as they originally appeared.

Second, we felt it important to make these particular readings easily
available for use in graduate-leveland undergraduate courses being offered
(orplanned) at many colleges and universities.

Third, we wished to provide a convenient reference volume for re-
searchers working in or entering the fields of artificial intelligence and
simulation of thought processes. An invaluable component of such a
reference volume is a good bibliography. We believe that Minsky's de-
scriptor-indexed bibliography will be a particularly useful tool for the re-
searcher.

The lot of the anthology editor is not a happyone. He may be damned not
only for presumed sins of commission but also for sins of omission. When the
anthology is the first in an area as ductile as the one we are labelingComputers and Thought, the problems of selection are compounded.

In the introduction to Part 1 on artificial intelligence, we present ourunderstanding and interpretation of the goalof this research. We have se-
lected reports of research efforts which we feel outdistance all others in
advancement toward this goal. Such a criterion, as we see it, gives high
priority to a particular brand of research, loosely labeled "cognitive
models." An opposing school of thought, sometimes called "neural cy-
bernetics" or "self-organizing systems,". has intrinsic fascination and has
produced a considerable number of particular projects. Neural cybernetics
approaches the problem of designing intelligent machines by postulating
a large number of very simple information processing elements, arranged
in a random or organized network, and certain processes for facilitating
or inhibiting their activity. Cognitive model builders take a much more
macroscopic approach, using highly complex information processing mech-
anisms as the basis of their designs. They believe that intelligent perform-

V

PREFACEVI

ance by a machine is an end difficult enough to achieve without "starting
from scratch," and so they build into their systems as much complexity of
information processing as they are able to understand and communicate
to a computer (using their programming techniques) .

The cognitive models approach has led to tangible progress (displace-
ment toward the ultimate goal) in the field of artificial intelligence, while
the progress to date in the neural cybernetics approach is barely dis-
cernible. On this basis, we feel that there is reason for our bias in favor
of cognitive models, though of course there are other dimensions along
which to evaluate theresearch.

We have tried to focus on papers that report results. In this collection,
the papers that deal with specific projects describe actual working com-
puter programs that produced interesting and significant behavior. Because
of the limited space available, we chose to avoid the more speculative,
albeit stimulating and thought-provoking, pieces that have been written on
intelligent machines. It is for this reason that the writings of some of the
well-known theorists in the area are not included.

Related research areas, such as machine translation of languages, auto-
matic information retrieval, and automata theory, were not treated, since
they constitute separate subdisciplines of the computer sciences and de-
serve full treatment in their own right.

Many papers in psychology and the life sciences are relevant to an
understanding of information processing in human thought, but we did
not include these, because we wished to keep a sharp focus on computer
processes and techniques.

For reasons of sharp focus also, we have not included a paper on
an important topic, the social implications of intelligent machines.

We have used the papers here collected for a graduate-level course
in artificial intelligence and computer simulation of cognitive processes,
in which we have had students from business administration, psychology,
linguistics, philosophy, biology, physics and biophysics, and electrical
engineering. The course has no mathematics prerequisite, but some knowl-
edge of mathematics is helpful (e.g., in understanding Slagle's work on
integration). An introductory course in psychology would also be helpful
to the student, but it is not required. We have required some elementary
knowledge of computers and an ability to program a computer, preferably
in one of the list processing languages, e.g., Information Processing Lan-
guage V (IPL-V), FORTRAN List Processing Language (FLPL),
COMIT,or LISP. For students who have not had this preparation, we have
providedextra instruction in IPL-V.

As aroad map to the collection we offer the following guidelines:
For the general reader: The major introductions to Part 1 on artificial

intelligence and Part 2 on Emulation of cognitive processes, the intro-

PREFACE VII

ductory article by Turing, followed by the other articles in a sequence dic-
tated by the tastes of the reader and his competence in the subject matter
discussed, and finally the summary and review articles by Armer and
Minsky. The Minsky critical review might also usefully be the midpoint
in a reading of this collection.

For the computer scientist and the management scientist: The major
introductions, followed by Minsky's critical review. Perhaps of high-
lighted interest, Samuel's treatment of learning programs, Tonge's man-
agement science application, and theresearch on theorem-proving programs
(Newell, Shaw, and Simon, and Gelernter).

For the psychologist and the philosopher: The introduction to Part
2 on simulation of cognitive processes, the articles on problem-solving,
verbal learning, two-choice behavior, concept formation, social behavior,
and decision-making, in a sequence dictated by the interests of the reader,
and finallythe paperson artificial intelligenceresearch.

We should like to express our gratitude to the authors who graciously
allowed us to reprint their articles; to those who advised us on the selection
problems; to Robert Lindsay, Leonard Uhr and Charles Vossler, John and
Jeanne Gullahorn, and Geoffrey Clarkson, who prepared articles or re-
visions specifically for this collection; to Arthur Samuel for service beyond
the call of duty in arranging and running the 7090-Nealey checker game;
and especially to Marvin Minsky for the time and energy he spent in pre-
paring a revision of his earlier bibliography. We owe a special debt to
A. Newell and H. A. Simon for their guidance and research collaboration
over the years. Our final expression of appreciation is to Mrs. Pamela
Tellefsen, who offered this manuscript her toil, patience, and care over
many months, and to Rita R. Feldman, who compiled the Index.

Edward Feigenbaum
Julian Feldman

Acknowledgments
A. M. Turing, Computing machinery and intelligence, by permission

from the editors of Mind, October, 1950, 59:433-460.
A. Newell, J. C. Shaw, and H. Simon, Chess playing programs and the

problem of complexity, by permission from the IBM Journal of Re-
search and Development, October, 1958, 2:320-335.

A. L. Samuel, Some studies in machine learning using the game of checkers,
by permission from the IBM Journal of Research and Development,
July, 1959, 3:211-229. The author acknowledges:

Many different people have contributed to these studies through
stimulating discussions of the basic problems. From time to time the
writer was assisted by several different programmers, although most
of the detailed work was his own. The forbearance of the machine
room operatorsand their willingness to play the machine at all hours
of the day and nightare also greatly appreciated.

A. Newell, J. C. Shaw, and H. Simon, Empirical explorations with the
Logic Theory Machine, by permission of the authors from the Pro-
ceedings of the Western Joint Computer Conference, 1957, 15:218-
-239. This research was part of a project conducted jointly by Newell
and Shaw of the RAND Corporation, Santa Monica, and H. Simon of
the Carnegie Institute of Technology.

H. Gelernter, Realization of a geometry-theorem proving machine, by
permission from the Proceedings of an International Conference on In-
formation Processing, Paris: UNESCO House, 1959, pp. 273-282.
The author acknowledges:

The technical and programming assistance of J. R. Hansen and
D. W. Loveland has been indispensable to the success of this project.
N. Rochester and J. McCarthy contributed much to the early devel-
opment of ideas, and Rochester supplied the necessary administrative
support as well. Other members of the Information Research Depart-
ment of IBM, and W. G. Bouricius, P. C. Gilmore, J. P. Lazarus,
and P. D. Welch, in particular, contributed to the author's under-
standing of theproblem in his conversations with them.

The research project itself is a consequence of the Dartmouth
Summer Research Project on Artificial Intelligence held in 1956,
during which M. L. Minsky pointed out the potential utility of the
diagram to a geometry theorem-proving machine.

ix

X ACKNOWLEDGMENTS

H. Gelernter, J. R. Hansen, and D. W. Loveland, Empirical explorationsof the geometry-theorem proving machine, by permission of the authors.It first appeared in Proceedings of the Western Joint Computer Con-ference, 1960, 17:143-147.
J. Slagle, A heuristic program that solves symbolic integration problems infreshman calculus, by permission of the author and Lincoln Laboratoryof Massachusetts Institute of Technology. Some of the many personswho helped the author with the project and manuscript are D. Edwards,*Jjnc\ ivTtmA Jl McCarthy> M. Minsky, H. Rogers, Jr., S.Russell, O. Selfridge, C. Shannon, and G. Shapiro.

et!' f
6' „Sf

ummary of a heuristic line balancing procedure, by permis-sion from Management Science, 1960, 7:21-42. This is based on adoctoral dissertation submitted to the Graduate School of IndustrialAdministration Carnegie Institute of Technology. The research hasbeen supported in varying degrees by the Graduate School, an IBMfellowship, the RAND Corporation, and the Westinghouse Electric
w 1" V many persons have contributed to developing thisZ'L^ ?^°l PfTrtic "!ariy acknowledges the stimulation and en-couragement of A. Newell, J. C. Shaw, and H. Kanter of the RANDCorporation.

B 'au'tom
r
fi;ln'nA' ?" C Cu°mSky' and X" L"^Y> Baseball: Anautomatic question answerer, by permission of the authors. It first ap-

X? 19^PZCerJnBS °l tke WeStern J°int Com^ ConSeZ,
F Fri,l n ?15 a

6 T^T Bratefully acknowledge the guidance ofF. Fnck, O. Selfridge, and G. P. Dineen
°'ffoemSLa^^' Nd-SSer' fattern rec°gnition machine, by permissiontrom Scientific American, August, 1960, 203:60-68L. Uhr and C Vossler, A pattern-recognition program that generates

ThT S' a
f
n,t adJUStS °Wn °PeratorS' by Permission of *e

g abhors.Jnes oftht w 7*°* **aPPeared "der the same title in the Proceed-ings of the Western Joint Computer Conference 1961 19-555 57f1RlSrt
"inth

d
e
dit

v
OnS fr°m thC aU*°rS'

7
oW^shSon D r lymp

f °

S

T on °P*** Character Recognition, 1962,Washington, D.C : Spartan Books, by permission.A. Newell and H. Simon, "GPS, aprogram that simulates human thought "*«**: R. Olden^C,
We would like to express our indebtedness to J. C. Shaw, who has

nrorfZ 7T l\mZl °f °Ur int° c"Plex informationprocesses, including the GPS program which forms the basis of this

E. A. Feigenbaum, The simulation of verbal learning behavior first an

ACKNOWLEDGMENTS XI

/ am deeply indebted to H. Simon for his past and present col-
laboration in this research. This research has been supported by the
Computer Sciences Department, the RAND Corporation, and the
Ford Foundation. I wish to express appreciation for the help and
critical comments of J. Feldman, A. Newell, J. C. Shaw, and F. Tonge.

E. B. Hunt and C. I. Hovland, Programming a model of human concept
formulation, by permission of the authors. It first appeared in the
Proceedings of the Western Joint Computer Conference, 1961, 19:145-
-155. The authors acknowledge:

The work reported in this paper was supported by a grant for the
study of concept learningfrom the Ford Foundation to C. I. Hovland.
The computational work involved was supported, for the most part,
by the Computation

Center,

Massachusetts Institute of Technology.
B. F. Green, Jr., and A. Wolf, of Lincoln Laboratory, M.1.T., made
available the 709 version of the IPL-V interpreter and instructed
Hunt in its use. The aid received is gratefully acknowledged.

G. P. E. Clarkson, A model of the trust investment process, by permission
from A Simulation of Trust Investment, Englewood Cliffs, N.J.: Prentice-
Hall, 1961.

J. Feldman, Simulation of behavior in the binary choice experiment, first
appeared in the Proceedings of the Western Joint ComputerConference,
1961, 19:133-144. The author is indebted to A. Newell for advice and
suggestions made during the course of the research summarized in this
report.

J. Gullahorn and J.

Gullahorn,

A computer model of elementary social
behavior. The authors wish to acknowledge the helpful suggestions of
H. Simon, E. Feigenbaum, J. Feldman, F. Marzocco, and C. Baker. The
authors also acknowledge:

Thanks are also due the Committee on Simulation of Cognitive
Processes of the Social Science Research Council for support during
the early phases of this research at the School of Business Adminis-
tration, University of California at Berkeley, and to the System De-
velopment Corporation, Santa Monica, for continued sponsorship of
theproject.

P. Armer, Attitudes toward intelligent machines, by permission from the
Symposium on Bionics, 1960, Wadd Technical Report 60 600, pp. 13-
-19. The author acknowledges:

/ would like to express my gratitude for many long discussions of
this topic with W. H. Ware, M. E. Maron, F. J. Gruenberger,E. A.
Feigenbaum, A. Newell, J. C. Shaw, and H. A. Simon, and the in-

fluence of the research efforts of the latter four on my thinking. In

XII ACKNOWLEDGMENTS

this paper I have quoted many people. In so doing I have strived to
avoid quoting out of context. However, one runs this risk when only a
portion of a man's statement is repeated. If I have misrepresentedthe
intended meaning of anyone in this paper, it has been accidental.

. Minsky, Steps toward artificial intelligence, by permission from the
Proceedings of the Institute of Radio Engineers, January, 1961, 49:8-30.. Minsky, A selected descriptor-indexed bibliography to the literature onartificial intelligence, by permission from the IRE Transactions on
Human Factors in Electronics, March, 1961, HFE-2:39-55.

Contents

Preface v

Acknowledgments ix

Part 1: ARTIFICIAL INTELLIGENCE
Introduction 1

Section 1. Can a Machine Think?
COMPUTING MACHINERY AND INTELLIGENCE A. M. Turing 11

Section 2. Machines That Play Games

CHESS-PLAYING

PROGRAMS AND THE PROBLEM OF COMPLEXITY
Allen Newell, J. C.

Shaw,

and H. A. Simon 39

SOME STUDIES

IN

MACHINE

LEARNING USING THE GAME

OF

checkers A. L. Samuel 71
Section 3. Machines That Prove MathematicalTheorems

EMPIRICAL EXPLORATIONS

WITH THE

LOGIC THEORY MACHINE:

A case study in heuristics Allen Newell, J. C.

Shaw,

and H. A. Simon 109

REALIZATION OF

A

GEOMETRY-THEOREM PROVING MACHINE

H. Gelernter 134

EMPIRICAL

EXPLORATIONS

OF

THE GEOMETRY-THEOREM

PROV-

ING

machine H.

Gelernter,

J. R. Hansen, and
D. W. Loveland 153

Section 4. Two Important Applications

SUMMARY OF

A

HEURISTIC

LINE

BALANCING PROCEDURE

Fred M. Tonge 168
A

HEURISTIC

PROGRAM THAT

SOLVES SYMBOLIC

INTEGRATION
problems in freshman calculus James R. Slagle . 191

Section 5. Question-answeringMachines
BASEBALL: AN AUTOMATIC QUESTION

ANSWERER

Bert F.

Green,

Jr., Alice K.

Wolf,

Carol Chomsky, and
Kenneth Laughery 207

INFERENTIAL MEMORY

AS

THE

BASIS OF MACHINES WHICH

understand natural language Robert K. Lindsay 217
Section 6. Pattern Recognition

pattern recognition by machine Oliver G. Selfridge
and Ulric Neisser 237

A pattern-recognition

program

that generates, eval-
uates, and adjusts its own operators Leonard Uhr
and Charles Vossler 251

xiii

XIV CONTENTS

Part 2: SIMULATION OF COGNITIVE PROCESSES
Introduction 269
Section 1. Problem-solving

GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT
Allen Newell and H. A. Simon 279

Section 2. Verbal Learning and Concept Formation
THE SIMULATION

OF

VERBAL LEARNING BEHAVIOR
Edward A. Feigenbaum 297

PROGRAMMING A MODEL OF HUMAN CONCEPT FORMULATION
Earl B. Hunt and Carl I. Hovland 310

Section 3. Decision-making under Uncertainty
SIMULATION OF BEHAVIOR IN THE BINARY

CHOICE

EXPERIMENT
Julian Feldman 329

A MODEL OF THE TRUST INVESTMENT

PROCESS

Geoffrey P. E. Clarkson 347
Section 4. Social Behavior

A COMPUTER MODEL

OF

ELEMENTARY SOCIAL

BEHAVIOR

John T. Gullahorn and Jeanne E. Gullahorn 375

Part 3: SURVEYOF APPROACHES AND ATTITUDES
Introduction 3gy

ATTITUDES TOWARD INTELLIGENT MACHINES Paul Armer . 389
steps toward artificial intelligence Marvin Minsky . 406

Part 4: BIBLIOGRAPHY
A SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY TO THE LITERA-

TURE on artificial intelligence Marvin Minsky . . 453

INDEX 525

part 1

Artificial Intelligence

The purpose of this volume is to inform the nonspecialist about
current research on intelligent behavior by computer—not by ex-
hortation or reinterpretation, but by the collection of key scientific
research reports which collectively represent the state of progress in
this field. Each is an important paper for an informed understanding
of research in artificial intelligence. In this introduction we hope to
provide the reader with a set of guidelines to a thoughtful reading
of the collected papers.

What Is a Computer? Is It Just a "Number Factory"?

In the popular conception, a computer is a high-speed number
calculator. This view is only partly correct. A digital computer is, in
fact, a general symbol-processing device, capable of performing any
well-defined process for the manipulation and transformation of
information. _

All general-purpose digital computers are basically alike. They
have:

1. One or more "input" devices for transforming symbolic informa-
tion external to the machine into internally usable form. These in-
ternal forms are the symbols which the machine manipulates. A
punched-card reader is an example of an input device.

2. One or more "output" devices for transforming the internal
symbols back into external form. The computer's printer is an ex-
ample of an output device.

2 ARTIFICIAL INTELLIGENCE

3. One or more "memory" devices capable of storing symbols
before, during, and after processing.

4. An "arithmetic unit." One of the possible interpretations that
can be given to a computer's symbols is the interpretation as numbers.
The arithmetic unit is a piece of electronic gear which will operate
upon these numbers to produce (under the numerical interpretation)
sums, differences, products, etc. Most of the computation described
in this volume is nonnumeric. For example, the chess pieces manipu-
lated by the Newell-Shaw-Simon Chess Player are represented and
handled as symbols, not numbers.

5. A "control unit." The control unit is the executive of the com-
puter organization. It is wired to understand and obey a repertory of
instructions (or commands), calling the other units into action when
necessary. The instructions are generally elementary processes, e.g.,
fetch a symbol from a specified place in memory, return a symbol to
some place in memory, shift a symbol a certain number of places to
the left or right in "working storage."

A very important instruction, "compare and transfer control,"
enables the computer to make a simple two-choice decision—to take
one of two specified courses of action depending on the information
found in some cell of the memory. By cascading these simple deci-
sions, highly complex decisions can be fashioned.

Information processes more complicated than those "wired into"
the computer can be carried out by means of a sequence of the ele-
mentary instructions, called a program. The program is the precise
statement of the information process that the user desires the machine
to carry out. A computer's program is stored in the memory along
with all the other problem information and data. One part of a pro-
gram can call in another part of the program from the memory to
the working storage and alter it. The general-purpose digital com-
puter can do any information processing task for which a program
can be written. The same computer which one moment is computing
a company's payroll may in the next moment be computing aircraft
designs or insurance premiums. Any program for a general-purpose
computer effectively converts this general-purpose machine into a
special-purpose machine for doing that task intended by the user who
wrote the program.

Is It Possible for Computing Machines to Think?
No—if one defines thinking as an activity peculiarly and exclu-

sively human. Any such behavior in machines, therefore, would have
to be called thinking-like behavior.

3ARTIFICIAL INTELLIGENCE

No—if one postulates that there is something in the essence of
thinking which is inscrutable, mysterious, mystical.

Yes—if one admits that the question is to be answered by experi-
ment and observation, comparing the behavior of the computer with
that behavior of human beings to which the term "thinking" is gen-
erally applied.

We regard the two negative views as unscientificallydogmatic. The
positive, or empirical, view is explored with cogency by Turing in an
article reprinted in this volume. Armer, in another reprinted article,

qualifies the positive view by pointing out that there exists a con-
tinuum of intelligent behavior, that the question of how far we can
push machines out along that continuum is to be answered by re-
search, not dogma. We might add one further qualification: to assert

that thinking machines are possible is not necessarily to assert that
thinking machines with human capabilities already exist (or that they

will exist in the near future). The reader of this volume is invited to

form a judgment on the matter. The reports reprinted hereconstitute,
we think, the best evidence available on the subject at present.

What,' then, is the goal of artificial intelligence research? As we
interpret the field, it is this: to construct computer programs which
exhibit behavior that we call "intelligentbehavior" when we observe
it in human beings. .

Because this research area is still in the formative stage of its
development, many different research paths are being explored. Our
goal definition may be too ambitious for some researchers, not am-
bitious enough for others (chiefly because it is tied to human be-
havior).

�«„,"

!_" 1
Many of the research projects reported in Part 1 achieve this goal

within their special problem areas. Shall we call this computer be-
havior "thinking," or shall we not? Perhaps this is an individual's

choice In our opinion, it is neither an important nor a fruitful topic

for debate.

But Doesn't a Computer Do Exactly What It Is Told To Do
and No More?

Commenting on this familiar question, a well-known researcher in
the field had this to say:

This statement-that computers can do only what they are pro-

grammed to do—is intuitively obvious, indubitably true, and supports

none of the implications that are commonly drawn from it.

A human being can think, learn, and create because the program

his biological endowment gives him, together with the changes in

4 ARTIFICIAL INTELLIGENCE

that program produced by interaction with his environment after
birth, enables him to think, learn, and create. If a computer thinks,
learns, and creates, it will be by virtue of a program that endows it
with these capacities. Clearly this will not be a program—any more
than the human's is—that calls for highly stereotyped and repetitive
behavior independent of the stimuli coming from the environment
and the task to be completed. It will be a program that makes the
system's behavior highly conditional on the task environment—on
the task goals and on the clues extracted from the environment that
indicate whether progress is being made toward those goals. It will
be a program that analyzes, by some means, its own performance,
diagnoses its failures, and makes changes that enhance its futureeffectiveness (Simon, 1960, p. 25).

Similarly, it is wrong to conclude that a computer can exhibit be-
havior no more intelligent than its human programmer and that this
astute gentleman can accurately predict the behavior of his program.
These conclusions ignore the enormous complexity of information
processing possible in problem-solving and learning machines. They
presume that, because the programmer can write down (as pro-
grams) general prescriptions for adaptive behavior in such mech-
anisms, he can comprehend the remote consequences of these mech-
anisms after the execution of millions of information processing
operations and the interaction of these mechanisms with a task en-
vironment. And, more importantly, theypresume that he can perform
the same complex information processing operations equally well
with the device within his skull.

Is It True That a Computer Will Be a Chess Champion
Because the Computer Is So Fast That It Can Examine All
Possible Moves and Their Consequences?

This view of the problem-solving potential of computers rests on
the assumption that, because computers are so fast, they can "think
of everything." This kind of computing might be called brute-forcecomputing. Brute-force programs generally have a simple structure,
employing exhaustive enumeration of possibilities and exhaustive
search. Is brute-force computing a generalmethod for handling prob-lems that are usually thought of as having some "intellectual content"?To answer this question, we must look first at what a problem is.A problem exists for a problem-solverwhen he is faced with the taskof choosing one of a set of alternatives placed before him by theproblem environment. The problem-solver has no problem if the en-
vironment presents him with only one alternative; he must take that

5ARTIFICIAL INTELLIGENCE

alternative. What is troublesome about alternatives is not so much
their number as their consequences. Alternatives usually have elabo-
rate consequences, which need to be evaluated before one alternative
is chosen. The formal expression of this notion leads us to the so-
called maze model of a problem. Let us look at this in an example.

Consider the problem of choosing a move at some point in a game
of chess. If the position allows the player only one alternative, there
is no problem—the move is forced. If, however, there is a genuine
problem, the decision can be made by examining the immediate and
remote consequences of selecting particular alternatives—the moves
opened up to the opponent, the possible replies to these moves, etc.
This "tree of possibilities" is pictured in Fig. 1.

In principle, this tree can be completely elaborated; the end points
can be identified as wins, losses, or draws; and a strategy can be em-
ployed to determine the best alternative available at the top of the
tree.

Since this procedure can in principle be programmed on modern,
high-speed computers, why is chess still an interesting game? Why are
computers not unbeatable champions at chess?

The answer is simple: the size of the chess maze is enormous. It
has been estimated that there are about 10120 different paths through
a complete chess maze (give or take, perhaps, many powers of ten).
Even under the most generous assumptions about the power of
modern computing machinery, now or in the future, it is beyond the
limits of plausibility that a computer will ever be able to play
"optimum" chess by the exhaustive strategy mentioned above.

Figure 1.

6 ARTIFICIAL INTELLIGENCE

Brute-force computing through problem mazes (for any but the
most trivial problems) just won't do. Problem-solving by this method
is beyond therealm of practical possibility.

How, then, are we to construct an intelligent problem-solver?
It appears that the clue to intelligent behavior, whether of men or

machines, is highly selective search, the drastic pruning of the tree of
possibilities explored. For a computerprogram to behave intelligently,
it must search problem mazes in a highly selective way, exploring
paths relatively fertile with solutions and ignoring paths relatively
sterile.

What Is a Heuristic Program?

A heuristic (heuristic rule, heuristic method) is a rule of thumb,
strategy, trick, simplification, or any other kind of device which
drastically limits search for solutions in large problem spaces. Heuris-
tics do not guarantee optimal solutions; in fact, they do not guarantee
any solution at all; all that can be said for a useful heuristic is that it
offers solutions which are good enough most of the time. A heuristic
program is a program that employs heuristics in solving complex
problems.

Heuristic methods have sometimes been contrasted with algorithmic
methods for finding problem solutions, and a certain amount of in-
tellectual blood has been shed unnecessarily on this battlefield. With-
out getting into the subtleties of the disagreement, we observe that
the term "algorithm" is used with considerable ambiguity in mathe-
matics and logic. Under one commonly held definition, algorithms
are decision procedures which are guaranteed to produce the solu-
tion being sought, given enough time. The brute-force program
described above for playing chess is such an algorithm. But algorithms
(under this concept) are known, or practical, for only a very small
subset of all interesting problems one would like to have computers
solve. Over the spectrum of the broader class, heuristic methods seem
to offer more generalapplicability.

The payoff in using heuristics is greatly reduced search and, there-
fore, practicality. Often, but not always, a price is paid: by drastic
search limitations, sometimes the best solution (indeed, any or all
solutions) may be overlooked.

Heuristics come in at least two varieties: special-purpose and gen-
eral-purpose. Let us examine theseby example:

1. The chess duffer might typically use this rule of thumb: Stopexploring any sequence that puts the queen in immediate danger ofbeing captured. This is a special-purpose chess heuristic. It is useful

r

7ARTIFICIAL INTELLIGENCE

to the duffer because it keeps him out of one kind of trouble. By
using this especially crude search-limiting device, the duffer will
never discover those exciting queen-sacrifice combinations which
get "!!" annotations in books on chess.
° .. .

I,

i
_

i 1 i

2. In proving theorems, a mathematician usually works backward
from the theorem he is trying to prove to known theorems or axioms,
instead of working forward from known expressions, using the rules
of inference, until he stumbles on the theorem he has to prove. Under
certain conditions, "working backward" is apowerful general heuristic
for utilizing information in the problem to guide search for the
solution. „ , .

3. A useful rule of thumb used by human beings in most of their
problem-solving is this: Attack a new problem by methods that have
solved similar problems in the past. The criteria for "similarity" may
themselves be heuristic. If the environment is in a kind of steady state

with respect to problem types, this heuristic may be very useful. In

environments demanding a high degree of innovative problem-solving,
this heuristic will hinder rather than facilitate problem-solving.

4. Two general-purpose heuristic problem-solving methods com-

monly employed in human reasoning are means-ends analysis and
planning. In means-ends analysis, an initial problem state is trans-

formed into a target state by selecting and applying operations which,

step by step,reduce the difference between the states. In the planning
method, a simplified statement of the original problem is constructed,

and means-ends analysis is applied to this new, simpler problem. The
result is a set of plans (guesses at possible operator sequences), hope-
fully one of which will work, i.e., solve the original problem. Means-
ends analysis is discussed in detail in the reprinted article on the
General Problem Solver (GPS).

What Are Some Unsolved Problems of Artificial Intelligence

Research?
In an area so new and exploratory, most of the problems remain

unsolved, indeed unattacked. At this stage, it is not easy even to

identify and state the problems, except in a very general way. We

offer some examples of problems we think are ripe for attack:

1 The learning of heuristics. A puzzling, fascinating, and ex-
tremely important question is this: How can computers (and how do
people) learn new heuristic methods and rules, both special-purpose

and general-purpose? At the moment, our knowledge of learning

mechanisms for problem-solving programs is rudimentary. Any signifi-

cant breakthrough in this area would offer the promise of enabling

8 ARTIFICIAL INTELLIGENCE

us to "bootstrap" our way into very much more powerful problem-
solving programs.

2. Inductive inference. Artificial intelligence currently is strong
on deductive inference, weak on inductive inference. Yet, in the
melting pot of everyday intelligence, induction is certainly the more
significant ingredient. One way of looking at the problem is that we
need programs which will in some sense induce internally stored
"models" of external environments—models from which the programs
can make valid and useful predictions of future environmental states.
Looked at in another way, this is the problem of hypothesis forma-
tion by machine. It is the generalpattern recognition problem. Today
we know very little about this crucial problem.

3. Understanding natural language. A problem of great theoretical
and practical interest is that of constructing a program to understand
communication in natural language (the word "understand" is here
used with its full human connotation) . To put it simply, one would
like to be able to engage in a dialog with a computer—a dialog in
which the computer will hold up its end of the conversation adaptively,
intelligently, with understanding. Research on question-answering
programs (e.g., the BASEBALL program reprinted in this volume)
is a good start. There is much that can be transferred from research
on mechanical translation, on information retrieval, on models of
human associative memory, and other areas of information science.
The problem is ripe for intensive, interdisciplinary study.

What Are the Limits of Artificial Intelligence Research?

No one can answer this question today.
Perhaps the question has more fascination than importance. In

terms of the continuum of intelligence suggested by Armer, the com-
puter programs we have been able to construct are still at the low
end. What is important is that we continue to strike out in the direc-
tion of the milestone that represents the capabilities of human intel-
ligence. Is there anyreason to suppose that we shall never get there?
None whatever. Not a single piece of evidence, no logical argument,
no proof or theorem has ever been advanced which demonstrates an
insurmountable hurdle along the continuum.

Today, despite our ignorance, we can point to that biological mile-
stone, the thinking brain, in the same spirit as the scientists many
hundreds of years ago pointed to the bird as a demonstration in
nature that mechanisms heavier than air could fly.

section 1

Can a Machine Think?

One of the unfortunate circumstances of the early post-World War II
history of computer technology was that the high-speed electronic
digital computer became styled as a "giant brain." The widespread

use of this term by science popularizes, science-fiction writers, and

their advertising-agency counterparts caused a vigorous and wide-

spread reaction among the members of the rapidly expanding_ com-
puter profession. The experience of the time was that it was difficult

to program computers to do even the simplest data processing and
computational jobs (e.g., computerizing a payroll[procedure).

To the theorists, however, the question of thinkingby machine still

held considerable interest. They were interested in defining the ques-

tion more clearly and in discerning the existence or nonexistence of

various kinds of theoretical upper bounds on the intelligence of com-
puting devices. One of the best-known papers to emerge from these

denberations was by the famous .English mathematician and logician

AM Turing, reprinted in this section. Turing's paper appeared

five years before concrete developments in intelligent behavior by

machine began to occur. Yet it remains today one of the most cogent

Td thorough discussions in the literature on the general question

""Srl^.^SLwcposture relative to the question. The

onSfalo be decided by an unprejudiced companson of the
EeT"hinking behavior" of the machine with normal "thinking

behavL" in human beings. He proposes an expenment-commonly
gated "Turing's test"-* which the unprejudiced companson could

10 ARTIFICIAL INTELLIGENCE

be made. Though the test has flaws, it is the best that has been pro-
posed to date.

A. M. Turing died suddenly in 1954 after a short but brilliant
career. Shortly before his death, while at the National Physical Lab-
oratory in England, he completed the design of one of the world's
first modern high-speed digital computers.

11

COMPUTING MACHINERY
AND INTELLIGENCE

A.M. Turing

1 . The Imitation Game

vw the Question "Can machines think?" This should
I propose to consider he <*£££ terms

„machine„ and «think .»
begin with as to reflect so far as possible the
The definitions might be framed so _ „ the meaning of
normal use of the words but tos attitu g

the words l'machinf. t
and

di *v"^0 e scape the conclusion that the meaning
are commonly used it is dfficuh to^

tQ
.q &

and the answer to the quest^nCa" m^c q{
statistical survey the question by another, which
attempting such a definition . snm J unambiguous words,
is closely related to it and i^^described in terms of a game

The new form of the problem can ne

which we call be'of 'either se,
(A), a woman (B), and an inier & tq{
The interrogator stays m »J»m a^Swhich of the other two is the
the game for the interrogator^ to J^rmm x y> and
man and which is the woman. He knows me g y

l^eEE£faL- /p tr » A ana B a-:

»* «he wrong idenn.aca.ion. Hi, answer

"XytSir-Sw.-*■ ■"""slrands " abo" °me '"*" '°n
U

12 ARTIFICIAL INTELLIGENCE

In order that tones of voice may not help the interrogator the answers
should be written, or better still, typewritten. The ideal arrangement is to
have a teleprinter communicating between the two rooms. Alternatively
the question and answers can be repeated by an intermediary. The object
of the game for the third player (B) is to help the interrogator. The best
strategy for her is probably to give truthful answers. She can add such
things as "I am the woman, don't listen tohim!" to her answers, but it will
avail nothing as the man can make similar remarks.

We now ask the question, "What will happen when a machine takes the
part of A in this game?" Will the interrogator decide wrongly as often
when the game is played like this as he does when the game is played be-
tween a man and a woman? These questions replace our original, "Can
machines think?"

2. Critique of the New Problem

As well as asking, "What is the answer to this new form of the question,"
one may ask, "Is this new question a worthy one to investigate?"This latter
question we investigate without further ado, thereby cutting short an
infinite regress.

The new problem has the advantage of drawing a fairly sharp line be-
tween the physical and the intellectual capacities of a man. No engineer or
chemist claims to be able to produce a material which is indistinguishable
from the human skin. It is possible that at some time this might be done,
but even supposing this invention available we should feel there was littlepoint in trying to make a "thinking machine" more human by dressing itup in such artificial flesh. The form in which we have set the problemreflects this fact in the condition which prevents the interrogator fromseeing or touching the other competitors, or hearing their voices. Some
other advantages of the proposed criterion may be shown up by specimen
questions and answers. Thus:

Q: Please write me a sonnet on the subject of the Forth Bridge.A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give as answer) 105621.Q: Do you play chess?
A: Yes.
Q: I have X at my XI, and no other pieces. You have only X at K6 andR atRl . It is your move. What do you play?
A: (After a pause of 15 seconds) R-R8 mate.

The question and answer method seems to be suitable for introducingalmost any one of the fields of human endeavour that we wish to include.

13COMPUTING MACHINERY AND INTELLIGENCE

We do not wish to penalise the machine for its inability to shine in beauty
competitions, nor to penalise a man for losing in a race against an aero-
plane. The conditions of our game make these disabilities irrelevant. The
"witnesses" can brag, if they consider it advisable, as much as they please
about their charms, strength or heroism, but the interrogator cannot de-
mand practical demonstrations.

The game may perhaps be criticised on the ground that the odds are
weighted too heavily against the machine. If the man were to try and pre-
tend to be the machine he would clearly make a very poor showing. He
would be given away at once by slowness and inaccuracy in arithmetic.
May not machines carry out something which ought to be described as
thinking but which is very different from what a man does? This objec-
tion is a very strong one, but at least we can say that if, nevertheless, a

machine can be constructed to play the imitation game satisfactorily, we
need notbe troubled by this objection.

It might be urged that when playing the "imitation game" the best
strategy for the machine may possibly be something other than imitation
of the behaviour of a man. This may be, but I think it is unlikely that there
is any great effect of this kind. In any case there is no intention to investi-
gate here the theory of the game, and it will be assumed that the best
strategy is to try to provide answers that would naturally be givenby a man.

3. The Machines Concerned in the Game

The question which we put in §1 will not be quite definite until we
have specified what we mean by the word "machine." It is natural that we
should wish to permit every kind of engineering technique to be used in
our machines. We also wish to allow the possibility than an engineer or
team of engineers may construct a machine which works, but whose man-
ner of operation cannot be satisfactorily described by its constructors be-
cause they have applied a method which is largely experimental. Finally,
we wish to exclude from the machines men born in the usual manner. It is
difficult to frame the definitions so as to .satisfy these three conditions. One
might for instance insist that the team of engineers should be all of one
sex, but this would not really be satisfactory, for it is probably possible
to rear a complete individual from a single cell of the skin (say) of a man.
To do so would be a feat of biological technique deserving of the very
highest praise, but we would not be inclined to regard it as a case of "con-
structing a thinking machine." This prompts us to abandon the require-

ment that every kind of technique should be permitted. We are the more
ready to do so in view of the fact that the present interest in thinking
machines" has been aroused by a particular kind of machine, usually called
an "electronic computer" or "digital computer." Following this suggestion

we only permit digital computers to take part in our game.

14 ARTIFICIAL INTELLIGENCE

This restriction appears at first sight to be a very drastic one. I shall
attempt to show that it is not so in reality. To do this necessitates a short
account of the natureand properties of these computers.

It may also be said that this identification of machines with digital com-
puters, like our criterion for "thinking," will only be unsatisfactory if (con-
trary to my belief), it turns out that digital computers are unable to give
a good showing in the game.

There are already a number of digital computers in working order, and
it may be asked, "Why not try the experiment straight away? It would be
easy to satisfy the conditions of the game. A number of interrogators could
be used, and statistics compiled to show how often the right identification
was given." The short answer is that we are not asking whether all digital
computers would do well in the game nor whether the computers at present
available would do well, but whether there are imaginable computers which
would do well. But this is only the short answer. We shall see this question
in a different light later.

4. Digital Computers

The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done by
a human computer. The human computer is supposed to be following fixed
rules; he has no authority to deviate from them in any detail. We may
suppose that these rules are supplied in a book, which is altered whenever
he is put on to a new job. He has also an unlimited supply of paper on
which he does his calculations. He may also do his multiplications and
additions on a "desk machine," but this is not important.

If we use the above explanation as a definition we shall be in danger
of circularity of argument. We avoid this by giving an outline of the means
by which the desired effect is achieved. A digital computer can usually
be regarded as consisting of three parts:

(i) Store.
(ii) Executive unit,
(iii) Control.

The store is a store of information, and corresponds to the human com-
puter's paper, whether this is the paper on which he does his calculations
or that on which his book of rules is printed. In so far as the human com-
puter does calculations in his head a part of the store will correspond to
his memory.

The executive unit is the part which carries out the various individual
operations involved in a calculation. What these individual operations are
will vary from machine to machine. Usually fairly lengthy operations can

COMPUTING MACHINERY AND INTELLIGENCE 15

be done such as "Multiply 3540675445 by 7076345687" but in some ma-
chines only very simple ones such as "Write down 0" are possible.

We have mentioned that the "book of rules" supplied to the computer
is replaced in the machine by a part of the store. It is then called the "table
of instructions." It is the duty of the control to see that these instructions
are obeyed correctly and in the right order. The control is so constructed
that this necessarily happens.

The information in the store is usually broken up into packets of mod-
erately small size. In one machine, for instance, a packet might consist of
ten decimal digits. Numbers are assigned to the parts of the store in which
the various packets of information are stored, in some systematic man-
ner. A typical instruction might say—

"Add the number stored in position 6809 to that in 4302 and put the
result back into the latter storageposition."

Needless to say it would not occur in the machine expressed in English.
It would more likely be coded in a form such as 6809430217. Here 17
says which of various possible operations is to be performed on the two
numbers. In this case the operation is that described above, viz., "Add the
number. . . ." It will be noticed that the instruction takes up 10 digits and
so forms one packet of information, very conveniently. The control will
normally take the instructions to be obeyed in the order of the positions
in which they are stored, but occasionally an instruction such as

"Now obey the instruction stored in position 5606, and continue from
there"
may be encountered, or again

"If position 4505 contains 0 obey next the instruction stored in 6707,
otherwise continue straight on."
Instructions of these latter types are very important because they make it
possible for a sequence of operations to be replaced over and over again
until some condition is fulfilled, but in doing so to obey, not fresh in-

structions on each repetition, but the same ones over and over again. To

take a domestic analogy. Suppose Mother wants Tommy to call at the
cobbler's every morning on his way to school to see if her shoes are done,
she can ask him afresh every morning. Alternatively she can stick up a

notice once and for all in the hall which he will see when he leaves for
school and which tells him to call for the shoes, and also to destroy the
notice when he comes back if he has the shoes with him.

The reader must accept it as a fact that digital computers can be con-
structed and indeed have been constructed, according to the principles we
have described, and that they can in fact mimic the actions of a human
computer very closely.

The book of rules which we have described our human computer as
using is of course a convenient fiction. Actual human computers really

remember what they have got to do. If one wants to make a machine

16 ARTIFICIAL INTELLIGENCE

L

mimic the behaviour of the human computer in some complex operation
one has to ask him how it is done, and then translate the answer into the
form of an instruction table. Constructing instruction tables is usually de-
scribed as "programming." To "programme a machine to carry out the
operation A" means to put the appropriate instruction table into the
machine so that it will do A.

An interesting variant on the idea of a digital computer is a "digital com-
puter with a random element." These have instructions involving the
throwing of a die or some equivalent electronic process; one such instruc-
tion might for instance be, "Throw the die and put the resulting number
into store 1000." Sometimes such a machine is described as having free
will (though I would not use this phrase myself). It is not normally pos-
sible to determine from observing a machine whether it has a random ele-
ment, for a similar effect can be produced by such devices as making the
choices depend on the digits of the decimal for ir.

Most actual digital computers have only a finite store. There is no theo-
retical difficulty in the idea of a computer with an unlimited store. Of
course only a finite part can have been used at any one time. Likewise only
a finite amount can have been constructed, but we can imagine more and
more being added as required. Such computers have special theoretical
interest and will be called infinitive capacity computers.

The idea of a digital computer is an old one. Charles Babbage, Lucasian
Professor of Mathematics at Cambridge from 1828 to 1839, planned such
a machine, called the Analytical Engine, but it was never completed. Al-
though Babbage had all the essential ideas, his machine was not at that
time such a very attractive prospect. The speed which would have been
available would be definitely faster than a human computer but something
like 100 times slower than the Manchester machine, itself one of the slower
of the modern machines. The storage was to be purely mechanical, using
wheels and cards.

The fact that Babbage's Analytical Engine was to be entirely mechanical
will help us to rid ourselves of a superstition. Importance is often attached
to the fact that modern digital computers are electrical, and that the nerv-
ous system also is electrical. Since Babbage's machine was not electrical,
and since all digital computers are in a sense equivalent, we see that this
use of electricity cannot be of theoretical importance. Of course electricity
usually comes in where fast signalling is concerned, so that it is not sur-
prising that we find it in both these connections. In the nervous system
chemical phenomena are at least as important as electrical. In certain
computers the storage system is mainly acoustic. The feature of using elec-
tricity is thus seen to be only a very superficial similarity. If we wish to
find such similarities we should look rather for mathematical analogies of
function.

17COMPUTING MACHINERY AND INTELLIGENCE

5. Universality of Digital Computers

The digital computers considered in the last section may be classified
amongst the "discrete-state machines." These are the machines which move
by sudden jumps or clicks from one quite definite state to another. These
states are sufficiently different for the possibility of confusion between them
to be ignored. Strictly speaking there are no such machines. Everything
really moves continuously. But there are many kinds of machine which can
profitably be thought of as being discrete-state machines. For instance in
considering the switches for a lighting system it is a convenient fiction that
each switch must be definitely on or definitely off. There must be inter-
mediate positions, but for most purposes we can forget about them. As an
example of a discrete-state machine we might consider a wheel which clicks
round through 120° once a second, but may be stopped by a lever which
can be operated from outside; in addition a lamp is to light in one of the
positions of the wheel. This machine could be described abstractly as fol-
lows. The internal state of the machine (which is described by the position
of the wheel) may be qx, q2 or q3. There is an input signal i 0 or h (posi-
tion of lever) . The internal state at any moment is determined by the last
state and inputsignal according to the table

Last State
?1 ?2 ?3

io ?2 q> 3i
Input

i\ ?i qi 5s

The output signals, the only externally visible indication of the internal
state (the light) are described by the table

State qi g 2 33
Output on on oi

This example is typical of discrete-state' machines. They can be described
by such tables provided they have only a finite number of possible states.

It will seem that given the initial state of the machine and the input sig-
nals it is always possible to predict all future states. This is reminiscent of
Laplace's view that from the complete state,of the universe at one moment

of time, as described by the positions and velocities of all particles, it
should be possible to predict all future states. The prediction which we are
considering is, however, rather nearer to practicability than that considered
by Laplace. The system of the "universe as a whole" is such that quite
small errors in the initial conditions can have an overwhelming effect at a

18 ARTIFICIAL INTELLIGENCE

later time. The displacement of a single electron by a billionth of a centi-
metre at one moment might make the difference between a man being
killed by an avalanche a year later, or escaping. It is an essential property
of the mechanical systems which we have called "discrete-state machines"
that this phenomenon does not occur. Even when we consider the actual
physical machines instead of the idealised machines, reasonably accurate
knowledge of the state at one moment yields reasonably accurate knowl-
edge any number of steps later.

As we have mentioned, digital computers fall within the class of discrete-
state machines. But the number of states of which such a machine is cap-
able is usually enormously large. For instance, the number for the machine
now working at Manchester is about 2 105 'OUO, i.e., about 1050 '000. Compare
this with our example of the clicking wheel described above, which had
three states. It is not difficult to see why the number of states should be so
immense. The computer includes a store corresponding to the paper used
by a human computer. It must be possible to write into the store any one
of the combinations of symbols which might have been written on the
paper. For simplicity suppose that only digits from 0 to 9 are used as sym-
bols. Variations in handwriting are ignored. Suppose the computer is
allowed 100 sheets of paper each containing 50 lines each with room for
30 digits. Then the number of states is 10100*50 *30 , i.e., 10150'000. This is
about the number of states of three Manchester machines put together.
The logarithm to the base two of the number of states is usually called
the "storage capacity" of the machine. Thus the Manchester machine has
a storage capacity of about 165,000 and the wheel machine of our example
about 1.6. If two machines are put together their capacities must be added
to obtain the capacity of the resultant machine. This leads to the possibility
of statements such as "The Manchester machine contains 64 magnetic
tracks each with a capacity of 2560, eight electronic tubes with a capacity
of 1280. Miscellaneous storage amounts to about 300 making a total of
174,380."

Given the table corresponding to a discrete-state machine it is possible
to predict what it will do. There is no reason why this calculation should
not be carried out by means of a digital computer. Provided it could be
carried out sufficiently quickly the digital computer could mimic the be-
havior of any discrete-state machine. The imitation game could then be
played with the machine in question (as B) and the mimicking digital com-
puter (as A) and the interrogator would be unable to distinguish them.
Of course the digital computer must have an adequate storage capacity as
well as working sufficiently fast. Moreover, it must be programmed afresh
for each new machine which it is desired to mimic.

This special property of digital computers, that they can mimic any
discrete-state machine, is described by saying that they are universal ma-

COMPUTING

MACHINERY AND INTELLIGENCE 19

chines. The existence of machines with this property has the important
consequence that, considerations of speed apart, it is unnecessary to design
various new machines to do various computing processes. They can all be
done with one digital computer, suitably programmed for each case. It
will be seen that as a consequence of this all digital computers are in a
sense equivalent.

We may now consider again the point raised at the end of §3. It was
suggested tentatively that the question, "Can machines think?" should be
replaced by "Are there imaginable digital computers which would do well
in the imitation game?" If we wish we can make this superficially more
general and ask "Are there discrete-state machines which would do well?"
But in view of the universality property we see that either of these ques-
tions is equivalent to this, "Let us fix our attention on one particular
digital computer C. Is it true that by modifying this computer to have an
adequate storage, suitably increasing its speed of action, and providing it
with an appropriate programme, C can be made to play satisfactorily the
part of A in the imitation game, the part of B being taken by a man?"

6. Contrary Views on the Main Question
We may now consider the ground to havebeen cleared and we are ready

to proceed to the debate on our question, "Can machines think?" and the
variant of it quoted at the end of the last section. We cannot altogether
abandon the original form of the problem, for opinions will differ as to the
appropriateness of the substitution and we must at least listen to what has
tobe said in this connexion.

It will simplify matters for the reader if I explain first my own beliefs in
the matter. Consider first the more accurate form of the question. I believe
that in about fifty years' time it will be possible to programme computers,
with a storage capacity of about 109, to make them play the imitation game
so well that an average interrogator will not have more than 70 per cent
chance of making the right identification after five minutes of questioning.
The original question, "Can machines think?" I believe to be too meaning-
less to deserve discussion. Nevertheless I' believe that at the end of the
century the use of words and general educated opinion will have altered
so much that one will be able to speak of machines thinking without ex-
pecting to be contradicted. I believe further that no useful purpose is
served by concealing these beliefs. The popular view that scientists pro-
ceed inexorably from well-established fact to well-established fact, never
being influenced by any improved conjecture, is quite mistaken. Provided
it is made clear which are proved facts and which are conjectures, no harm
can result. Conjectures are of great importance since they suggest useful
lines of research.

20 ARTIFICIAL INTELLIGENCE

I now proceed to consider opinions opposed to my own.

(1) The Theological Objection
Thinking is a function of man's immortal soul. God has given an im-
mortal soul to every man and woman, but not to any other animal or to
machines. Hence no animal or machine can think. 1

I am unable to accept any part of this, but will attempt to reply in
theological terms. I should find the argument more convincing if animals
were classed with men, for there is a greater difference, to my mind, be-
tween the typical animate and the inanimate than there is between man
and the other animals. The arbitrary character of the orthodox view be-
comes clearer if we consider how it might appear to a member of some
other religious community. How do Christians regard the Moslem view
that women have no souls? But let us leave this point aside and return
to the main argument. It appears to me that the argument quoted above
implies a serious restriction of the omnipotence of the Almighty. It is
admitted that there are certain things that He cannot do such as making
one equal to two, but should we not believe that He has freedom to confer
a soul on an elephant if He sees fit? We might expect that He would only
exercise this power in conjunction with a mutation which provided the
elephant with an appropriately improved brain to minister to the needs of
this soul. An argument of exactly similar form may be made for the case
of machines. It may seem different because it is more difficult to "swallow."
But this really only means that we think it would be less likely that He
would consider the circumstances suitable for conferring a soul. The cir-
cumstances in question are discussed in the rest of this paper. In attempt-
ing to construct such machines we should not be irreverently usurping His
power of creating souls, any more than we are in the procreation of chil-
dren: rather we are, in either case, instruments of His will providing
mansions for the souls that He creates.

However, this is mere speculation. I am not very impressed with theo-
logical arguments whatever they may be used to support. Such arguments
have often been found unsatisfactory in the past. In the time of Galileo it
was argued that the texts, "And the sun stood still . . . and hasted not
to go down about a whole day" (Joshua x. 13) and "He laid the founda-
tions of the earth, that it should not move at any time" (Psalm cv. 5) were
an adequate refutation of the Copernican theory. With our present knowl-
edge such an argument appears futile. When that knowledge was not
available it made a quite different impression.

'Possibly this view is heretical. St. Thomas Aquinas [Summa Theologica, quoted
by Bertrand Russell (1945, p. 458)] states that God cannot make a man to have no
soul. But this may not be a real restriction on His powers, but only a result of the
fact that men's souls are immortal, and therefore indestructible.

COMPUTING MACHINERY AND INTELLIGENCE 21

(2) The "Heads in the Sand" Objection
"The consequences of machines thinking would be too dreadful. Let us
hope and believe that they cannot do so."

This argument is seldom expressed quite so openly as in theform above.
But it affects most of us who think about it at all. We like to believe that
Man is in some subtle way superior to the rest of creation. It is best if he
can be shown to be necessarily superior, for then there is no danger of him
losing his commanding position. The popularity of the theological argument
is clearly connected with this feeling. It is likely to be quite strong in in-
tellectual people, since they value the power of thinking more highly than
others, and are more inclined to base their belief in the superiority of Man
on this power.

I do not think that this argument is sufficiently substantial to require
refutation. Consolation would be more appropriate: perhaps this should
be sought in the transmigration of souls.
(3) The Mathematical Objection
There are a number of results of mathematical logic which can be used
to show that there are limitations to the powers of discrete-state machines.
The best known of these results is known as Godel's theorem (1931) and
shows that in any sufficiently powerful logical system statements can be
formulated which can neither be proved nor disproved within the system,
unless possibly the system itself is inconsistent. There are other, in some
respects similar, results due to Church (1936), Kleene (1935), Rosser,
and Turing (1937). The latter result is the most convenient to con-
sider, since it refers directly to machines, whereas the others can only
be used in a comparatively indirect argument: for instance if Godel's
theorem is to be used we need in addition to have some means of describ-
ing logical systems in terms of machines, and machines in terms of logical
systems. The result in question refers to a type of machine which is essen-
tially a digital computer with an infinite capacity. It states that there are
certain things that such a machine cannot do. If it is rigged up to give
answers to questions as in the imitation game, there will be some questions
to which it will either give a wrong answer, or fail to give an answer at all
however much time is allowed for a reply. There may, of course, be many
such questions, and questions which cannot be answered by one machine
may be satisfactorilyanswered by another. We are of course supposing for
the present that the questions are of the kind to which an answer "Yes" or
"No" is appropriate, rather than questions such as "What do you think of
Picasso?" The questions that we know the machines must fail on are of
this type, "Consider the machine specified as follows. . . . Will this ma-
chine ever answer 'Yes' to any question?" The dots are to be replaced by a

22 ARTIFICIAL INTELLIGENCE

description of some machine in a standard form, which could be some-
thing like that used in §5. When the machine described bears a certain
comparatively simple relation to the machine which is under interrogation,
it can be shown that the answer is either wrong or not forthcoming. This
is the mathematical result: it is argued that it proves a disability of
machines to which the human intellect is not subject.

The short answer to this argument is that although it is established that
there are limitations to the powers of any particular machine, it has only
been stated, without any sort of proof, that no such limitations apply to the
human intellect. But I do not think this view can be dismissed quite so
lightly. Whenever one of these machines is asked the appropriate critical
question, and gives a definite answer, we know that this answer must be
wrong, and this gives us a certain feeling of superiority. Is this feeling
illusory? It is no doubt quite genuine, but I do not think too much impor-
tance should be attached to it. We too often give wrong answers to ques-
tions ourselves to be justifiedin being very pleased at such evidence of falli-
bility on the part of the machines. Further, our superiority can only be felt
on such an occasion in relation to the one machine over which we have
scored our petty triumph. There would be no question of triumphing simul-
taneously over all machines. In short, then, there might be men cleverer
than any given machine, but then again there might be other machines
cleverer again, and so on.

Those who hold to the mathematical argument would, I think, mostly
be willing to accept the imitation game as a basis for discussion. Those
who believe in the two previous objections would probably not be inter-
ested in any criteria.
(4) The Argument from Consciousness
This argument is very well expressed in Professor Jefferson's Lister Oration
for 1949, from which I quote. "Not until a machine can write a sonnet or
compose a concerto because of thoughts and emotions felt, and not by the
chance fall of symbols, could we agree that machine equals brain—that is,
not only write it but know that it had written it. No mechanism could feel
(and not merely artificially signal, an easy contrivance) pleasure at its
successes, grief when its valves fuse, be warmed by flattery, be made miser-
able by its mistakes, be charmed by sex, be angry or depressed when it
cannot get what it wants."

This argument appears to be a denial of the validity of our test. Accord-
ing to the most extreme form of this view the only way by which one
could be sure that a machine thinks is to be the machine and to feel oneself
thinking. One could then describe these feelings to the world, but of course
no one would be justified in taking any notice. Likewise according to this
view the only way to know that a man thinks is to be that particular man.
It is in fact the solipsist point of view. It may be the most logical view to

23COMPUTING MACHINERY AND INTELLIGENCE

hold but it makes communication of ideas difficult. A is liable to believe
"A thinks but B does not" whilst B believes "B thinks but A does not." In-
stead of arguing continually over this point it is usual to have the polite
convention thateveryone thinks.

I am sure that Professor Jefferson does not wish to adopt the extreme
and solipsist point of view. Probably he would be quite willing to accept
the imitation game as a test. The game (with the player B omitted) is fre-
quently used in practice under the name of viva voce to discover whether
some one really understands something or has "learnt it parrot fashion."
Let us listen in to apart of such a viva voce:

Interrogator: In the first line of your sonnet which reads "Shall I compare
thee to a summer's day," would not "a spring day" do as well or better?

Witness : It wouldn't scan.
Interrogator: How about "a winter's day." That would scan all right.
Witness: Yes, but nobody wants to be compared to a winter's day.
Interrogator: Would you say Mr. Pickwick reminded you of Christmas?
Witness: In a way.
Interrogator: Yet Chrismas is a winter's day, and I do not think Mr. Pick-

wick would mind the comparison.
Witness: I don't think you're serious. By a winter's day one means a typi-

cal winter's day, rather than a special one like Christmas.

And so on. What would Professor Jefferson say if the sonnet-writing
machine was able to answer like this in the viva voce? I do not know
whether he would regard the machine as "merely artificially signalling"
these answers, but if the answers were as satisfactory and sustained as in
the above passage I do not think he would describe it as "an easy contriv-
ance." This phrase is, I think, intended to cover such devices as the inclu-
sion in the machine of a record of someone reading a sonnet, with appro-
priate switching to turn it onfrom time to time.

In short then, I think that most of those who support the argument
from consciousness could be persuaded to abandon it rather than be forced
into the solipsist position. They will then probably be willing to accept our
test.

I do not wish to give the impression that I think there is no mystery
about consciousness. There is, for instance, something of a paradox con-
nected with any attempt to localise it. But I do not think these mysteries
necessarily need to be solved before we can answer the question with which
we are concerned in this paper.

(5) Arguments from Various Disabilities
These arguments take the form, "I grant you that you can make machines
do all the things you have mentioned but you will never be able to make

24 ARTIFICIAL INTELLIGENCE

i.

one to do X." Numerous features X are suggested in this connexion. I
offer a selection:

Be kind, resourceful, beautiful, friendly, have initiative,have a sense of
humour, tell right from wrong, make mistakes, fall in love, enjoy straw-
berries and cream, make some one fall in love with it, learn from experi-
ence, use words properly, be the subject of its own thought, have as much
diversity of behaviour as a man, do something really new.

No support is usually offered for these statements. I believe they are
mostly founded on the principle of scientific induction. A man has seen
thousands of machines in his lifetime. From what he sees of them he draws
a number of general conclusions. They are ugly, each is designed for a
very limited purpose, when required for a minutely different purpose they
are useless, the variety of behaviour of any one of them is very small, etc.,
etc. Naturally he concludes that these are necessary properties of machines
in general. Many of these limitations are associated with the very small
storage capacity of most machines. (I am assuming that the idea of storage
capacity is extended in some way to cover machines other than discrete-
state machines. The exact definition does not matter as no mathematical
accuracy is claimed in the present discussion.) A few years ago, when
very little had been heard of digital computers, it was possible to elicit
much incredulity concerning them, if one mentioned their properties with-
out describing their construction. That was presumably due to a similar
application of the principle of scientific induction. These applications of
the principle are of course largely unconscious. When a burnt child fears
the fire and shows that he fears it by avoiding it, I should say that he was
applying scientific induction. (I could of course also describe his behaviour
in many other ways.) The works and customs of mankind do not seem to
be very suitable material to which to apply scientific induction. A very
large part of space-time must be investigated, if reliable results are to be
obtained. Otherwise we may (as most English children do) decide that
everybody speaks English, and that it is silly to learn French.

There are, however, special remarks to be made about many of the dis-
abilities that have been mentioned. The inability to enjoy strawberries and
cream may have struck the reader as frivolous. Possibly a machine might
be made to enjoy this delicious dish, but any attempt to make one do so
would be idiotic. What is important about this disability is that it contrib-
utes to some of the other disabilities, e.g., to the difficulty of the same kind
of friendliness occurring between man and machine as between white man
and white man, or between black man and black man.

The claim that "machines cannot make mistakes" seems a curious one.
One is tempted to retort, "Are they any the worse for that?" But let us
adopt a more sympathetic attitude, and try to see what is really meant. I
think this criticism can be explained in terms of the imitation game. It is

COMPUTING MACHINERY AND INTELLIGENCE 25
claimed that the interrogator could distinguish the machine from the man
simply by setting them a number of problems in arithmetic. The machine
would be unmasked because of its deadly accuracy. The reply to this is
simple. The machine (programmed for playing the game) would not at-
tempt to give the right answers to the arithmetic problems. It would delib-
erately introduce mistakes in a manner calculated to confuse the interro-
gator. A mechanical fault would probably show itself through an unsuit-
able decision as to what sort of a mistake to make in the arithmetic. Even
this interpretation of the criticism is not sufficiently sympathetic. But we
cannot afford the space to go into it much further. It seems to me that this
criticism depends on a confusion between two kinds of mistake. We may
call them "errors of functioning" and "errors of conclusion." Errors of
functioning are due to some mechanical or electrical fault which causes
the machine to behave otherwise than it was designedto do. In philosophi-
cal discussions one likes to ignore the possibility of such errors; one is
therefore discussing "abstract machines." These abstract machines are
mathematical fictions rather than physical objects. By definition they are
incapable of errors of functioning. In this sense we can truly say that "ma-
chines can never make mistakes." Errors of conclusion can only arise when
some meaning is attached to the output signals from the machine. The
machine might, for instance, type out mathematical equations, or sentences
in English. When a false proposition is typed we say that the machine has
committed an error of conclusion. There is clearly no reason at all for
saying that a machine cannot make this kind of mistake. It might do noth-
ing but type out repeatedly "0 = 1." To take a less perverse example, it
might have some method for drawing conclusions by scientific induction.
We must expect such a method to lead occasionally to erroneous results.

The claim that a machine cannot be the subject of its own thought can
of course only be answered if it can be shown that the machine has some
thought with some subject matter. Nevertheless, "the subject matter of a
machine's operations" does seem to mean something, at least to the people
who deal with it. If, for instance, the machine was trying to find a solution
of the equation x2— 40* —11=0 one would be tempted to describe
this equation as part of the machine's subject matter at that moment. In
this sort of sense a machine undoubtedly can be its own subject matter. It
may be used to help in making up its own programmes, or to predict the
effect of alterations in its own structure. By observing the results of its own
behaviour it can modify its own programmes so as to achieve some purpose
more effectively. These are possibilities of the near future, rather than
Utopian dreams.

The criticism that a machine cannot have much diversity of behaviour
is just a way of saying that it cannot have much storage capacity. Until
fairly recently a storage capacity of even a thousand digits was very rare.

26 ARTIFICIAL INTELLIGENCE

The criticisms that we are considering here are often disguised forms of
the argument from consciousness. Usually if one maintains that a machine
can do one of these things, and describes the kind of method that the ma-
chine could use, one will not make much of an impression. It is thought
that the method (whatever it may be, for it must be mechanical) is really
rather base. Compare the parentheses in Jefferson's statement quoted on
page 22.

(6) Lady Lovelace's Objection
Our most detailed information of Babbage's Analytical Engine comes from
a memoir by Lady Lovelace (1842). In it she states, "The Analytical En-
gine has no pretensions to originate anything. It can do whatever we know
how to order it to perform" (her italics). This statement is quoted by
Hartree (1949) who adds: "This does not imply that it may not be pos-
sible to construct electronic equipment which will 'think for itself,' or in
which, in biological terms, one could set up a conditioned reflex, which
would serve as a basis for 'learning.' Whether this is possible in principle
or not is a stimulating and exciting question, suggested by some of these
recent developments. But it did not seem that the machines constructed
orprojected at the time had this property."

I am in thorough agreement with Hartree over this. It will be noticed
that he does not assert that the machines in question had not got the prop-
erty, but rather that the evidence available to Lady Lovelace did not en-
courage her to believe that they had it. It is quite possible that the ma-
chines in question had in a sense got this property. For suppose that some
discrete-state machine has the property. The Analytical Engine was a uni-
versal digital computer, so that, if its storage capacity and speed were
adequate, it could by suitable programming be made to mimic the machine
in question. Probably this argument did not occur to the Countess or to
Babbage. In any case there was no obligation on them to claim all that
could be claimed.

This whole question will be considered again under the heading of
learning machines.

A variant of Lady Lovelace's objection states that a machine can "never
do anything really new." This may be parried for a moment with the saw,
"There is nothing new under the sun." Who can be certain that "original
work" that he has done was not simply the growth of the seed planted in
him by teaching, or the effect of following well-known general principles.
A better variant of the objection says that a machine can never "take us
by surprise." This statement is a more direct challenge and can be met
directly. Machines take me by surprise with great frequency. This is largely
because I do not do sufficient calculation to decide what to expect them

27COMPUTING MACHINERY AND INTELLIGENCE

to do, or rather because, although I do a calculation, I do it in a hurried,
slipshod fashion, taking risks. Perhaps I say to myself, "I suppose the
voltage here ought to be the same as there: anyway let's assume it is."
Naturally I am often wrong, and the result is a surprise for me for by the
time the experiment is done these assumptions have been forgotten. These
admissions lay me open to lectures on the subject of my vicious ways,
but do not throw any doubt on my credibility when I testify to the sur-
prises I experience.

I do not expect this reply to silence my critic. He will probably say that
such surprises are due to some creative mental act on my part, and reflect
no credit on the machine. This leads us back to the argument from con-
sciousness, and far from the idea of surprise. It is a line of argument we
must consider closed, but it is perhaps worth remarking that the apprecia-
tion of something as surprising requires as much of a "creative mental act"
whether the surprising event originates from a man, a book, a machine or
anything else.

The view that machines cannot give rise to surprises is due, I believe,
to a fallacy to which philosophers and mathematicians are particularly sub-
ject. This is the assumption that as soon as a fact is presented to a mind
all consequences of that fact spring into the mind simultaneously with it.
It is a very useful assumption under many circumstances, but one too

easily forgets that it is false. A natural consequence of doing so is that
one then assumes that there is no virtue in the mere working out of con-
sequences from data and general principles.

(7) Argument from Continuity in the Nervous System
The nervous system is certainly not a discrete-state machine. A small error
in the information about the size of a nervous impulse impinging on a
neuron, may make a large difference to the size of the outgoing impulse.
It may be argued that, this being so, one cannot expect to be able to
mimic the behaviour of the nervous system with a discrete-state system.

It is true that a discrete-state machine must be different from a con-
tinuous machine. But if we adhere to the-conditions of the imitation game,
the interrogator will not be able to take any advantage of this difference.
The situation can be made clearer if we consider some other simpler con-
tinuous machine. A differential analyser will do very well. (A differential
analyser is a certain kind of machine not of the discrete-state type used
for some kinds of calculation.) Some of these provide their answers in a
typed form, and so are suitable for taking part in the game. It would not
be possible for a digital computer to predict exactly what answers the dif-
ferential analyser would give to a problem, but it would be quite capable
of giving the right sort of answer. For instance, if asked to give the value

28 ARTIFICIAL INTELLIGENCE

of ir (actually about 3.1416) it would be reasonable to choose at random
between the values 3.12, 3.13, 3.14, 3.15, 3.16 with the probabilities of
0.05, 0.15, 0.55, 0.19, 0.06 (say). Under these circumstances it would be
very difficult for the interrogator to distinguish the differential analyser
from the digital computer.

(8) The Argument from Informalityof Behaviour
It is not possible to produce a set of rules purporting to describe what a
man should do in every conceivable set of circumstances. One might for
instance have a rule that one is to stop when one sees a red traffic light,
and to go if one sees a green one, but what if by some fault both appear
together? One may perhaps decide that it is safest to stop. But some fur-
ther difficulty may well arise from this decision later. To attempt to pro-
vide rules of conduct to cover every eventuality, even those arising from
traffic lights, appears to be impossible.With all this I agree.

From this it is argued that we cannot be machines. I shall try to repro-
duce the argument, but I fear I shall hardly do it justice. It seems to run
something like this. "If each man had a definite set of rules of conduct
by which he regulated his life he would be no better than a machine. But
there are no such rules, so men cannot be machines." The undistributed
middle is glaring. I do not think the argument is ever put quite like this,
but I believe this is the argument used nevertheless. There may however
be a certain confusion between "rules of conduct" and "laws of behaviour"
to cloud the issue. By "rules of conduct" I mean precepts such as "Stop
if you see red lights," on which one can act, and of which one can be
conscious. By "laws of behaviour" I mean laws of nature as applied to a
man's body such as "if you pinch him he will squeak." If we substitute
"laws of behaviour which regulate his life" for "laws of conduct by which
he regulates his life" in the argument quoted the undistributed middle is
no longer insuperable. For we believe that it is not only true that being
regulated by laws of behaviour implies being some sort of machine (though
not necessarily a discrete-state machine), but that conversely being such a
machine implies being regulated by such laws. However, we cannot so
easily convince ourselves of the absence of complete laws of behaviour
as of complete rules of conduct. The only way we know of for finding such
laws is scientific observation, and we certainly know of no circumstances
under which we could say, "We have searched enough. There are no such
laws."

We can demonstrate more forcibly that any such statement would be
unjustified. For suppose we could be sure of finding such laws if they
existed. Then given a discrete-state machine it should certainly be possible
to discover by observation sufficient about it to predict its future be-
haviour, and this within a reasonable time, say a thousand years. But this

COMPUTING MACHINERY AND INTELLIGENCE 29

does not seem to be the case. I have set up on the Manchester computer
a small programme using only 1,000 units of storage, whereby the machine
supplied with one sixteen-figure number replies with another within two

seconds. I would defy anyone to learn from these replies sufficient about
the programme to be able to predict any replies to untried values.

(9) The Argument from Extrasensory Perception

I assume that the reader is familiar with the idea of extrasensorypercep-
tion, and the meaning of the four items of it, viz., telepathy, clairvoyance,
precognition and psychokinesis. These disturbing phenomena seem to deny
all our usual scientific ideas. How we should like to discredit them! Un-
fortunately the statistical evidence, at least for telepathy, is overwhelming.
It is very difficult to rearrange one's ideas so as to fit these new facts in.
Once one has accepted them it does not seem a very big step to believe
in ghosts and bogies. The idea that our bodies move simply according to
the known laws of physics, together with some others not yet discovered
but somewhat similar, would be one of the first to go.

This argument is to my mind quite a strong one. One can say in reply
that many scientific theories seem to remain workable in practice, in spite
of clashing with ESP; that in fact one can get along very nicely if one
forgets about it. This is rather cold comfort, and one fears that thinking
is just the kind of phenomenon where ESP may be especially relevant.

A more specific argument based on ESP might run as follows: "Let us
play the imitation game, using as witnesses a man who is good as a tele-
pathic receiver, and a digital computer. The interrogator can ask such
questions as 'What suit does the card in my right hand belong to?' The
man by telepathy or clairvoyance gives the right answer 130 times out of
400 cards. The machine can only guess at random, and perhaps gets 104
right, so the interrogator makes the right identification." There is an inter-
esting possibility which opens here. Suppose the digital computer contains
a random number generator. Then it will be natural to use this to decide
what answer to give. But then the random number generatorwill be subject
to the psychokinetic powers of the interrogator. Perhaps this psychokinesis
might cause the machine to guess right more often than would be expected
on a probability calculation, so that the interrogator might still be unable
to make the right identification. On the other hand, he might be able to
guess right without any questioning, by clairvoyance. With ESP anything
may happen.

If telepathy is admitted it will be necessary to tighten our test up. The
situation could be regarded as analogous to that which would occur if the
interrogator were talking to himself and one of the competitors was listen-
ing with his ear to the wall. To put the competitors into a "telepathy-proof
room" would satisfy all requirements,

30 ARTIFICIAL INTELLIGENCE

7. Learning Machines

The reader will have anticipated that I have no very convincing argu-
ments of a positive nature to support my views. If I had I should not have
taken such pains to point out the fallacies in contrary views. Such evidence
as I have I shall now give.

Let us return for a moment to Lady Lovelace's objection, which stated
that the machine can only do what we tell it to do. One could say that a
man can "inject" an idea into the machine, and that it will respond to a
certain extent and then drop into quiescence, like a piano string struck by
a hammer. Another simile would be an atomic pile of less than critical
size: an injected idea is to correspond to a neutron entering the pile from
without. Each such neutron will cause a certain disturbance which even-
tually dies away. If, however, the size of the pile is sufficiently increased,
the disturbance caused by such an incoming neutron will very likely go
on and on increasing until the whole pile is destroyed. Is there a corres-
ponding phenomenon for minds, and is there one for machines? There does
seem to be one for the human mind. The majority of them seem to be
"subcritical," i.e., to correspond in this analogy to piles of subcritical size.
An idea presented to such a mind will on average give rise to less than one
idea in reply. A smallish proportion are supercritical. An idea presented
to such a mind that may give rise to a whole "theory" consisting of second-
ary, tertiary and more remote ideas. Animals minds seem to be very defi-
nitely subcritical. Adhering to this analogy we ask, "Can a machine be
made to be supercritical?"

The "skin-of-an-onion" analogy is also helpful. In considering the func-
tions of the mind or the brain we find certain operations which we can
explain in purely mechanical terms. This we say does not correspond to
the real mind: it is a sort of skin which we must strip off if we are to find
the real mind. But then in what remains we find a further skin to be
stripped off, and so on. Proceeding in this way do we ever come to the
"real" mind, or do we eventually come to the skin which has nothing in it?
In the latter case the whole mind is mechanical. (It would not be a
discrete-state machine however. We have discussed this.)

These last two paragraphs do not claim to be convincing arguments.
They should rather be described as "recitations tending to produce belief."

The only really satisfactory support that can be given for the view ex-
pressed at the beginning of §6, will be that provided by waiting for the
end of the century and then doing the experiment described. But what can
we say in the meantime? What steps should be taken now if the experiment
is to be successful?

As I have explained, the problem is mainly one of programming. Ad-

31COMPUTING MACHINERY AND INTELLIGENCE

vances in engineering will have to be made too, but it seems unlikely that
these will not be adequate for the requirements. Estimates of the storage
capacity of the brain vary from 1010 to 1015 binary digits. I incline to the
lower values and believe that only a very small fraction is used for the
higher types of thinking. Most of it is probably used for the retention of
visual impressions. I should be surprised if more than 109 was required
for satisfactory playing of the imitation game, at any rate against a blind
man. (Note: The capacity of the Encyclopaedia Britannica, 11th edition,
is 2 X 10".) A storage capacity of 10r would be a very practicable possi-
bility even by present techniques. It is probably not necessary to increase
the speed of operations of the machines at all. Parts of modern machines
which can be regarded as analogs of nerve cells work about a thousand
times faster than the latter. This should provide a "margin of safety" which
could cover losses of speed arising in many ways. Our problem then is to
find out how to programme these machines to play the game. At my pres-
ent rate of working I produce about a thousand digits of programme a day,
so that about sixty workers, working steadily through the fifty years might
accomplish the job, if nothing went into the wastepaper basket. Some more
expeditiousmethod seems desirable.

In the process of trying to imitate an adult human mind we are bound
to think a good deal about the process which has brought it to the state
that it is in. We may notice three components.

(a) The initial state of the mind, say atbirth,
(b) Theeducation to which it has been subjected,
(c) Other experience, not to be described as education, to which it has

been subjected.

Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child's? If this
were then subjected to an appropriate course of education one would ob-
tain the adult brain. Presumably the child brain is something like a note-
book as one buys it from the stationer's. Rather little mechanism, and lots
of blank sheets. (Mechanism and writing are from our point of view al-
most synonymous.) Our hope is that there is so little mechanism in the
child brain that something like it can be easily programmed. The amount
of work in the education we can assume, as a first approximation, to be
much the same as for the human child.

We have thus divided our problem into two parts. The child pro-
gramme and the education process. These two remain very closely con-
nected. We cannot expect to find a good child machine at the first attempt.
One must experiment with teaching one such machine and see how well

32 ARTIFICIAL INTELLIGENCE

it learns. One can then try another and see if it is better or worse. There is
an obvious connection between this process and evolution, by the identi-
fications

Structure of the child machine = hereditary material
Changes of thechild machine = mutations

Natural selection = judgment of the experimenter

One may hope, however, that this process will be more expeditious
than evolution. The survival of the fittest is a slow method for measuring
advantages. The experimenter, by the exercise of intelligence, should be
able to speed it up. Equally important is the fact that he is not restricted
to random mutations. If he can trace a cause for some weakness he can
probably think of the kind of mutation which will improve it.

It will not be possible to apply exactly the same teaching process
to the machine as to a normal child. It will not, for instance, be provided
with legs, so that it could not be asked to go out and fill the coal scuttle.
Possibly it might not have eyes. But however well these deficiencies might
be overcome by clever engineering, one could not send the creature to
school without the other children making excessive fun of it. It must be
given some tuition. We need not be too concerned about the legs, eyes,
etc. The example of Miss Helen Keller shows that education can take place
provided that communication in both directions between teacher and
pupil can take place by some means or other.

We normally associate punishments and rewards with the teaching
process. Some simple child machines can be constructed or programmed
on this sort of principle. The machine has to be so constructed that events
which shortly preceded the occurrence of a punishment signal are un-
likely to be repeated, whereas a reward signal increased the probability
of repetition of the events which led up to it. These definitions do not
presuppose any feelings on the part of the machine. I have done some
experiments with one such child machine, and succeeded in teaching it a
few things, but the teaching method was too unorthodox for the experi-
ment to be considered really successful.

The use of punishments and rewards can at best be a part of the teach-
ing process. Roughly speaking, if the teacher has no other means of com-
municating to the pupil, the amount of information which can reach him
does not exceed the total number of rewards and punishments applied. By
the time a child has learnt to repeat "Casabianca" he would probably feel
very sore indeed, if the text could only be discovered by a "Twenty Ques-
tions" technique, every "NO" taking the form of a blow. It is necessary
therefore to have some other "unemotional" channels of communication.
If these are available it is possible to teach a machine by punishments and
rewards to obey orders given in some language, e.g., a symbolic lan-

33COMPUTING MACHINERY AND INTELLIGENCE

guage. These orders are to be transmitted through the "unemotional"
channels. The use of this language will diminish greatly the number of
punishments andrewards required.

Opinions may vary as to the complexity which is suitable in the child
machine. One might try to make it as simple as possible consistently with
the general principles. Alternatively one might have a complete system of
logical inference "built in."2 In the latter case the store would be largely
occupied with definitions and propositions. The propositions would have
various kinds of status, e.g., well-established facts, conjectures, mathe-
matically proved theorems, statements given by an authority, expressions
having the logical form of proposition but not belief-value. Certain propo-
sitions may be described as "imperatives." The machine should be so con-
structed that as soon as an imperative is classed as "well established"
the appropriate action automatically takes place. To illustrate this, sup-
pose the teacher says to the machine, "Doyour homework now." This may
cause "Teacher says 'Do your homework now' " to be included amongst
the well-established facts. Another such fact might be, "Everything that
teacher says is true." Combining these may eventually lead to the impera-
tive, "Do your homework now," being included amongst the well-estab-
lished facts, and this, by the construction of the machine, will mean that
the homework actually gets started, but the effect is very satisfactory. The
processes of inference used by the machine need not be such as would
satisfy the most exacting logicians. There might for instance be no hier-
archy of types. But this need not mean that type fallacies will occur, any
more than we are bound to fall over unfenced cliffs. Suitable imperatives
(expressed within the systems, not forming part of the rules of the system)
such as "Do not use a class unless it is a subclass of one which has been
mentioned by teacher" can have a similar effect to "Do not go too near
the edge."

The imperatives that can be obeyed by a machine that has no limbs
are bound to be of a rather intellectual character, as in theexample (doing
homework) given above. Important amongst such imperatives will be ones
which regulate the order in which the rules of the logical system concerned
are to be applied. For at each stage when one is using a logical system,
there is a very large number of alternative steps, any of which one is per-
mitted to apply, so far as obedience to the rules of the logical system is
concerned. These choices make the difference between a brilliant and a
footling reasoner, not the difference between a sound and a fallacious one.
Propositions leading to imperatives of this kind might be "When Socrates
is mentioned, use the syllogism in Barbara" or "If one method has been
proved to be quicker than another, do not use the slower method." Some

2Or rather "programmed in" for our child machine will be programmed in a
digital computer. But the logical system will not have to be learnt.

34 ARTIFICIAL INTELLIGENCE

of these may be "given by authority," but others may be produced bythe machine itself, e.g. by scientific induction.
The idea of a learning machine may appear paradoxical to some readers.How can the rules of operation of the machine change? They shoulddescribe completely how the machine will react whatever its history mightbe, whatever changes it might undergo. The rules are thus quite time-

invariant. This is quite true. The explanation of the paradox is that therules which get changed in the learning process are of a rather less pre-tentious kind, claiming only an ephemeral validity. The reader may drawa parallelwith the Constitution of the United States.
An important feature of a learning machine is that its teacher will oftenbe very largely ignorant of quite what is going on inside, although he maystill be able to some extentto predict his pupil's behavior. This should ap-ply most strongly to the later education of a machine arising from a childmachine of well-tried design (or programme). This is in clear contrastwith normal procedure when using a machine to do computations: one'sobject is then to have a clear mental picture of the state of the machine ateach moment in the computation. This object can only be achieved with astruggle. The view that "the machine can only do what we know how toorder it to do,"3 appears strange in face of this. Most of the programmeswhich we can put into the machine will result in its doing something that wecannot make sense of at all, or which we regard as completely random be-haviour. Intelligent behaviour presumably consists in a departure from thecompletely disciplined behaviour involved in computation, but a ratherslight one, which does not give rise to random behaviour, or to pointlessrepetitive loops. Another important result of preparing our machine for itspart in the imitation game by a process of teaching and learning is thathuman fallibility" is likely to be omitted in a rather natural way iewithout special "coaching." (The reader should reconcile this with thepoint of view on pages 23 and 24.) Processes that are learnt do not pro-duce a hundred per cent certainty of result; if they did they could not beunlearnt.

It is probably wise to include a random element in a learning machineA random element is rather useful when we are searching for a solutionof some problem. Suppose for instance we wanted to find a number be-tween 50 and 200 which was equal to the square of the sum of its digitswe might start at 51 then try 52 and go on until we got a number thatworked. Alternatively we might choose numbers at random until we got agood one. This method has the advantage that it is unnecessary to keeptrack of the values that have been tried, but the disadvantage that one maytry the same one twice, but this is not very important if there are severalsolutions. The systematic method has the disadvantage that there may be"Compare Lady Lovelace's statement which does not contain the word "only."

COMPUTING MACHINERY AND INTELLIGENCE 35
an enormous block without any solutions in the region which has to be in-
vestigated first. Now the learning process may be regarded as a search for
a form of behaviour which will satisfy the teacher (or someother criterion) .
Since there is probably a very large number of satisfactory solutions the
random method seems to be better than the systematic. It should be
noticed that it is used in the analogous process of evolution. But there the
systematic method is not possible. How could one keep track of the dif-
ferent genetical combinations that had been tried, so as to avoid trying
them again?

We may hope that machines will eventually compete with men in all
purely intellectual fields. But which are the best ones to start with? Even
this is a difficult decision. Many people think that a very abstract activity,
like the playing of chess, would be best. It can also be maintained that it
is best to provide the machine with the best sense organs that money can
buy, and then teach it to understand and speak English. This process
could follow the normal teaching of a child. Things would be pointed out
and named, etc. Again I do not know what the right answer is, but I think
both approaches should be tried.

We can only see a short distance ahead, but we can see plenty there
that needs to be done.

section 2

Machines That Play Games

A favorite area of research in artificial intelligence, past and present,
is in computer programs that play games. Why should one be inter-
ested in game playing, a mere human pastime? Or, as a Soviet
acquaintance once put the question to one of the editors of this
volume, "Who allows you to do it?"

Game playing has many fascinating aspects to the researcher.
Affectively, it provides a direct contest between man's wit and ma-
chine's wit. On a more serious level, game situations provide problem
environments which are relatively highly regular and well defined,
but which afford sufficient complexity in solution generation so that
intelligence and symbolic reasoning skills play a crucial role. In
short, game environments are very useful task environments for
studying the nature and structure of complex problem-solving
processes.

The game of chess is one of man's valued intellectual diversions,
and a number of chess-playing programs have been constructed. A
history and critique of these efforts are given by Newell, Shaw, and
Simon in the paper reprinted in this section. The greater part of
their paper is devoted to a detailed explanation of the working of
their own chess-playing program (NSS Chess Player). Following this
theoretical explanation is a gameplayed by the NSS Chess Player. It
is annotated by a number of chess experts, including a partial an-
notation by chess master Edward Lasker.

The NSS Chess Player is one of those research efforts which lie
in the shadowy area between artificial intelligence and simulation of

38 ARTIFICIAL INTELLIGENCE

M.

human problem-solving. In the strict sense, it is not intended to be a
model of human problem-solving in the chess environment. But the
authors, In conceiving their program, were convinced that humanlike
problem-solving methods, involving highly adaptive and highly selec-
tive search techniques, would be more effective in chess problem-
solving than other computational schemes that had been proposed
and tried. The behavior of their chess-playing program tends to sup-
port their conviction.

The focus on human problem-solving methods which is charac-
teristic of the research of Newell, Shaw, and Simon predates the
existence of their research team. In this connection, it is instructive
to read the essays in Simon's Models of Man entitled "A Behavioral
Theory of Rational Choice" and "Rational Choice and the Structure
of the Environment." These essays, written more than a decade ago,
contain a large part of the basic conceptual scheme of the decision-
making mechanisms embodied in the Chess Player and the Logic
Theorist, as well as in the portfolio selection program of Clarkson
(reprinted in Part 2 of this volume).

Samuel's checker-playing program, on the other hand, sits squarely
in the artificial intelligence camp. In its basic mechanism, especially
in its position-evaluation scheme, it does not employ humanlike prob-
lem-solving mechanisms. Samuel believes that the effective path to
progress in artificial intelligence is probably not that of imitating and
adapting human processes. The rather high level of skill attained by
Samuel's program is reassuring as to this point of view.

In terms of actual proficiency as exhibited in behavior, Samuel's
program is one of the landmarks of artificial intelligence research
to date. A recent game played by the program, in which it defeated a
checkers champion, follows the Samuel article.

Of special interest in the checker-playing program are the learning
routines, which improve the performance of the program as it gains
experience with actual games. This learning scheme is important
because it represents the only really successful attempt at machine
learning in problem-solving situations.

A. Newell is Institute Professor of Systems and Communication
Sciences at Carnegie Institute of Technology. H. A. Simon is Pro-
fessor of Administration and Psychology in the Graduate School of
Industrial Administration at the same institution. J. C. Shaw is a
member of the research staff of the RAND Corporation. A. Samuel
is Director of Research Communications at the IBM Research

Center,

CHESS -PLAYING PROGRAMS
AND THE PROBLEM
OF COMPLEXITY

Allen Newell, J. C. Shaw, &H. A. Simon

Man can solve problems without knowing how he solves them. This
simple fact sets the conditions for all attempts to rationalize and understand
human decision-making and problem-solving. Let us simply assume that it
is good to know how to do mechanically what man can do naturally—
both to add to man's knowledge of man, and to add to his kit of tools for
controlling and manipulating his environment. We shall try to assess recent
progress in understanding and mechanizing man's intellectual attainments
by considering a single line of attack—the attempts to construct digital
computerprograms that play chess.

Chess is the intellectual game par excellence. Without a chance device
to obscure the contest, it pits two intellects against each other in a situa-
tion so complex that neither can hope to understand it completely, but
sufficiently amenable to analysis that each can hope to outthink his op-
ponent. The game is sufficiently deep and subtle in its implications to have
supported the rise of professional players, and to have allowed a deepening
analysis through 200 years of intensive study and play without becoming
exhausted or barren. Such characteristics mark chess as a natural arena
for attempts at mechanization. If one could devise a successful chess ma-
chine, one would seem to have penetrated to the core of human intellectual
endeavor.

The history of chess programs is an example of the attempt to conceive
and cope with complex mechanisms. Now there might have been a triek—
one might have discovered something that was as the wheel to the human
leg: a device quite different from humans in its methods, but supremely
effective in its way, and perhaps very simple. Such a device might play

39

40 ARTIFICIAL INTELLIGENCE

JL

excellent chess, but would fail to further our understanding of human
intellectual processes. Such a prize, of course, would be worthy of discovery
in its own right, but there appears to be nothing of this sort in sight.

We return to the original orientation: Humans play chess, and when
they do they engage in behavior that seems extremely complex, intricate,
and successful. Consider, for example, a scrap of a player's (White's)
running comment as he analyzes the position in Fig. 1 :

«
Are there any other threats? Black also has a threat of Knight to
Bishop 5 threatening the Queen, and also putting more pressure on
the King's side because his Queen's Bishop can come over after he
moves his Knight at Queen 2; however, that is not the immediate
threat. Otherwise, his Pawn at King 4 is threatening my Pawn. . . .

Notice that his analysis is qualitative and functional. He wanders from one
feature to another, accumulating various bits of information that will be
available from time to time throughout the rest of the analysis. He makes
evaluations in terms of pressures and immediacies of threat, and gradually
creates order out of the situation.

How can we construct mechanisms that will show comparable com-
plexity in their behavior? They need not play in exactly the same way;
close simulation of the human is not the immediate issue. But we do assert
that complexity of behavior is essential to an intelligent performance—that
the complexity of a successful chess program will approach the complexity

Figure 1

41CHESS-PLAYING PROGRAMS

of the thought processes of a successful human chess player. Complexity
of response is dictated by the task, not by idiosyncrasies of the human re-
sponse mechanism.

There is a close and reciprocal relation between complexity and com-
munication. On the one hand, the complexity of the systems we can specify
depends on the language in which we must specify them. Being human,
we have only limited capacities for processing information. Given a more
powerful language, we can specify greatercomplexity with limited process-
ing powers.

Let us illustrate this side of the relation between complexity and com-
munication. No one considers building chess machines in the literal sense

—fashioning pieces of electronic gear into automatons that will play chess.
We think instead of chess programs; specifications written in a language,
called machine code, that will instruct a digital computer of standard design
how to play chess. There is a reason for choosing this latter course—in
addition to any aversion we may have to constructing a large piece of
special-purpose machinery. Machine code is a more powerful language
than the block diagrams of the electronics engineer. Each symbol in
machine code specifies a larger unit of processing than a symbol in the
block diagram. Even a moderately complicated program becomes hope-
lessly complex if thought of in terms of gates and pulses.

But there is another side to the relation between communication and
complexity. We cannot use any old languagewe please. We must be under-
stood by the person or machine to whom we are communicating. English
will not do to specify chess programs because there are no English-under-
standing computers. A specification in English is a specification to another
human who then has the task of creating the machine. Machine code is an
advance precisely because there are machines that understand it—because
a chess program in machine code is operationally equivalent to a machine
that plays chess.

If the machine could understand even more powerful languages, we
could use these to write chess programs—and thus get more complex and
intelligent programs from our limited human processing capacity. But
communication is limited by the intelligence of the least participant, and
at present a computer has only passive capability. The language it under-
stands is one of simple commands—it must be told very much about what
to do.

Thus it seems that the rise of effective communication between man and
computer will coincide with the rise in the intelligence of the computer—
so that the human can say more while thinking less. But at this point in
history, the only way we can obtain more intelligent machines is to design
them we cannot yet grow them, or breed them, or train them by the
blind procedures that work with humans. We are caught at the wrong

42 ARTIFICIAL INTELLIGENCE

i

equilibrium of a bistable system: we could design more intelligent ma-
chines if we could communicate to them better; we could communicate to
them better if they were more intelligent. Limited both in our capabilities
for design and communication, every advance in either separately requires
a momentous effort. Each success, however, allows a corresponding effort
on the other side to reach a little further. At some point the reaction will
"go," and we will find ourselves at the favorable equilibrium point of the
system, possessing mechanisms that are both highly intelligent and com-
municative.

With this view of the task and its setting, we can turn to the substance
of the report: the development of chess programs. We will proceed
historically, since this arrangement of the material will show most clearly
what progress is being made in obtaining systems of increasing complexity
and intelligence.

Shannon's Proposal

The relevant history begins with a paper by Claude Shannon in 1949.
He did not present a particular chess program, but discussed many of the
basic problems involved. The framework he introduced has guided most
of the subsequent analysis of the problem.

As Shannon observed, chess is a finite game. There is only a finite num-
ber of positions, each of which admits a finite number of alternative moves.
The rules of chess assure that any play will terminate: that eventually a
position will be reached that is a win, loss, or draw. Thus chess can be
completely described as a branching tree (as in Fig. 2), the nodes cor-
responding to positions and the branches corresponding to the alternative
moves from each position. It is intuitively clear, and easily proved, that for
a player who can view the entire tree and see all the ultimate consequences
of each alternative, chess becomes a simple game. Starting with the
terminal positions, which have determinate payoffs, he can work backwards,
determining at each node which branch is best for him or his opponent as

at \b ct \d ci \f
©®0 0 © 0
Figure 2. The game tree and minimaxing.

the case may be, until he arrives
at thealternative for his next move.

This inferential procedure—
called minimaxingin the theory of
games—is basic to all the attempts
so far to program computers for
chess. Let us be sure we under-
stand it. Figure 2 shows a situa-
tion where White is to move and
has three choices, (1), (2), and
(3). White's move will be fol-
lowed by Black's: (a) or (b) in

43CHESS-PLAYING PROGRAMS

case move (1) is made; (c) or (d) if move (2) is made; and (c) or (/)
if move (3) is made. To keep the example simple, we have assumed that
all of Black's moves lead to positions with known payoffs: (+) meaning
a win for White, (0) meaning a draw, and (-) meaning a loss for White.
How should White decide what to do—what inference procedure allows
him to determine which of the three moves is to be preferred? Clearly, no
matter what Black does, move (1) leads to a draw. Similarly, no matter

what Black does, move (2) leads to a loss for White. White should clearly
prefer move (1) to move (2). But what about move (3)? It offers the
possibility of a win, but also contains the possibility of a loss; and further-
more, the outcome is in Black's control. If White is willing to impute any
analytic ability to his opponent, he must conclude that move (3) will end
as a loss for White, and hence that move (1) is the preferred move. The
win from move (3) is completely insubstantial, since it can never be
realized. Thus White can impute a value to a position—in this case draw-
by reasoning backward from known values.

To repeat: If the entire tree can be scanned, the best move can be deter-
mined simply by the minimaxing procedure. Now minimaxingmight have

been the "wheel" of chess—with the adventure ended almost before it had
started—if the tree were not so large that even current computers can dis-
cover only the minutest fraction of it in years of computing. Shannon's
estimate, for instance, is that there are something like 10"° continuations
to be explored, with less than 10" microseconds available in a century to

explore them.
Shannon then suggested the followingframework. Playing chess consists

of considering the alternative moves, obtaining some effective evaluation
of them by means of analysis, and choosing the preferred alternative on
the basis of the evaluation. The analysis—which is the hard part—could
be factored into three parts. First, one would explore the continuations to a
certain depth. Second, since it is clear that the explorations cannot be

deep enough to reach terminal positions, one would evaluate the positions

reached at the end of each exploration in terms of the pattern of men on

the chessboard. These static evaluations would then be combined by means
of the minimaxing procedure to form the effective value of the alternative.
One would then choose the move with the highest effective value. The
rationale behind this factorization was the reasonableness that, for a given

evaluation function, the greater the depth of analysis, the better the chess
that would be played. In the limit, of course, such a process would play
perfect chess by finding terminal positions for all continuations. Thus a

metric was provided that measured all programs along the single dimen-
sion of their depth of analysis.

To complete the scheme, a procedure was needed to evaluate positions

statically—that is, without making further moves. Shannon proposed a
numerical measure formed by summing, with weights, a number of factors

44 ARTIFICIAL INTELLIGENCE

or scores that could be computed for any position. These scores would
correspond to the various features that chess experts assert are important.
This approach gains plausibility from the existence of a few natural
quantities in chess, such as the values of pieces, and the mobility of men.
It also gains plausibility, of course, from the general use in science and
engineering of linearizing assumptions as first approximations.

To summarize: the basic framework introduced by Shannon for thinking
about chess programs consists of a series of questions :

1. Alternatives
Which alternative moves are to be considered?

2. Analysis
a. Which continuations are to be explored and to what depth?
b. How are positions to be evaluated statically—in terms of their

patterns?
c. How are the static evaluations to be integrated into a single value

for an alternative?
3. Final choice procedure

What procedure is to be used to select the final preferred move?
We would hazard that Shannon's paper is chiefly remembered for the
specific answers he proposed to these questions: consider all alternatives;
search all continuations to fixed depth, n; evaluate with a numerical sum;
minimax to get the effective value for an alternative; and then pick the best
one. His article goes beyond these specifics, however, and discusses the
possibility of selecting only a small number of alternatives and continua-
tions. It also discusses the possibility of analysis in terms of the functions
that chessmen perform—blocking, attacking, defending. At this stage,
however, it was possible to think of chess programs only in terms of
extremely systematic procedures. Shannon's specific proposals have grad-
ually been realized in actual programs, whereas the rest of his discussion
has been largely ignored. And when proposals for more complex computa-
tions enter the research picture again, it is through a different route.

Turing's Program

Shannon did not present a particular program. His specifications still
require large amounts of computing for even such modest depths of analysis
as two or three moves. It remained for A. M. Turing (1950) to describe a
program along these lines that was sufficiently simple to be simulated by
hand, without the aid of a digital computer.

In Table 1 we have characterized Turing's program in terms of the
framework just defined. There are some additional categories which will
become clear as we proceed. The table also provides similar information
for each of the other three programs we will consider.

TABLE 1 Comparison of Current Chess Programs

Kister,

Stein,

Ulam, Bernstein, Roberts,
Walden, Wells Arbuckle, Belsky
(Los Alamos) (Bernstein)Turing

Vital statistics
Date

19581956 19571951 BXB o y O

RAND JOHNNIAC
20,000 ops./sec

BXB
Hand simulation

6X6Board MANIAC-I IBM 704Computer 42,000 ops./sec11,000 ops./sec

Chess program
Alternatives

VariableAll moves 7 plausiblemoves
Sequence of move generators
7 plausiblemoves
2 moves deep
Numerical

All moves Sequence of move generators
Until dead
Each goal generates moves
Nonnumerical

All movesDepth of analysis

Static evaluation

Until dead
(exchanges only)

Numerical
2 moves deep
Numerical

Material,mobility
Area control

Vector of valuesMany factors Material,mobility
Acceptanceby goals

King defense
Minimax
Best value

MinimaxMinimax (modified)
Best valueIntegration of values

Final choice
Minimax 1. First acceptable

2. Double functionMaterial dominates
Otherwise, best value

Programming
Language
Data scheme

Machine code
Single board
Centralized tables
Recompute

IPL-IV, interpretive
Single board
Decentralized

Machine code
Single board
No records List structure

Recompute
1-10 hr/move (est.)
Now 6000 words, est. 16,0008 min/move

7000 wordsTime
Space

Minutes 12 min/move
600 words

Results 2 games 0 games
Some hand simulation
Good in spots (opening)
No aggressive goals yet

1 game 3 games
(no longer exists)

Beats weak player
Equivalentto human with

20 games experience

Experience
Passable amateur
Blind spotsDescription Loses to weak player

Aimless Positional
4*-

Newell,

Shaw,

Simon
(NSS)

Subtleties of evalua-
tion lost

46 ARTIFICIAL INTELLIGENCE

4.

Turing's program considered all alternatives—that is, all legal moves. In
order to limit computation, however, he was very circumspect about the
continuations the program considered. Turing introduced the notion of a
"dead" position: one that in some sense was stable, hence could be
evaluated. For example, there is no sense in counting material on the
board in the middle of an exchange of Queens: one should explore the
continuations until the exchange has been carried through—to the pointwhere the material is not going to change with the next move. So Turing's
program evaluated material at dead positions only. He made the value ofmaterial dominant in his static evaluation, so that a decision problem re-
mained only if minimaxing revealed several alternatives that were equal inmaterial. In these cases, he applied a supplementary additive evaluation tothe positions reached by making the alternative moves. This evaluationincluded a large number of factors—mobility, backward pawns, defense ofmen, and so on—points being assignedfor each.

Thus Turing's program is a good instance of a chess-playing system as
envisaged by Shannon, although a small-scale one in terms of computa-tional requirements. Only one published game, as far as we know, wasplayed with the program. It proved to be rather weak, for it lost against aweak human player (who did not know the program, by the way), althoughit was not entirely a pushover. In general its play was rather aimless, andit was capable of gross blunders, one of which cost it the game. As onemight have expected, the subtleties of the evaluation function were lostupon it. Most of the numerous factors included in the function rarely hadany influence on the move chosen. In summary: Turing's program wasnot a very good chess player, but it reached the bottom rung of the humanladder.

There is no a priori objection to hand simulation of a program, although
experience has shown that it is almost always inexact for programs of thiscomplexity. For example, there is an error in Turing's play of his program,because he—the human simulator—was unwilling to consider all thealternatives. He failed to explore the ones he "knew" would be eliminatedanyway, and was wrong once. The main objection to hand simulation is the
amount of effort required to do it. The computer is really the enablingcondition for exploring the behavior of a complex program. One cannoteven realize the potentialities of the Shannon scheme without programming
it for a computer.

The Los Alamos Program

In 1956 a group at Los Alamos programmed MANIAC I to play chess(Kister et al., 1957).' The Los Alamos program is an almost perfect"There are two other explorationsbetween 1951 and 1956 of which we are aware

CHESS-PLAYING PROGRAMS 47
example of the type of system specified by Shannon. As shown in the table,
all alternatives were considered; all continuations were explored to a depth
of two moves (i.e., two moves for Black and two for White); the static
evaluation function consisted of a sum of material and mobility measures;
the values were integrated by a minimax procedure,2 and the best alterna-
tive in terms of the effective value was chosen for the move.

In order to carry out the computation within reasonable time limits, a
major concession was required. Instead of the normal chessboard of eight
squares by eight squares, they used a reduced board, six squares by six
squares. They eliminated the Bishops and all special chess moves: castling,
two-square Pawn movesin the opening, and en passant captures.

The result? Again the program is a weak player, but now one that is
capable of beating a weak human player, as the machine demonstrated in
one of its three games. It is capable of serious blunders, a common charac-
teristic, also, of weak human play.

Since this is our first example of actual play on a computer, it is worth
looking a bit at the programming and machine problems. In a normal
BXB game of chess there are about 30 legal alternatives at each move,
on the average, thus looking two moves ahead brings 30" continuations,
about 800,000, into consideration. In the reduced 6X6 game, the de-
signers estimate the average number of alternatives at about 20, giving a
total of about 160,000 continuations per move. Even with this reduction
of five to one, there are still a lot of positions to be looked at. By compari-
son, the best evidence suggests that a human player considers considerably
less than 100 positions in the analysis of a move (De Groot, 1946). The
Los Alamos program was able to make a move in about 12 minutes on the
average. To do this the code had to be very simple and straightforward.
This can be seen by the size of the program—only 600 words. In a sense,
the machine barely glanced at each position it evaluated. The two measures
in the evaluation function are obtained directly from the process of looking
at continuations: changes in material are noticed if the moves are captures,
and the mobility score for a position is equal to the number of new posi-
tions to which it leads—hence is computed almost without effort when
exploring all continuations.

The Los Alamos program tests the limits of simplification in the direc-
tion of minimizing the amount of information required for each position
evaluated, just as Turing's program tests the limits in the direction of mini-
mizing the amount of exploration of continuations. These programs, espe-

—a hand simulation by F. Mosteller and a Russian program for BESM. Unfortu-
nately, not enough information is available on either to talk about them, so we must
leave a gap in the history between 1951 and 1956.

2 The minimax procedure was a slight modification of the one described earlier,
in that the mobility score for each of the intermediatepositions was added in.

48 ARTIFICIAL INTELLIGENCE

cially the Los Alamos one, provide real anchor points. They show that,
with very little in the way of complexity, we have at least entered the
arena of human play—we can beat a beginner.

Bernstein's Program

Over the last two years Alex Bernstein, a chess player and programmer
at IBM, has constructed a chess-playing program for the IBM 704 (for
the full BXB board) (Bernstein and Roberts, 19586; Bernstein et al.,
1958a). This program has been in partial operation for the last six months,
and has now played one full game plus a number of shorter sequences. It,
too, is in the Shannon tradition, but it takes an extremely important step in
the direction of greater sophistication: only a fraction of the legal alterna-
tives and continuations are considered. There is a series of subroutines,
which we can call plausible move generators, that propose the moves to be
considered. Each of these generators is related to some feature of the
game: King safety, development, defending own men, attacking opponent's
men, and so on. The program considers at most seven alternatives, which
are obtained by operating the generators in priority order, the most im-
portant first, until the seven are accumulated.

The program explores continuations two moves ahead, just as the Los
Alamos program did. However, it uses the plausible move generators at
each stage, so that, at most, 7 direct continuations are considered from
any given position. For its evaluation function it uses the ratio of two
sums, one for White and one for Black. Each sum consists of four weighted
factors: material, King defense, area control, and mobility. The program
minimaxes and chooses the alternative with the greatest effective value.

The program's play is uneven. Blind spots occur that are very striking;
on the other hand it sometimes plays very well for a series of moves. It has
never beaten anyone, as far as we know; in the one full game it played it
was beaten by a good player, (Bernstein and Roberts, 19586), and it has
never beenpitted againstweak players toestablish how good it is.

Bernstein's program gives us our first information about radical selec-
tivity, in move generation and analysis. At 7 moves per position, it ex-
amines only 2,500 final positions two moves deep, out of about 800,000
legal continuations. That it still plays at all tolerably with a reduction in
search by a factor of 300 implies that the selection mechanism is fairly
effective. Of course, the selections follow the common and tested lore of
the chess world; so that the significance of the reduction lies in showing
that this lore is being successfully captured in mechanism. On the other
hand, such radical selection should give the program a strong proclivity to
overlook moves and consequences. The selective mechanisms in Bernstein's
program have none of the checks and balances that exist in human selec-
tion on the chessboard. And this is what we find. For example, in one

49CHESS-PLAYING PROGRAMS

situation a Bishop was successively attacked by three Pawns, each time
retreating one square to a post where the next Pawn could attack it. The
program remained oblivious to this possibility since the successive Pawn
pushes that attacked the Bishop were never proposed as plausible moves by
the generators. But this is nothing to be unhappy about. Any particular
difficulty is removable: in the case of the Bishop, by adding another move
generator responsive to another feature of the board. This kind of error
correction is precisely how the body of practical knowledge about chess
programs and chess play will accumulate, gradually teaching us the right
kinds of selectivity.

Every increase in sophistication of performance is paid for by an in-
crease in the complexity of the program. The move generators and the
components of the static evaluation require varied and diverse information
about each position. This implies both more program and more computing
time per position than with the Los Alamos program. From Table 1, we
observe that Bernstein's program takes 7000 words, the Los Alamos pro-
gram only 600 words: a factor of about 10. As for time per position, both
programs take about the same time to produce a move—8 and 12 minutes
respectively. Since the increase in problem size of the 8 X 8 board over
the 6x 6 board (about 5 to 1) is approximately canceled by the increase
in speed of the IBM 704 over the MANIAC (also about 5 to 1, counting
the increased power of the 704 order code), we can say they would both
produce moves in the same BXB game in the same time. Hence the in-
crease in amount of processing per move in Bernstein's program approxi-
mately cancels the gain of 300 to 1 in selectivity that this more complex
processing achieves. This is so, even though Bernstein's program is coded
to attain maximum speed by the use of fixed tables, direct machine coding,
and so on.

We have introduced the comparison in order to focus on computing
speed versus selectivity as sources of improvement in complex programs.
It is not possible, unfortunately, to compare the two programs in perform-
ance level except very crudely. We should compare an 8 X 8 version of
the Los Alamos program with the Bernstein program, and we also need
more games with each to provide reliable estimates of performance. Since
the BXB version of the Los Alamos program will be better than the
6x6, compared to human play, let us assume for purposes of argument
that the Los Alamos and Bernstein programs are roughly comparable in
performance. To a rough approximation, then, we have two programs that
achieve the same quality of performance with the same total effort by two
different routes: the Los Alamos program by using no selectivity and
being very fast, and the Bernstein program by using a large amount of
selectivity and taking much more effort per position examined in order to
make the selection.

The point we wish to make is that this equality is an accident: that

50 ARTIFICIAL INTELLIGENCE

selectivity is a very powerful device and speed a very weak device for im-
proving theperformance of complex programs. For instance, suppose both
the Los Alamos and the Bernstein programs were to explore three moves
deep instead of two as they now do. Then the Los Alamos program would
take about 1000 times (30 2) as long as now to make a move, whereas
Bernstein's program would take about 50 times as long (72), the latter
gaining a factor of 20 in the total computing effort required per move. The
significant feature of chess is the exponential growth of positions to be
considered with depth of analysis. As analysis deepens, greater computing
effort per position soon pays for itself, since it slows the growth in number
of positions to be considered. The comparison of the two programs at a
greater depth is relevant since the natural mode of improvement of the
Los Alamos program is to increase the speed enough to allow explorations
three moves deep. Furthermore, attempts to introduce selectivity in the
Los Alamos program will be extremely costly relative to the cost of addi-
tional selectivity in the Bernstein program.

One more calculation might be useful to emphasize the value of
heuristics that eliminate branches to be explored. Suppose we had a
branching tree in which our program was exploring n moves deep, and
let this tree have four branches at each node. If we could double the speed
of the program—that is, consider twice as many positions for the same
total effort—then this improvement would let us look half a move deeper
("+%)" H, on the other hand, we could double the selectivity—that is,
only consider two of the four branches at each node, then we could looktwice as deep (2n). It is clear that we could afford to pay an apparentlyhigh computing cost per position to achieve this selectivity.

To summarize, Bernstein's program introduces both sophistication and
complicationto the chess program. Although in some respects—e.g., depth
of analysis—it still uses simple uniform rules, in selecting moves to beconsidered it introduces a set of powerful heuristics which are taken from
successful chess practice, and drastically reduce the number of moves
considered at each position.

Newell, Shaw, and Simon Program

Although our own work on chess started in 1955, it took a prolonged
vacation during a period in which we were developing programs that dis-cover proofs for theorems in symbolic logic (Newell, Shaw, and Simon,
1957; Newell and Simon, 1956). In a fundamental sense, proving theoremsand playing chess involve the same problem: reasoning with heuristics thatselect fruitful paths of exploration in a space of possibilities that growsexponentially. The same dilemmas of speed versus selection and uniformityversus sophistication exist in both problem domains. Likewise, the pro-

51CHESS-PLAYING PROGRAMS

gramming costs attendant upon complexity seem similar for both. So we
have recently returned to the chess programming problem equipped with
ideas derivedfrom the work on logic.

The historical antecedents of our own work are somewhat different
from those of the other investigators we have mentioned. We have been
primarily concerned with describing and understanding human thinking
and decision processes (Newell, Shaw, and Simon, 1958a, 1958c). How-
ever, both for chess players and for chess programmers, the structure of
the task dictates in considerable part the approach taken, and our current
program can be described in the same terms we have used for the others.
Most of the positive features of the earlier programs are clearly discernible:
The basic factorization introduced by Shannon; Turing's concept of a dead
position; and the move generators, associated with features of the chess
situation, used by Bernstein. Perhaps the only common characteristic of
the other programs that is strikingly absent from ours—and from human
thinking also, we believe—is the use of numerical additiveevaluation func-
tions to compare alternatives.

Basic Organization

Figure 3 shows the two-way classification in terms of which the program
is organized. There is a set of goals, each of which corresponds to some
feature of the chess situation—King safety, materialbalance, center control,
and so on. Each goal has associated with it a collection of processes, cor-
responding to the categories outlined by Shannon: a move generator, a
static evaluation routine, and a move generator for analysis. The routine
for integrating the static evaluations into an effective value for a proposed
move, and the final choice procedure are both common routines for the
whole program, and therefore are not present in each separate component.

Goals

The goals form a basic set of modules out of which the program is con-
structed. The goals are independent: any of them can be added to the

Goal Move
generator

Static Analysis
generatorspecification

King safety

evaluation

Material balance

King-side attack^
Promotion

Figure 3. Basic organization of the NSS chess program.

■:- ; Center control ,;|

'

:

"-:"-J-;V.:

:.::-> ■''■? '.:<Wtff'"':P'

'

,;'
:o Development ::-':: ::^M^':^'':-:": ''' ? ''

52 ARTIFICIAL INTELLIGENCE

4

program or removed without affecting the feasibilityof the remaining goals.
At the beginning of each move a preliminary analysis establishes that a
given chess situation (a "state") obtains, and this chess situation evokes
a set of goals appropriate to it. The goal specification routines shown for
each goal in Fig. 3 provide information that is used in this initial selection
of goals. The goals are put on a list with the most crucial ones first. This
goal list then controls the remainder of the processing: the selection of
alternatives, the continuations to be explored, the static evaluation, and the
final choice procedure.

What kind of game the program will play clearly depends on what goals
are available to it and chosen by it for any particular move. One purpose
of this modular construction is to provide flexibilityover the course of thegame in the kinds of considerations the program spends its effort upon.For example, the goal of denying stalemate to the opponent is relevantonly in certain end-game situations where the opponent is on the defensive
and the King is in a constrained position. Another purpose of the modular
construction is to give us a flexible tool for investigating chess programs—
so that entirely new considerations can be added to an already complexbut operational program.

Move Generation
The move generatorassociated with each goalproposes alternative movesrelevant to that goal. These move generators carry the burden of findingpositive reasons for doing things. Thus, only the center-control generator
will propose P-Q4 as a good move in the opening; only the material-balance generator will propose moving out of danger a piece that is en
prise. These move generators correspond to the move generators in Bern-stein's program, except that here they are used exclusively to generatealternative moves and are not used to generate the continuations that areexplored in the course of analyzing a move. In Bernstein's program—anda fortiori in the Los Alamos program— identical generators are used both
to find a set of alternative moves from which the final choice of next move
is made, and also to find the continuations that must be explored to assessthe consequences of reaching a given position. In our program the latterfunction is performed by a separate set of analysis generators.

Evaluation

Each move proposed by a move generatoris assigned a value by an analysisprocedure. We said above that the move generators have the responsibilitytor finding positive reasons for making moves. Correspondingly, the analysisprocedure is concerned only with the acceptability of a move once it hasoeen generated. A generatorproposes; the analysis procedure disposes.

53CHESS-PLAYING PROGRAMS

The value assigned to a move is obtained from a series of evaluations,
one for each goal. The value is a vector, if you like to think of it that way,
except that it does not necessarily have the same components throughout
the chess game, since the components derive from the basic list of goals
that is constructed from the position at the beginning of each move. Each
component expresses acceptability or unacceptability of a position from the
viewpoint of the goal corresponding to that component. Thus, the material-
balance goal would assess only the loss or gain of material; the develop-
ment goal, the relative gain or loss of tempi; the Pawn structure goal, the
doubling and isolation of Pawns; and so on. The value for a component is
in some cases a number—e.g., in the material-balance goal where we use
conventional piece values : 9 for a Queen, 5 for a Rook, and so on. In other
cases the component value is dichotomous, simply designating the presence
or absence of some property, like the blocking of a move or the doubling
of a Pawn.

As in the other chess programs, our analysis procedure consists of three
parts: exploring continuations to some depth, forming static evaluations,
and integrating these to establish an effective value for the move. By a
process that we will describe later, the analysis move generators associated
with the goals determine what branches will be explored from each position
reached. At the final position of each continuation, a value is assigned using
the static evaluation routines of each goal to provide the component values.
The effective value for a proposed move is obtained by minimaxing on
these final static values. Minimaxing seems especially appropriate for an
analysis procedure that is inherently conservative, such as an acceptance
test.

To be able to minimax, it must be possible to compare any two values
and decide which is preferable, or whether they are equal in value. For
values of the kind we are using, there must be a complete ordering on the
vectors that determine them. Further, this ordering must allow variation in
the size and composition of the goal list. We use a lexicographic ordering:
Each component value is completely ordered within itself; and higher
priority values completely dominate lower priority values, as determined
by the order of goals on the goal list. To compare two values, then, the
first components are compared. If one of these is preferable to the other,
this determines the preference for the entire value. If the two components
are equal, then the second pair of components is compared. If these are
unequal in value, they determine the preference for the entire value; other-
wise the next components are compared, and so on.

Final Choice
It is still necessary to select the move to be played from the alternative
moves, given the values assigned to them by the analysis procedure. In

54 ARTIFICIAL INTELLIGENCE

the other programs the final choice procedure was simply an extension of
the minimax: choose the one with highest value. Its obviousness rests on
the assumption that the set of alternatives to be considered is a fixed set.
If this assumption is relaxed, by generating alternatives sequentially, then
other procedures are possible. The simplest, and the one we are currently
using, is to set an acceptance level as final criterion and simply take the
first acceptable move. The executive routine proceeds down the goal list,
activating the move generators of the goals in order of priority, so that
important moves are considered first. The executive saves the best move
that has been found up to any given moment, and if no moves reach the
specified level of acceptability, it makes the best move that was found.

Another possible final choice procedure is to search for an acceptable
move that has a double function—that is, a move that is proposed by more
than one generator as having a positive effect. With this plan, the execu-
tive proceeds down the list of goals in order of priority. After finding an
acceptable move, it activates the rest of the generators to see if the move
will be proposed a second time. If not, it works from the list of unevalu-
ated moves just obtained to see if any move proposed twice is acceptable.
If not, it takes the first acceptable move or the best if none has proved
acceptable. This type of executive has considerable plausibility, since the
concept of multiple function plays an important role in the chess literature.

Yet a third variation in the final choice procedure is to divide the goals
into two lists. The first list contains all the features that should normally
be attended to; the second list contains features that are rare in occurrence
but either very good or very bad if they do occur. On this second list would
be goals that relate to sacrificial combinations, hidden forks or pins that
are two moves away, and so on. The executive finds an acceptable move
with the first, normal list. Then the rest of the available time is spent look-
ing for various rare consequences derived from the second list.
Analysis
In describing the basic organization of the program we skipped over the
detailed mechanism for exploring continuations, simply assuming that cer-
tain continuations were explored, the static values computed, and the effec-
tive value obtained by minimaxing. But it is clear that the exact mecha-
nisms are very important. The analysis move generators are the main
agents of selectivity in the program: They determine for each position
arrived at in the analysis just which further branches must be explored,
hence the average number of branches in the exploration tree and its aver-
age depth. The move generators for the alternatives and the final choice
procedure also affect the amount of exploration by determining what moves
are considered. But their selection operates only once per move, whereas
the selectivity of the analysis generators operates at each step (half move)

55CHESS-PLAYING PROGRAMS

of the exploration. Hence the selectivity of the analysis generators varies
geometrically with the averagedepth of analysis.

The exploration of continuations is based on a generalization of Turing's
concept of a dead position. Recall that Turing applied this notion to ex-
changes, arguing that it made no sense to count material on the board until
all exchanges that were to take place had been carried out. We apply the
same notion to each feature of the board: The static evaluation of a goal
is meaningful only if the position being evaluated is "dead" with respect
to the feature associated with that goal—that is, only if no moves are likely
to be made that could radically alter that component static value. The
analysis move generators for each goal determine for any position they are
applied to whether the position is dead with respect to their goal; if not,
they generate the moves that are both plausible and might seriously affect
the static value of the goal. Thus the selection of continuations to be
explored is dictated by the search for a position that is dead with respect
to all the goals, so that, finally, a static evaluation can be made. Both the
number of branches from each position and the depth of the exploration
are controlled in this way. Placid situations will produce search trees con-
taining only a handful of positions; complicated middle game situations
will produce much largerones.

To make the mechanics of the analysis clearer, Fig. 4 gives a schematic
example of a situation. P0 is the initial position from which White, the
machine, must make a move. The arrow, a, leading to Pj represents an
alternative proposed by some move generator. The move is made internally
(i.e., "considered"), yielding position P u and the analysis procedure must
then obtain the value of Pu which will become the value imputed to the
proposed alternative, a. Taking each goal from the goal list in turn, an
attempt is made to produce a static evaluation. For Pj this attempt is suc-
cessful for the first and second components, yielding values of 5 and 3
respectively. (Numbers are used for values throughout this example to
keep the picture simple; in reality,
various sets of ordered symbols
are used, their exact structure de-
pending on the nature of the com-
putation.) However, the third
component does not find the posi-
tion dead, and generates two
moves, B and y. The first, B, is
considered, leading to P2 , and an
attempt is made to produce a
static evaluation of it. This pro-
ceeds just as with Plf except that
this time all components find the Figure 4. Analysi*

56 ARTIFICIAL INTELLIGENCE

position dead and the static value (4,3,1) is obtained. Then the second
move, y, from Pt is considered, leading to P3 . The attempt to produce a
static value for Ps runs into difficulties with the first component, which
generates one move, 8, to resolve the instability of P3 with respect to its
feature. This move leads to P 4 which is evaluable, having the value (2,8,1).
However, the second component also finds P 3 not dead and generatesa sin-
gle move, t, leading to P5 . This is also evaluable, having the value (4,7,3).
The third component finds P 3 dead and therefore contributes no additional
moves. Thus the exploration comes to an end with all terminal positions
yielding complete static values. Since it is White's move at P 3 , White
will choose the move with the highest value. This is t, the move to P s, with
a value of (4,7,3) (the first component dominates). The value of this
move is the effective value assigned to P3 . Black now has a choice between
the move, B, to P 2, yielding (4,3,1) and the move, y, to P3 , yielding
(4,7,3). Since Black is minimizing, he will choose B. This yields (4,3,1)
as the effective value of the alternative, a, that leads to Px, and the end of
the analysis.

The minimaxing operation is conducted concurrently with the genera-
tion of branches. Thus if P5 , which has a value of (4,7,3), had been gen-
erated prior to P4 no further moves would have been generated from P3 ,
since it is already apparent that Black will prefer P 2 to P3 . The value of
P3 is at least as great as the value of Ps , since it is White's move and he
will maximize.

This analysis procedure is not a simple one, either conceptually or tech-
nically. There are a number of possible ways to terminate search and reach
an effective evaluation. There is no built-in rule that guarantees that the
search will converge; the success depends heavily on the ability to evalu-
ate statically. The more numerous the situations that can be recognized
as having a certain value without having to generate continuations, the
more rapidly the search will terminate. The number of plausible moves
that affect the value is also of consequence, as we discussed in connection
with Bernstein's program, but there are limits beyond which this cannot
be reduced. For example, suppose that a position is not dead with respect
to Material Balance and that one of the machine's pieces is attacked. Then
it can try to (a) take the attacker, (b) add a defender, (c) move the at-
tacked piece, (d) pin the defender, (c) interpose a man between the
attacker and the attacked, or (/) launch a counterattack. Alternatives of
each of these types must be sought and tried—they are all plausible and
may radically affect the material balance.

As an example of the heuristics involved in achieving a static evaluation,
imagine that the above situation occurred after several moves of an ex-
ploration, and that the machine was already a Pawn down from the early
part of the continuation. Then, being on the defensive implies a very re-

II

IV-

CHESS-PLAYING PROGRAMS 57
mote chance of recovering the Pawn. Consequently, a negative value of at
least a Pawn can be assigned to the position statically. This is usually
enough in connection with concurrent minimaxing to eliminate the contin-
uation from further consideration.

Summary
Let us summarize our entire program. It is organized in terms of a set of
goals: these are conceptual units of chess—King safety, passed Pawns, and
so on. Each goal has several routines associated with it:

1. A routine that specifies the goal in terms of the given position;
2. A move generator that finds moves positively related to carrying out

the goal;
3. A procedure for making a static evaluation of any position with

respect to the goal, which essentially measures acceptability;
4. An analysis move generator that finds the continuations required to

resolve a situation into dead positions.

The alternative moves come from the move generators, considered in the
order of priority of their respective goals. Each move, when it is generated,
is subjected to an analysis. This analysis generates an exploration of the
continuations following from the move until dead positions are reached
and static evaluations computed for them. The static evaluations are com-
pared, using minimax as an inference procedure, so that an effective value
is eventually produced for each alternative. The final choice procedure can
rest on any of several criteria: for instance, choosing the first move gener-
ated that has an effective value greaterthan a givennorm.
Examples of Goals
In this section we will give two examples of goals and their various com-
ponents to illustrate the type of program we are constructing. The first
example is the center-control goal :

CENTER CONTROL
Specification. Goal is always operative unless there are no more centerPawns to be moved to the fourth rank.
Move Generator

1. Move P-Q4, P-K4 (primary moves).
2. Prevent the opponent from making his primary moves.
3. Prepare your own primary moves :

a. Add a defenderto Q4 orK4 square.
b. Eliminate a block to moving QP orKP.

58 ARTIFICIAL INTELLIGENCE

Static Evaluation. Count the number of blocks to making the primary
moves.
Analysis Move Generators. None; static evaluation is always possible.

To interpret this a little: Goals are proposed in terms of the general
situation—e.g., for the opening game. The list of goals is made up for a
position by applying, in turn, the specification of each of the potential
goals. Whether any particular goal is declared relevant or irrelevant to the
position depends on whether or not the position meets its specification.
For Center Control, no special information need be gathered, but the goal
is declared irrelevant if the center Pawns have already been moved to the
fourth rank or beyond.

The most important part of the center-control program is its move gen-
erator. The generator is concerned with two primary moves: P-Q4 and
P-K4. It will propose these moves, if they are legal, and it is the responsi-
bility of the analysis procedures (for all the goals) to reject the moves if
there is anything wrong with them—e.g., if the Pawns will be taken when
moved. So, after 1. P-Q4, P-Q4, the center-control move generator will
propose 2. P-K4, but (as we shall see) the evaluation routine of the mate-
rial balance goal will reject this move because of the loss of material that
would result from 2 P X P. The center-control generator will have
nothing to do with tracingout these consequences.

If the primary moves cannot be made, the center-control move generator
has two choices: to prepare them, or to prevent the opponent from making
his primary moves. The program's style of play will depend very much on
whether prevention has priority overpreparation (as it does in our descrip-
tion of the generator above), or vice versa. The ordering we have pro-
posed, which puts prevention first, probably produces more aggressive and
slightly better opening play than the reverse ordering. Similarly, the style
of play depends on whether the Queen's Pawn or the King's Pawn is
considered first.

The move generator approaches the subgoal of preventing the oppo-
nent's primary moves (whenever this subgoal is evoked) in the following
way. It first determines whether the opponent can make oneof these moves
by trying the move and then obtaining an evaluation of it from the oppo-
nent's viewpoint. If one or both of the primary moves are not rejected,
preventive moves will serve some purpose. Under these conditions, the
center-control move generator will generate them by finding moves that
bring another attacker to bear on the opponent's K4 and Q4 squares or
that pin a defender of one of these squares. Among the moves this gen-
erator will normally propose are N-B3 and BP-84.

The move generator approaches the subgoal of preparing its own pri-
mary moves by first determining why the moves cannot be made without

CHESS-PLAYING PROGRAMS 59

i

preparation—that is, whether the Pawn is blocked from moving by a
friendly piece, or whether the fourth-rank square is unsafe for the Pawn.
In the former case, the generator proposes moves for the blocking piece;
in the latter case, it finds moves that will add defenders to the fourth-rank
square, drive away or pin attackers, and so on.

So much for the center-control move generators. The task of the evalu-
ation routine for the center-control goal is essentially negative—to assure
that moves, proposed by some other goal, will not be made that jeopardize
control of the center. The possibility is simply ignored that a move gen-
erator for some other goal will inadvertently provide a move that contrib-
utes to center control. Hence, the static evaluation for Center Control is
only concerned that moves not be made that interfere with P-K4 and
P-Q4. A typical example of a move that the center-control evaluation
routine is prepared to reject is B-Q3 or B-K3 before the respective center
Pawns have been moved.

The second example of a goal is Material Balance. This is a much more
extensive and complicated goal than Center Control, and handles all ques-
tions about gain and loss of material in the immediate situation. It does
not consider threats like pins and forks, where the actual exchange is still
a move away; other goals must take care of these. Both the negative and
positive aspects of material must be included in a single goal, since they
compensate directly for each other, and material must often be spent to
gain material.

MATERIAL BALANCE

Specification. A list of exchanges on squares occupied by own men, and a
list of exchanges on squares occupied by opponent's men. For each ex-
change square there is listed the target man, the list of attackers, and the
list of defenders (including, e.g., both Rooks if they are doubled on the
appropriate rank or file). For each exchange square a static exchange
value is computed by playing out the exchange with all the attackers and
defenders assuming no indirect consequences like pins, discovered attacks,
etc. Exchange squares are listed in order of static exchange value, largest
negative value first. Squares with positive values for the defender are
dropped from the list. At the same time a list of all pinned men is
generated.
Move Generator. Starting with the exchange squares at the top of the list,
appropriate moves are generated. If the most important exchange square is
occupied by the opponent, captures by attacking pieces are proposed, the
least valuable attacker being tried first. If the move is rejected because the
attacker is pinned, the next attacker is tried. If the move is rejected for
another reason, the possibility of exchange on this square is abandoned,
and the next exchange square examined.

60 ARTIFICIAL INTELLIGENCE

If the exchange square under examination is occupied by the program's
own piece, a whole series of possible moves is generated:

a. Try "no move" to see if attack is damaging.
b. Capture the attacker.
c. Add a defender not employed in another defense.
d. Move the attacked piece.
c. Interpose a man between the attacker and the target; but not a man

employed elsewhere, and not if the interposer will be captured.
/. Pin the attacker with a man not employed elsewhere and not captur-

able by the attacker.
Static Evaluation. For each exchange square, add the values of own men
and subtract the values of opponent's men. Use conventional values: Q-9,
R-5, B-N-3, P-l.
Move Generators toward Dead Positions. A position is dead for this goal
only if there are no exchanges—that is, if the specification list defined
above is empty. Then a static evaluation can be made. Otherwise, the
various kinds of moves defined under the move generatorare made to re-
solve the exchanges. However, various additional qualifications are intro-
duced to reduce the number of continuations examined. For example, if in
a particular exchange material has already been lost and a man is still
under attack, the position is treated as dead, since it is unlikely that the
loss will be recovered. When a dead position is reached, the static evalua-
tion is used to find a value for the position.

It is impossible to provide here more than a sketchy picture of the
heuristics contained in this one goal. It should be obvious from this brief
description that there are a lot of them, and that they incorporate a num-
ber of implicit assumptions about what is important, and what isn't, on
the chessboard.

Performance of the Program
We cannot say very much about the behavior of the program. It was coded
this spring and is not yet fully debugged. Only two goals have been coded:
Material Balance and Center Control. Development is fully defined as well
as a Pawn structure goal sufficient for the opening, where its role is pri-
marily to prevent undesirable structures like doubled Pawns. These four
goals—Material Balance, Center Control, Development, and Pawn Struc-
ture—in this order seem an appropriate set for the first phase of the open-
ing game. Several others—King Safety, Serious Threats, and Gambits-
need to be added for full opening play. The serious threats goal could be
limited initially toforks and pins.

We have done considerable hand simulation with the program in typical
positions. Two examples will show how the goals interact. In Fig. 5 the

!ii

CHESS-PLAYING PROGRAMS 61

f:

;

Figure 5.

machine is White and the play has been 1. P-K4, P-K4. Assuming the
goal list mentioned above, the material-balance move generator will not
propose any moves since there are no exchanges on the board. The center-
control generator will propose P-Q4, which is the circled move in the
figure. (In the illustration, we assume the center-control move generator
has the order of the primary moves reversed from the order described
earlier.) This move is rejected—as it should be—and it is instructive to
see why. The move is proposed for analysis. Material Balance does not
find the position dead, since there is an exchange, and generates Black's
move, 2. . . . , P x P. The resulting position is still not dead, and
3- Q X P, is generated. The position is now dead for Material Balance,
with no gain or loss in material. The first component of the static evalua-
tion is "even." There are obviously no blocks to Pawn moves, so that the
center control static value is acceptable. However, the third component,
Development, finds the position not dead because there is now an exposed
Piece, the Queen. It generates replies that both attack the piece and de-
velop—i.e., add a tempo. The move 3 N-QB3 is generated. This
forces a Queen move, resulting in loss of a tempo for White. Hence Devel-
opment rejects the move, 2. P-Q4. (The move 3. . . . , B-B4 would
not have sufficed for rejection by Development, since the Bishop could
be taken.)

The second example, shown in Fig. 6, is from a famous game of Morphy
against Duke Karl of Brunswick and Count Isouard. Play had proceeded
1. P-K4, P-K4; 2. N-KB3, P-Q3; 3. P-Q4. Suppose the machine is Black

F

62 ARTIFICIAL INTELLIGENCE

Figure 6.

in this position. The move 3. . . . , B-N5 is proposed by Material Bal-
ance to deal with the exchange that threatens Black with the loss of a
Pawn. This is the move made by the Duke and Count. The analysis pro-
ceeds by 4. P X P, P X P. This opens up a new exchange possibility with
the Queens, which is tried: 5. Q X Q, X X Q; 6. N X P. Thus the Pawn
is lost in this continuation. Hence, alternative moves are considered at
Black's nearest option, which is move 4, since there are no alternative ways
of recapturing the Queen at move 5. The capture of White's Knight is pos-
sible, so we get: 4. . . . , B X N; s'. P X B, P X P; 6. Q X Q, X X Q.
This position is rejected by Development since the forced King move loses
Black his castling privilege, and this loss affects the tempo count. This is a
sufficient reason to reject the move 3. . . . , B-N5, without even examin-
ing the stronger continuation, 5". Q X B, that Morphy as White chose.
In our program, 5. P X B is generated before 5. Q X B. Either reply
shows that 3. . . . , B-N5 is unsound.

One purpose of these examples is to illustrate a heuristic for construct-
ing chess programs that we incline to rather strongly. We wish not only
to have the program make good moves, but to do so for the right reasons.
The chess commentary above is not untypical of human analysis. It also
represents rather closely the analysis made by the program. We think this
is sound design philosophy in constructing complex programs. To take
another example: the four-goal opening program will not make sacrifices,
and conversely, will always accept gambits. The existing program is un-
able to balance material against positional advantage. The way to make

Ii

'M'\
CHESS-PLAYING PROGRAMS 63

1

[

the program take account of sacrifices is to introduce an additional goalhaving to do with them explicitly. The corresponding heuristic for a human
chess player is: don't make sacrifices until you understand what a sacrifice
is. Stated in still another way, part of the success of human play depends
on the emergence of appropriate concepts. One major theme in chess his-
tory, for example, is the emergence of the concept of the center and the
notion of what it means to control the center. One should not expect the
equivalent of such a concept simply to emerge from computation based on
quite different features of the position.
Programming
The program we have been describing is extremely complicated. Almost
all elements of the original framework put forward by Shannon, which
were handled initially by simply uniform rules, have been made variable,
and dependent on rather complicated considerations. Many special and
highly particular heuristics are used to select moves and decide on evalua-
tions. The program can be expected to be much larger, more intricate, and
to require much more processing per position considered than even the
Bernstein program.

In the introduction to this paper we remarked on the close connection
between complexity and communication. Processes as complex as the Los
Alamos program are unthinkable without languages like current machine
codes in which to specify them. The Bernstein program is already a very
complicated program in machine code; it involved a great deal of coding
effort and parts of it required very sophisticated coding techniques. Our
own program is already beyond the reach of direct machine coding: it
requires a more powerful language.

In connection with the work on theorem-proving programs we have been
developing a series of languages, called information processing languages
(IPL's) (Newell, 1961e). The current chess program is coded in one of
them, IPL-IV. An information processing language is an interpretive
pseudocode—that is, there exists a program in JOHNNIAC machine code
that is capable of intepreting a program in IPL and executing it. When
operating, JOHNNIAC contains both the machine code and the IPL code.

It is not possible to give in this report a description of IPL-IV or of the
programming techniques involved in constructing the chess program.
Basically IPL is designed to manipulate lists, and to allow extremely com-
plicated structures of lists to be built up during the execution of a pro-
gram without incurring intolerable problems of memory assignment and
program planning. It allows unlimited hierarchies of subroutines to be
easily defined, and permits recursive definition of routines. As it stands
—that is, prior to coding a particular problem—it is independent of sub-
ject matter (although biased toward list manipulation in the same sense

64 ARTIFICIAL INTELLIGENCE

that algebraic compilers are biased toward numerical evaluation of alge-
braic expressions). To code chess, a complete "chess vocabulary" is built
up from definitions in IPL. This vocabulary consists of a set of processes
for expressing basic concepts in chess: tests of whether a man bears on
another man, or whether two men are on the same diagonal; processes
for finding the direction between two men, or the first man in a given
direction from another; and processes that express iterations over all men
of a given type, or over all squares of a given rank. There are about 100
terms in this basic process vocabulary. The final chess program, as we
have been describing it in this paper, is largely coded in terms of the chess
vocabulary. Thus there are four language "levels" in the chess program:
JOHNNIAC machine code, general IPL, basic chess vocabulary, and finally
the chess program itself.

We can now make a rough assessment of the size and complexity of this
program in comparison with the other programs. The table indicates that
the program now consists of 6000 words and will probably increase to
16,000. The upper bound is dictated by the size of the JOHNNIAC drum
and the fact that JOHNNIAC has no tapes. In terms of the pyramiding
structure described above, this program is already much larger than Bern-
stein's, although it is difficult to estimate the "expansion" factor involved in
converting IPL to machine code. (For one thing, it is not clear how an
"equivalent" machine-coded program would be organized.) However, only
about 1000 words of our program are in machine code, and 3000 words
are IPL programs, some of which are as many as ten definitional steps
removed from machine code. Further, all 12,000 words on the drum will
be IPL program : no additional data or machine code are planned.

The estimated time per move, as shown in Table 1, is from one to ten
hours, although moves in very placid situations like the opening will take
only a few minutes. Even taking into account the difference in speed be-
tween the 704 and JOHNNIAC, our program still appears to be at least
ten times slower than Bernstein's. This gap reflects partly the mismatch
between current computers and computers constructed to do efficiently the
kind of information processing required in chess (Shaw et al., 1958). To
use an interpretive code, such as IPL, is in essence to simulate an "IPL
computer" with a current computer. A large price has to be paid in com-
puting effort for this simulation over and above the computing effort for
the chess program itself. However, this gap also reflects the difficulty of
specifying complex processes; we have not been able to write these pro-
grams and attend closely to the efficiency issue at the same time.

On both counts we have felt it important to explore the kind of lan-
guages and programming techniques appropriate to the task of specifying
complex programs, and to ignore for the time being the costs we were in-
curring.

n

i ' i

CHESS-PLAYING PROGRAMS 65

Conclusion
We have now completed our survey of attempts to program computers

to play chess. There is clearly evident in this succession of efforts a steadydevelopment toward the use of more and more complex programs andmore and more selective heuristics; and toward the use of principles of playsimilar to those used by human players. Partly, this trend represents atleast in our case—a deliberate attempt to simulate human thought proc-esses. In even larger part, however, it reflects the constraints that the taskitself imposes upon any information processing system that undertakes
to perform it. We believe that any information processing system—a hu-man, a computer, or any other—that plays chess successfully will useheuristics generically similar to those used by humans.

We are not unmindful of the radical differences between men and ma-chines at the level of componentry. Rather, we are arguing that for tasksthat could not be performed at all without very great selectivity—and chess
is certainly one of these—the main goal of the program must be to achieve
this selection. The higher-level programs involved in accomplishing this
will look very much the same whatever processes are going on at moremicroscopic levels. Nor are we saying that programs will not be adapted
to the powerful features of the computing systems that are used—e.g.,
the high speed and precision of current digital computers, which seems to
favor exploring substantial numbers of continuations. However, none of thedifferences known to vs—in speed, memory, and so on—affect the essential
nature of the task: search in a space of exponentially growing possibilities.
Hence the adaptations to the idiosyncrasies of particular computers will
all be secondary in importance, although they will certainly exist and may
be worthwhile.

The complexity of heuristic programs requires a more powerful lan-guage for communicating with the computer than the language of ele-
mentary machine instructions. We have seen that this necessity has already
mothered the creation of new information processing languages. But even
with thesepowerful interpretive languages, communication with the machine
Js difficult and cumbersome. The next step that must be taken is to write
programs that will give computers a problem-solving ability in under-
standing and interpreting instructions that is commensurable with their
problem-solving ability in playing chess and proving theorems.

The interpreter that will transform the machine into an adequate student
for a human instructor will not be a passive, algorithmic translator—as
even the most advanced interpreters and compilers are today—but an
active, complex, heuristic problem-solving program. As our explorations
of heuristic programs for chess playing and other tasks teach us how to
build such an interpreter, they will at last enable us to make the transition

66 ARTIFICIAL INTELLIGENCE

from the low-level equilibrium at which man-machine communication now
rests to the high-level equilibrium that is certainly attainable.

Appendix: Game Played by H. A. Simon and the NSS Chess
Program

The following chess game was played by the NSS chess program,
CP-I. Its opponent was Prof. H. A. Simon, playing black. CP-I
played white. The program was run on JOHNNIAC, and the moves
each took 2 to 50 mm of processing. The program has three goals:
material balance, center control, and development. The lack of goals
corresponding to king safety, serious threats, or pawn promotion
seriously unbalances the play and makes the program insensitive to
certain aspects of the play. Games by machines evoke commentary
even more abundantly than do regular chess games. The italicized
comments are those of Edward Lasker, a well-known chess master
who has been much interested in chess machines; the other notes
are by G. W. Baylor and S. M. Strassen.

CP-I
1 P-Q4
2 N-QB3

H. A. Simon
N-KB3

White prepares to occupy the center with P-K4, but the text move has the
disadvantage of blocking the Queen's Bishop's Pawn, which when ad-
vanced to Queen Bishop Four, controls Queen Five with a pawn.

2 . . . P-Q4
3 Q-Q3?

This move does prepare P-K4; however, (1) minor pieces should generally
be developed before the Queen, (2) the Queen is now subject to early at-
tack by Black's minor pieces, and (3) the text move decreases the mo-
bility of theKing's Bishop.
In your game 3. Q-Q3 shows that you need an order that minor pieces
should be developed ahead of the queen unless other orders in the pro-
gram lead to the decision that a queen move is preferable.

3 P-QN3

develop the Queen's Bishop on King Bishop Four, thus exploiting the mis-
placement of the White Queen.

4 P-K4

. . . , P-QN3 is difficult to evaluate. Probably best was (a) 3 . . . ,
"-B4; if then 4. P-K4, P X KP; 5. N X P, P X P; 6. N X Nch, NP X N
/ith a fine pawn plus. Also, considerable was (b) 3 . . . , P-KN3 so as to

CHESS-PLAYING PROGRAMS 67
Thematic!

5 PXP
Best I think. If, for example, (a) 5. P-K5, N-K5 gives Black strong con-
trol of Queen Four and King Five with a devastating P-QB4 to follow
shortly; while (b) 5. P-B3 leaves White no good squares on which to de-
velop his King side pieces.
P X P shows that your definition or "development" must probably be am-plified to give a higher rating to moves which do not increase the mobility
of one of the opponent'spieces.

5 . . . NXP
6 N-B3

White can effectively gain control of the center (especially Queen Five)
with 6. NXN, QXN (6 . . . , B X N is no better); 7. P-QB4!,
Q-Q2; 8. N-KB3, P-K3; 9. B-K3 preventing Black's P-QB4 for a while.
If, of course, 8 . . . , P-QB4; 9. P-Q5, P-K3 will be met simply by 10.P X P, in any case, with a good position for White.

6 P-K3
For now if 7. N X N, P X N is best because then the effect of 8. P-B4 is
negated simply by 8 . . . , P X P which frees the Bishop and isolates
the White Queen Pawn.

7 B-K2

"A developing move and hence cannot be bad."

7 . . . B-K2
8 B-K3

Not bad: 8 . . . , N X B; 9. P X N is certainly not to be feared for
when White gets P-K4 in, he will have the superior game. 8. B-K3 also
has the added advantage of restraining Black's Queen Bishop Pawn. A
more constructive placement of the pieces, however, might be accomplished
by 8. NX N, 9. O-O, 10. B-KB4, and 11. R-Kl with strong control of
King Five. And if ... , P-QB4, then White can play P-QB3 effectively.

8 . . . O-O
9 O-O N-Q2

10 KR-K1
The two Rook moves are not really good. White does not yet (and never
will!) have a constructive plan: he is simply developing pieces on the

4 . . . B-N2

68 ARTIFICIAL INTELLIGENCE

I

center files where they are not necessarily optimally placed. Generally first
rank Rook moves consolidate concrete plans. Thus White should attempt
either to continue with (a) 10. N X N and 11. P-QB4 after which his
Rooks will probably best be placed on Queen One and Queen Bishop One,
or (b) 10. N-K5, N X N; 11. P X N after which the Queen file requires
foremost attention. 10. N-K5 also enhances the mobility of the White
King's Bishop which has been sadly restricted due to the misplacement
of the White Queen (i.e., B-KB3 will thenbe in order).

10 P-QB4
Finally!

11 QR-Q1 Q-B2

Although this move does prevent 12. N-K5, it is not good. For instance
on 12. N-QNS, Q-Nl (to be consistent); 13. P-B4!, N-N5; 14. Q-Nl
threatening 15. P-QR3 and 16. P-Q5 is good for White so that 14 ... ,
P X P; 15. N/5 X QP is probably in order for Black but still gives White
the edge. Therefore Black should have continued pressure on the Queen
Bishop file with 11 . . . , R-Bl and not have allowed the opportunity to
White of playing 12. N-QNS and 13. P-84. Even after 11 . . . , R-81,
however, White could continue well with 12. N-K5.

12NXN
Missing the sharpest continuation, but the text is not bad; e.g., 12 ... ,
P X N; 13. P-84, P X QP; 14. B X P, P X P; 15. Q X BP with at least
equality for White.

12 . . . B X N?
This allows the now strong continuation 13. P-B4 after which 13 ... ,
B-N2; 14. P-Q5, P X P; 15. P X P yields a strong passed pawn (an im-
mediate threat of 16. P-Q6) as well as control of the board.

13 P-QR4?

A terrible move: just defends the Queen Rook Pawn whereas the multi-
functional 13. P-B4 defends the Queen Rook Pawn and also attacks the
center.
/ am wondering why your "center control" orders did not suggest 13.
P-QB4 rather than P-QR4. It would really have given the machine a very
goodgame. 13. P-QR4 shows that an order—or a seriesof orders—is miss-
ing which would lead to the preparationof protection of pawns located in a
file the opponent has openedfor a Rook.

13 QR-B1
14 Q-B3

ii
: . I

'1 1,1
CHESS-PLAYING PROGRAMS 69

After 14 . . . , P x P; 15. Q X Q, R X Q; 16. N X P, White can
solidify his position with P-QB3, but even so 14. Q-B3 doesn't really con-
tribute anything to the position. 14. P-B4 is still best. ii

14 . . . B-KB3!
Capitalizing on White's shortsightedness! 14 ... , N-KB3 is also good
(heading for King Five)

15 B-QNS

Clever: Black was threatening to win a pawn with 15 . . . , P x P; 16.Q X Q, R X Q; 17. N X P, B X N; 18. B X B and 18 . . . , R X P.
After the text move, however, the Queen Knight must be defended. The
alternative (other than a Rook move) 15. B-Q3 does not actually defend
the Queen Bishop Pawn because of 15 ... , B X N; 16. P KB,
P X P; 17. B X P (17. Q X Q, R X Q and White cannot recapture the
pawn), Q-Nl!; 18. Q-N4, P-QR4; 19. Q-N5, B X B; 20. Q X N, KR-Q1
with a strong attack for Black.

15 . . . B XN
Good. If 15 ... , KR-Q1 first, then 16. B X N, R X B; 17. N-K5,
P X P; 18.B X P holding on admirably well.

16 P X B KR-Q1
17 B X N?

White loses his last opportunity to defend his Queen Bishop Pawn. Some
Queen move, for instance 17, Q-Q2, holds the pawn: 17. Q-Q2, P X P;
18. B X P, B X B; 19. Q X B, Q X BP; 20. B X N winning (20
R-B2; 21.

Q-KB4!,

P-KR3; 22. R-Q2!).

17 . . . QXB
18 P-N3

As good as many and better than some: White must lose a pawn anyhow.

18 . . . PXP
19 Q-Q2!

Very good. White finds the only way (other than Q-Q3) to avoid losing a
piece by capitalizing on the immobility of the Black Queen Pawn.

19 Q-B3!
20 B-B4 QXQBP

RXQ21 QXQ
22 R-QBI

70 ARTIFICIAL INTELLIGENCE

I

White is lost but relatively best was 22. R-Q3 blockading the passed Queen
Pawn.
22. R-QBI indicates that an order is missing to avoid exchanges after
losing material, unless such exchanges deserve a high rating for specific
reasons covered by other orders.

26. R-QBI indicates that an order is missing that would make the ma-
chine avoid getting forked.
Better was 26 ... , P-Q7 winning instantly (26 ... , P-Q7; 27.

27 R X R P X R

29 R X Q B X R
30 Resigns

Best, but I'm sure the programmers were just getting tired!
Such test games give indeed excellent indications as to the type of general
principles the program should include in addition to material balance, de-
velopment, and center control, to eliminate antipositional moves as much
as possible.

R X R, P X R = Qch; 28. K-N2, Q-Q8!, 29. R-BBch, B-Ql)

28 B-K5 P-B8 = Q

&.** . . . rv-iv-v^jJi

23 QR-Q1

White is just floundering in a lost position.

23 . . . KR-B6
24 P-N4

''There are no good moves in bad positions!"

24 . . . KR X P
25 B-N3

Best; White at least stops the mating attack.

25 . . . P-Q6
26 R-QBI B-N4

i;

I' I, i' i

i!

i

SOME STUDIES IN

MACHINE LEARNING USING
THE GAME OF CHECKERS

A. L. Samuel

Introduction
The studies reported here have been concerned with the programming of

a digital computer to behave in a way which, if done by human beings or
animals, would be described as involving the process of learning. While
this is not the place to dwell on the importance of machine-learning pro-
cedures, or to discourse on the philosophical aspects,1 there is obviously a
very large amount of work, now done by people, which is quite trivial in
its demands on the intellect but does, nevertheless, involve some learning.
We have at our command computers with adequate data-handling ability
and with sufficient computational speed to make use of machine-learning
techniques, but our knowledge of the basic principles of these techniques
is still rudimentary. Lacking such knowledge, it is necessary to specify
methods of problem solution in minute and exact detail, a time-consuming
and costly procedure. Programming computers to learn from experience
should eventually eliminate the need for much of this detailed program-
ming effort.

General Methods of Approach
At the outset it might be well to distinguish sharply between two general
approaches to the problem of machine learning. One method, which might
be called the Neural-Net Approach, deals with the possibility of inducing
learned behavior into a randomly connected switching net (or its simula-

1 Some of these are quite profound and have a bearing on the questions raised by
Nelson Goodman in Fact, Fiction and Forecast, Cambridge, Mass.: Harvard, 1954.

71

72 ARTIFICIAL INTELLIGENCE

tion on a digital computer) as a result of a reward-and-punishment routine.
A second, and much more efficient approach, is to produce the equivalent
of a highly organized network which has been designed to learn only cer-
tain specific things. The first method should lead to the development of
general-purpose learning machines. A comparison between the size of the
switching nets that can be reasonably constructed or simulated at the pres-
ent time and the size of the neural nets used by animals, suggests that we
have a long way to go before we obtain practical devices.2 The second
procedure requires reprogramming for each new application, but it is
capable of realization at the present time. The experiments to be described
here were based on this second approach.

Choice of Problem
For some years the writer has devoted his spare time to the subject of ma-
chine learning and has concentrated on the development of learning pro-
cedures as applied to games.3 A game provides a convenient vehicle for
such study as contrasted with a problem taken from life, since many of the
complications of detail are removed. Checkers, rather than chess (Shannon,
1950; Bernstein and Roberts, 19586; Kister et al., 1957; Newell, Shaw,
and Simon, 19586), was chosen because the simplicity of its rules permits
greater emphasis to be placed on learning techniques. Regardless of the
relative merits of the two games as intellectual pastimes, it is fair to state
that checkers contains all of the basic characteristics of an intellectual
activity in which heuristic procedures and learning processes can play a
major role and in which theseprocesses can be evaluated.

Some of these characteristics might well be enumerated. They are:

(1) The activity must not be deterministic in the practical sense. There
exists no known algorithm which will guaranteea win or a draw in check-
ers, and the complete explorations of every possible path through a checker
game would involve perhaps 1040 choices of moves which, at 3 choices per
millimicrosecond, would still take 1021 centuries to consider.

(2) A definite goal must exist—the winning of the game—and at least
one criterion or intermediate goal must exist which has a bearing on the
achievement of the final goal and for which the sign should be known. In
checkers the goal is to deprive the opponent of the possibility of moving,

2 Warren S. McCulloch (1949) has compared the digital computer to the nervous
system of a flatworm. To extend this comparison to the situation under dis-
cussion would be unfair to the worm, since its nervous system is actually quite
highly organized as compared with the random-net studies by Farley and Clark
(1954), Rochester, Holland, Haibt, and Duda (1956), and by Rosenblatt (1958).

3 The first operating checker program for the IBM 701 was written in 1952.
This was recoded for the IBM 704 in 1954. The first program with learning was
completed in 1955 and demonstratedon televisionon February 24, 1956.

tl

MACHINE LEARNING USING THE GAME OF CHECKERS 73
! 'I'?!iii'!
1

1,

i*

ii

M

and the dominant criterion is the number of pieces of each color on the
board. The importance of having a known criterion will be discussed later.

(3) The rules of the activity must be definite and they should be known.
Games satisfy this requirement. Unfortunately, many problems of eco-
nomic importance do not. While in principle the determination of the rules
can be a part of the learning process, this is a complication which might
well be left until later.

(4) There should be a background of knowledge concerning the activity
against which the learning progress can be tested.

(5) The activity should be one that is familiar to a substantial body of
people so that the behavior of the program can be made understandable
to them. The ability to have the program play against human opponents
(or antagonists) adds spice to the study and, incidentally, provides a con-
vincing demonstration for those who do not believe that machines can
learn.

Having settled on the game of checkers for our learning studies, we
must, of course, first program the computer to play legal checkers; that is,
we must express the rules of the game in machine language and we must
arrange for the mechanics of accepting an opponent's moves and of re-
porting the computer's moves, together with all pertinent data desired by
the experimenter. The general methods for doing this were described by
Shannon in 1950 as applied to chess rather than checkers. The basic pro-
gram used in these experiments is quite similar to the program described
by Strachey in 1952. The availability of a larger and faster machine (the
IBM 704), coupled with many detailed changes in the programming pro-
cedure, leads to a fairly interesting game, even without any learning.
The basic forms of the program will now be described.

The Basic Checker-playing Program

The computer plays by looking ahead a few moves and by evaluating
the resulting board positions much as a human player might do. Board
positions are stored by sets of machine words, four words normally being
used to represent any particular board position. Thirty-two bit positions
(of the 36 available in an IBM 704 word) are, by convention, assigned to
the 32 playing squares on the checkerboard, and pieces appearing on these
squares are represented by l's appearing in the assigned bit positions of
the corresponding word. "Looking ahead" is prepared for by computing
all possible next moves, starting with a given board position. The indicated
moves are explored in turn by producing new board-position records cor-
responding to the conditions after the move in question (the old board
Positions being saved to facilitate a return to the starting point) and the
Process can be repeated. This look-ahead procedure is carried several

74

ARTIFICIAL INTELLIGENCE

Ii Figure 1. A "tree" of moves which might be investigated during the look-ahead
procedure. The actual branchings are much more numerous than those shown, and
the "tree" is apt to extend to as many as 20 levels.

moves in advance, as illustrated in Fig. 1 . The resulting board positions are
then scored in terms of their relative value to the machine.

The standard method of scoring the resulting board positions has been
in terms of a linear polynomial. A number of schemes of an abstract sort
were tried for evaluating board positions without regard to the usual
checker concepts, but none of these
at the various terms in the scoring

was successful. 4 One way of looking
polynomial is that those terms with

' One of the more interesting of these was to express a board position in terms
of the first and higher moments of the white and black pieces separately about
two orthogonal axes on the board. Two such sets of axes were tried, one set
being parallel to the sides of the board and the second set being those through
th? diagonals

'
" ! "

MACHINE LEARNING USING THE GAME OF CHECKERS 75

if

:

s

numerically small coefficients should measure criteria related as intermedi-
ate goals to the criteria measured by the larger terms. The achievement of
these intermediate goals indicates that the machine is going in the right
direction, such that the larger terms will eventually increase. If the pro-
gram could look far enough ahead we need only ask, "Is the machine still
in the game?"5 Since it cannot look this far ahead in the usual situation,
we must substitute something else, say the piece ratio, and let the machine
continue the look-ahead until one side has gained a piece advantage. But
even this is not always possible, so we have the program test to see if the
machine has gained a positional advantage, et cetera. Numerical measures
of these various properties of the board positions are then added together
(each with an appropriate coefficient which defines its relative importance)
to form the evaluation polynomial.

More specifically, as defined by the rules for checkers, the dominant
scoring parameter is the inability for one side or the other to move. 0 Since
this can occur but once in any game, it is tested for separately and is not
included in the scoring polynomial as tabulated by the computer during
play. The next parameter to be considered is the relative piece advantage.
It is always assumed that it is to the machine's advantage to reduce the
number of the opponent's pieces as compared to its own. A reversal of
the sign of this term will, in fact, cause the program to play "giveaway"
checkers, and with learning it can only learn to play a better and better
giveaway game. Were the sign of this term not known by the programmer
it could, of course, be determined by tests, but it must be fixed by the ex-
perimenter and, in effect, it is one of the instructions to the machine de-
fining its task. The numerical computation of the piece advantage has been
arranged in such a way as to account for the well-known property that it
is usually to one's advantage to trade pieces when one is ahead and to
avoid trades when behind. Furthermore, it is assumed that kings are more
valuable than pieces, the relative weights assigned to them being three to
two.7 This ratio means that the program will trade three men for two kings,
or two kings for three men, if by so doing it can obtain some positional
advantage.

The choice for the parameters to follow this first term of the scoring
polynomial and their coefficients then becomes a matter of concern. Two
courses are open—either the experimenter can decide what these subse-
quent terms are to be, or he can arrange for the program to make the
selection. We will discuss the first case in some detail in connection with

5 This apt phraseology was suggested by John McCarthy.
0 Not the capture of all the opponent's pieces, as popularly assumed, although

all games end in this fashion.
7 The use of a weight ratio rather than this, conforming more closely to the

values assumed by many players, can lead into certain logical complications, as
found by Strachey (1952).

76 ARTIFICIAL INTELLIGENCE

i

© Machine chooses branch
with largest score

© Opponent expected to choose
branch with smallest score

(D Machine chooses branch with
most positive score

Figure 2. Simplified diagram showing how the evaluations are backed up through
the "tree" of possible moves to arrive at the best next move. The evaluation
process starts at (3).

the rote-learning studies and leave for a later section the discussion of
various program methods of selecting parameters and adjusting their
coefficients.

It is not satisfactory to select the initial move which leads to the board
position with the highest score, since to reach this position would require
the cooperation of the opponent. Instead, an analysis must be made pro-
ceeding backward from the evaluated board positions through the "tree"
of possible moves, each time with consideration of the intent of the side
whose move is being examined, assuming that the opponent would always
attempt to minimize the machine's score while the machine acts to maxi-
mize its score. At each branch point, then, the corresponding board posi-
tion is given the score of the board position which would result from the
most favorable move. Carrying this "minimax" procedure back to the
starting point results in the selection of a "best move." The score of the
board position at the end of the most likely chain is also brought back,
and for learning purposes this score is now assigned to the present board
position. This process is shown in Fig. 2. The best move is executed, re-
ported on the console lights, and tabulated by the printer.

The opponent is then permitted to make his move, which can be com-
municated to the machine either by means of console switches or by
means of punched cards. The computer verifies the legality of the oppo-
nent's move, rejecting8 or accepting it, and the process is repeated. When
the program can look ahead and predict a win, this fact is reported on the

'The only departure from complete generality of the game as programmed is
that the program requires the opponent to make a permissible move, including
the taking of a capture if one is offered. "Huffing" is not permitted.

Evaluations made at this level \ / \ / \ / \ / \ / V ®
+100 +50 +20 -7 +4 -3 0 +3 -10 -20 -70 -100 +3 +7 +15 -5

"^Jljl

*
MACHINE LEARNING USING THE GAME OF CHECKERS 77

',1'
1 ;"i.i'

!■■!

i:

printer. Similarly, the program concedes when it sees that it is going to
lose.

Ply Limitations
Playing-time considerations make it necessary to limit the look-ahead
distance to some fairly small value. This distance is defined as the ply
(a ply of 2 consisting of one proposed move by the machine and the an-
ticipated reply by the opponent). The ply is not fixed but depends upon
the dynamics of the situation, and it varies from move to move and from
branch to branch during the move analysis. A great many schemes of ad-
justing the look-ahead distance have been tried at various times, some of
them quite complicated. The most effective one, although quite detailed,
is simple in concept and is as follows. The program always looks ahead
a minimum distance, which for the opening game and without learn-
ing is usually set at three moves. At this minimum ply the program will
evaluate the board position if none of the following conditions occurs:
(1) the next move is a jump, (2) the last move was a jump, or (3) an
exchange offer is possible. If any one of these conditions exists, the
program continues looking ahead. At a ply of 4 the program will stop
and evaluate the resulting board position if conditions (1) and (3) above
are not met. At a ply of 5 or greater, the program stops the look-ahead
whenever the next ply level does not offer a jump. At a ply of 1 1 or greater,
the program will terminate the look-ahead, even if the next.move is to be
a jump, should one side at this time be ahead by more than two kings
(to prevent the needless exploration of obviously losing or winning se-
quences). The program stops at a ply of 20 regardless of all conditions
(since the memory space for the look-ahead moves is then exhausted)
and an adjustment in score is made to allow for the pending jump.
Finally, an adjustment is made in the levels of the break points between
the different conditions when time is saved through rote learning (see be-
low) and when the total number of pieces on the board falls below an
arbitrary number. All break points are determined by single data words
which can be changed at any time by manual intervention.

This tying of the ply with board conditions achieves three desired
results. In the first place, it permits board evaluations to be made under
conditions of relative stability for so-called dead positions, as defined by
Turing (Bowden, 1953). Secondly, it causes greater surveillance of those
paths which offer better opportunities for gaining or losing an advantage.
Finally, since branching is usually seriously restricted by a jump situa-
tion, the total number of board positions and moves to be considered is
still held down to a reasonable number and is more equitably distributed
between the various possible initial moves.

As a practical matter, machine playing time usually has been limited

78 ARTIFICIAL INTELLIGENCE

!l

to approximately 30 seconds per move. Elaborate table look-up procedures,
fast sorting and searching procedures, and a variety of new programming
tricks were developed, and full use was made of all of the resources of the
IBM 704 to increase the operating speed as much as possible. One can,
of course, set the playing time at any desired value by adjustments of the
permitted ply; too small a ply results in a bad game and too large a ply
makes the game unduly costly in terms of machine time.
Other Modes of Play
For study purposes the program was written to accommodate several
variations of this basic plan. One of these permits the program to play
against itself, that is, to play both sides of the game. This mode of play
has been found to be especially good during the early stages of learning.

The program can also follow book games presented to it either on cards
or on magnetic tape. When operating in this mode, the program decides at
each point in the game on its next move in the usual way and reports this
proposed move. Instead of actually making this move, the program refers
to the stored record of a book game and makes the book move. The pro-
gram records its evaluation of the two moves, and it also counts and re-
ports the number of possible moves which the program rates as being
better than the book move and the number it rates as being poorer. The
sides are then reversed and the process is repeated. At the end of a book
game a correlation coefficient is computed, relating the machine's in-
dicated moves to those moves adjudged best by the checker masters.9

It should be noted that the emphasis throughout all of these studies has
been on learning techniques. The temptation to improve the machine's
game by giving it standard openings or other man-generated knowledge of
playing techniques has been consistently resisted. Even when book games
are played, no weight is given to the fact that the moves as listed are pre-
sumably the best possible moves under the circumstances.

For demonstration purposes, and also as a means of avoiding lost ma-
chine time while an opponent is thinking, it is sometimes convenient to
play several simultaneous games against different opponents. With the
program in its present form the most convenient number for this purpose
has been found to be six, although eight have been played on a number
of occasions.

Games may be started with any initial configuration for the board po-
sition so that the program may be tested on end games, checker puzzles,
et cetera. For nonstandard starting conditions, the program lists the initial

"This coefficient is defined as C = (L — H)/(L -f H), where L is the total num-
ber of different legal moves which the machine judged to be poorer than the indi-
cated book moves, and H is the total number which it judged to be better than the
book moves.

MACHINE LEARNING USING THE GAME OF CHECKERS 79
i,' i

; ! I"
.■ii!i , "

n» 'V"
■l

l ' Mi

j]

"

i

piece arrangement. From time to time, and at the end of each game, the
program also tabulates various bits of statistical information which assist
in the evaluation of playing performance.

Numerous other features have also been added to make the program
convenient to operate (for details see Appendix A), but these have no
direct bearing on the problem of learning, to which we will now turn our
attention.

Rote Learning and Its Variants

Perhaps the most elementary type of learning worth discussing would
be a form of rote learning in which the program simply saved all of the
board positions encountered during play, together with their computed
scores. Reference could then be made to this memory record and a certain
amount of computing time might be saved. This can hardly be called a very
advanced form of learning; nevertheless, if the program then utilizes the
saved time to compute further in depth it will improve with time.

Fortunately, the ability to store board information at a ply of 0 and to
look up boards at a larger ply provides the possibility of looking much
farther in advance than might otherwise be possible. To understand this,
consider a very simple case where the look ahead is always terminated at
a fixed ply, say 3. Assume further that the program saves only the board
positions encountered during the actual play with their associated backed-up
scores. Now it is this list of previous board positions that is used to look
up board positions while at a ply level of 3 in the subsequent games. If a
board position is found, its score has, in effect, already been backed up by
three levels, and if it becomes effective in determining the move to be
made, it is a 6-ply score rather than a simple 3-ply score. This new initial
board position with its 6-ply score is, in turn, saved and it may be en-
countered in a future game and the score backed up by an additional
set of three levels, et cetera. This procedure is illustrated in Fig. 3. The
incorporation of this variation, together with the simpler rote-learning
feature, results in a fairly powerful learning technique which has been
studied in some detail.

Several additional features had to be incorporated into the program
before it was practical to embark on learning studies using this storage
scheme. In the first place, it was necessary to impart a sense of direction
to the program in order to force it to press on toward a win. To illustrate
this, consider the situation of two kings against one king, which is a win-
ning combination for practically all variations in board positions. In time,
the program can be assumed to have stored all of these variations, each
associated with a winning score. Now, if such a situation is encountered,
the program will look ahead along all possible paths and each path will

80 ARTIFICIAL INTELLIGENCE

i

® Typical board position
found in memory with
score from previous
look-ahead search

Ply number 1

2

3

Figure 3. Simplified representation of the rote-learning process, in which information
saved from a previous game is used to increase the effective ply of the backed-up
score.

lead to a winning combination, in spite of the fact that only oneof the pos-
sible initial moves may be along the direct path toward the win while all of
the rest may be wasting time. How is the program to differentiate between
these?

A good solution is to keep a record of the ply value of the different
board positions at all times and to make a further choice between board
positions on this basis. If ahead, the program can be arranged to push di-
rectly toward the win while, if behind, it can be arranged to adopt de-
laying tactics. The most recent method used is to carry the effective ply
along with the score by simply decreasing the magnitude of the score a
small amount each time it is backed up a ply level during the analyses.
If the program is now faced with a choice of board positions whose scores
differ only by the ply number, it will automatically make the most advan-
tageous choice, choosing a low-ply alternative if winning and a high-ply
alternative if losing. The significance of this concept of a direction sense
should not be overlooked. Even without "learning," it is very important.
Several of the early attempts at learning failed because the direction sense
was not properly taken into account.

Cataloging and Culling Stored Information
Since practical considerations limit the number of board positions which
can be saved, and since the time to search through those that are saved can
easily become unduly long, one must devise systems (1) to catalog boards
that are saved, (2) to delete redundancies, and (3) to discard board posi-

"H ji
,'■: pi

MACHINE LEARNING USING THE GAME OF CHECKERS 81
i 1

'■ ' ,'ff
I h-ji

si

I

tions which are not believed to be of much value. The most effective cata-
loging system found to date starts by standardizing all board positions,
first by reversing the pieces and piece positions if it is a board position inwhich White is to move, so that all boards are reported as if it were Black's
turn to move. This reduces by nearly a factor of two the number of boardswhich must be saved. Board positions, in which all of the pieces are kings,
can be reflected about the diagonals with a possible fourfold reduction inthe number which must be saved. A more compact board representation
than the one employed during play is also used so as to minimize the
storage requirements.

After the board positions are standardized, they are grouped into records
on the basis of (1) the number of pieces on the board, (2) the presence
or absence of a piece advantage, (3) the side possessing this advantage,
(4) the presence or absence of kings on the board, (5) the side having
the so-called "move," or opposition advantage, and finally (6) the first
moments of the pieces about normal and diagonal axes through the board.During play, newly acquired board positions are saved in the memory untila reasonable number have been accumulated, and they are then merged
with those on the "memory tape" and a new memory tape is produced.
Board positions within a record are listed in a serial fashion, being sorted
with respect to the words which define them. The records are arranged on
the tape in the order that they are most likely to be needed during thecourse of a game; board positions with 12 pieces to a side coming first, et
cetera. This method of cataloging is very important because it cuts tape-
searching time to a minimum.

Reference must be made, of course, to the board positions already
saved, and this is done by reading the correct record into the memory and
searching through it by a dichotomous search procedure. Usually five
or more records are held in memory at one time, the exact number at any
time depending upon the lengths of the particular records in question.
Normally, the program calls three or four new records into memory during
each new move, making room for them as needed, by discarding the records
which have been held the longest.

Two different procedures have been found to be of value in limiting
the number of board positions that are saved; one based on the frequency
°f" use, and the second on the ply. To keep track of the frequency of use,
an age term is carried along with the score. Each new board position to
be saved is arbitrarily assigned an age. When reference is made to a stored
board position, either to update its score or to utilize it in the look-ahead
procedure, the age recorded for this board position is divided by two. This
is called refreshing. Offsetting this, each board position is automatically
aged by one unit at the memory merge times (normally occurring about
once every 20 moves). When the age of any one board position reaches an

r*'

82 ARTIFICIAL INTELLIGENCE

L

arbitrary maximum value this board position is expunged from the record.
This is a form of forgetting. New board positions which remain unused
are soon forgotten, while board positions which are used several times in
succession will be refreshed to such an extent that they will be remembered
even if not used thereafter for a fairly long period of time. This form
of refreshing and forgetting was adopted on the basis of reflections as to
the frailty of human memories. It has proven to be very effective.

In addition to the limitations imposed by forgetting, it seemed desirable
to place a restriction on the maximum size of any one record. Whenever
an arbitrary limit is reached, enough of the lowest-ply board positions are
automatically culled from the record to bring the size well below the
maximum.

Before embarking on a study of the learning capabilities of the system
as just described, it was, of course, first necessary to fix the terms and co-
efficients in the evaluation polynomial. To do this, a number of different
sets of values were tested by playing through a series of book games and
computing the move correlation coefficients. These values varied from 0.2
for the poorest polynomial tested, to approximately 0.6 for the one finally
adopted. The selected polynomial contained four terms (as contrasted with
the use of 16 terms in later experiments) . In decreasing order of importance
these were: (1) piece advantage, (2) denial of occupancy, (3) mobility,
and (4) a hybrid term which combined control of the center and piece
advancement.

Rote-learning Tests
After a scoring polynomial was arbitrarily picked, a series of games was
played, both self-play and play against many different individuals (several
of these being checker masters). Many book games were also followed,
some of these being end games. The program learned to play a very good
opening game and to recognize most winning and losing end positions
many moves in advance, although its midgame play was not greatly im-
proved. This program now qualifies as a rather better-than-average novice,
but definitelynot as an expert.

At the present time the memory tape contains something over 53,000
board positions (averaging 3.8 words each) which have been selected
from a much larger number of positions by means of the culling techniques
described. While this is still far from the number which would tax the
listing and searching procedures used in the program, rough estimates,
based on the frequency with which the saved boards are utilized during
normal play (these figures being tabulated automatically), indicate that a
library tape containing at least 20 times the present number of board po-
sitions would be needed to improve the midgame play significantly.At the

MACHINE LEARNING USING THE GAME OF CHECKERS 83

VMr
: j;
'' 'i

'" J !■

ni

!
1-

it

I'
if
i

present rate of acquisition of new positions this would require an inordi-
nate amount of play and, consequently, of machine time. 10

The general conclusions which can be drawn from these tests are that:
(1) An effective rote-learning technique must include a procedure

to give the program a sense of direction, and it must contain a refined sys-tem for cataloging and storing information.
(2) Rote-learning procedures can be used effectively on machines withthe data-handling capacity of the IBM 704 if the information which mustbe saved and searched does not occupy more than, roughly, one million

words, and if not more than one hundred or so references need to be madeto this information per minute. These figures are, of course, highly de-
pendent upon the exactefficiency of cataloging which can be achieved.

(3) The game of checkers, when played with a simple scoring scheme
and with rote learning only, requires more than this number of words for
master caliber of play and, as a consequence, is not completely amenable
to this treatment on the IBM 704.

(4) A game, such as checkers, is a suitable vehicle for use during the
development of learning techniques, and it is a very satisfactory device for
demonstrating machine learning procedures to the unbelieving.

Learning Procedure Involving Generalizations
An obvious way to decrease the amount of storage needed to utilize past

experience is to generalizeon the basis of experience and to save only the
generalizations. This should, of course, be a continuous process if it is to
be truly effective, and it should involve several levels of abstraction. A
start has been made in this direction by having the program select a sub-
set of possible terms for use in the evaluation polynomial and by having
the program determine the sign and magnitude of the coefficients which
multiply these parameters. At the present time this subset consists of 16
terms chosen from a list of 38 parameters. The piece-advantage term needed
to define the task is computed separately and, of course, is not altered by
the program.

After a number of relatively unsuccessful attempts to have the pro-
gram generalize while playing both sides of the game, the program was
arranged to act as two different players, for convenience called Alpha andBeta. Alpha generalizes on its experience after each move by adjusting
the coefficients in its evaluation polynomial and by replacing terms which
appear to be unimportant by new parameters drawn from a reserve list.
Beta, on the contrary, uses the same evaluation polynomial for the dura-

This playing-time requirement, while large in terms of cost, would be less thanthe time which the checker master probably spends to acquire his proficiency.

fl

84 ARTIFICIAL INTELLIGENCE

f

tion of any one game. Program Alpha is used to play against human op-
ponents, and during self-play Alpha and Beta play each other.

At the end of each self-play game a determination is made of the relative
playing ability of Alpha, as compared with Beta, by a neutral portion of the
program. If Alpha wins-—or is adjudged to be ahead when a game is
otherwise terminated—the then current scoring system used by Alpha is
given to Beta. If, on the other hand, Beta wins or is ahead, this fact is re-
corded as a black mark for Alpha. Whenever Alpha receives an arbitrary
number of black marks (usually set at three) it is assumed to be on the
wrong track, and a fairly drastic and arbitrary change is made in its scoring
polynomial (by reducing the coefficient of the leading term to zero). This
action is necessary on occasion, since the entire learning process is an at-
tempt to find the highest point in multidimensional scoring space in the
presence of many secondary maxima on which the program can become
trapped. By manual intervention it is possible to return to some previous
condition or make some other change if it becomes apparent that the learn-
ing process is not functioning properly. In general, however, the program
seeks toextricate itself from traps and to improve more or less continuously.

The capability of the program can be tested at any time by having Alpha
play one or more book games (with the learning procedure temporarily im-
mobilized) and by correlating its play with the recommendations of the
masters or, more interestingly, by pitting it against a human player.

Polynomial Modification Procedure
If Alpha is to make changes in its scoring polynomial, it must be given
some trustworthy criteria for measuring performance. A logical difficulty
presents itself, since the only measuring parameter available is this same
scoring polynomial that the process is designed to improve. Recourse is
had to the peculiar property of the look-ahead procedure, which makes it
less important for the scoring polynomial to be particularly good the further
ahead the process is continued. This means that one can evaluate the rela-
tive change in the positions of two players, when this evaluation is made
over a fairly large number of moves, by using a scoring system which is
much too gross to be significant on a move-by-movebasis.

Perhaps an even better way of looking at the matter is that we are at-
tempting to make the score, calculated for the current board position, look
like that calculated for the terminal board position of the chain of moves
which most probably will occur during actual play. Of course, if one
could develop a perfect system of this sort it would be the equivalent of
always looking ahead to the end of the game. The nearer this ideal is ap-
proached, the better would be the play. 11

11 There is a logical fallacy in this argument. The program might save only in-
variant terms which have nothing to do with goodness of play; for example, it might

MACHINE LEARNING USING THE GAME OF CHECKERS 85

'Mi: II11 * , |

»

M

-.'iii
* \\

" II, ',11
1

1 I "' 1.,

■ Ir 11

1

I

In order to obtain a sufficiently large span to make use of this charac-teristic, Alpha keeps a record of the apparent goodness of its board po-sitions as the game progresses. This record is kept by computing the
scoring polynomial for each board position encountered in actual play andby saving this polynomial in its entirety. At the same time, Alpha also com-putes the backed-up score for all board positions, using the look-aheadpro-cedure described earlier. At each play by Alpha the initial board score assaved from the previous Alpha move, is compared with the backed-upscore for the current position. The difference between these scores, definedas delta, is used to check the scoring polynomial. If delta is positive it isreasonable to assume that the initial board evaluation was in error andterms which contributed positively should have been given more weight,while those that contributed negatively should have been given less weight!A converse statement can be made for the case where delta is negative. Pre-sumably, in this case, either the initial board evaluation was incorrect, ora wrong choice of moves was made, and greater weight should have been

given to terms making negative contributions, with less weight to positiveterms. These changes are not made directly but are brought about in an in-volved way which will now be described.
A record is kept of the correlation existing between the signs of the in-dividual term contributions in the initial scoring polynomial and the signof delta. After each play an adjustment is made in the values of the cor-relation coefficients, due account being taken of the number of times that

each particular term has been used and has had a nonzero value. The co-efficient for the polynomial term (other than the piece-advantage term)with the then largest correlation coefficient is set at a prescribed maximumvalue with proportionate values determined for all of the remaining co-
efficients. Actually, the term coefficients are fixed at integral powers of 2,this power being defined by the ratio of the correlation coefficients. Moreprecisely, if the ratio of two correlation coefficients is equal to or largerthan n but less than n+l, where n is an integer, then the ratio of the twoterm coefficients is set equal to 2n. This procedure was adopted in order toincrease the range in values of the term'coefficients. Whenever a correla-tion-coefficient calculation leads to a negative sign, a corresponding reversalis made in the sign associated with the term itself.

Instabilities
It should be noted that the span of moves over which delta is computed
consists of a remembered part and an anticipated portion. During the re-
membered play, use had been made of Alpha's current scoring polynomial
to determine Alpha's moves but not to determine the opponent's moves,
count the squares on the checkerboard. The forced inclusion of the piece-advantage
term prevents this.

'r°

86 ARTIFICIAL INTELLIGENCE

L

while during the anticipation play the moves for both sides are made using
Alpha's scoring polynomial. One is tempted to increase the sensitivity of
delta as an indicator of change by increasing the span of the remembered
portion. This has been found to be dangerous since the coefficients in the
evaluation polynomial and, indeed, the terms themselves, may change be-
tween the time of the remembered evaluation and the time at which the
anticipation evaluation is made. As a matter of fact, this difficulty is present
even for a span of one move pair. It is necessary to recompute the scoring
polynomial for a given initial board position after a move has been deter-
mined and after the indicated corrections in the scoring polynomial have
been made, and to save this score for future comparisons, rather than to
save the score used to determine the move. This may seem a trivial point,
but its neglect in the initial stages of these experiments led to oscillations
quite analogous to the instability induced in electrical circuits by long delays
in a feedback loop.

As a means of stabilizing against minor variations in the delta values, an
arbitrary minimum value was set, and when delta fell below this minimum
for any particular move no change was made in the polynomial. This same
minimum value is used to set limits for the initial board evaluation score
to decide whether or not it will be assumed to be zero. This minimum is
recomputed each time and, normally, has been fixed at the average value
of the coefficients for the terms in the currently existing evaluation poly-
nomial.

Still another type of instability can occur whenever a new term is intro-
duced into the scoring polynomial. Obviously, after only a single move the
correlation coefficient of this new term will have a magnitude of 1, even
though it might go to 0 after the very next move. To prevent violent fluc-
tuations due to this cause, the correlation coefficients for newly intro-
duced terms are computed as if these terms had already been used several
times and had been found to have a zero correlation coefficient. This is
done by replacing the times-used number in the calculation by an arbitrary
number (usually set at 16) until the usage does, in fact, equal this number.

After a term has been in use for some time, quite the opposite action
is desired so that the more recent experience can outweigh earlier results.
This is achieved, together with a substantial reduction in calculation time,
by using powers of 2 in place of the actual times used and by limiting the
maximum power that is used. To be specific, at any stage of play defined
as the Mh move, corrections to the values of the correlation coefficients
CN are made using 16 for N until N equals 32, whereupon 32 is used until
N equals 64, et cetera, using the formula:

and a value for N larger than 256 is never used.

n - n N~ x - 1
Cff — Lat-i »r

I* ;

MACHINE LEARNING USING THE GAME OF CHECKERS 87
■'ii'.■'ji
;ir

..,ii«i.
;'r ;:i[.ii j'l

i

I*

'! ill'

V

After a minimum was set for delta it seemed reasonable to attachgreater weight to situations leading to large values of delta. Accordinglytwo additional categories are defined. If a contribution to delta is made bythe first term, meaning that a' change has occurred in the piece ratio, theindicated changes in the correlation coefficients are doubled, while if thevalue of delta is so large as to indicate that an almost sure win or lose willresult, the effect on the correlation coefficients is quadrupled.
Term Replacement
Mention has been made several times of the procedure for replacing terms
in the scoring polynomial. The program, as it is currently running, con-tains 38 different terms (in addition to the piece-advantage term), 16 ofthese being included in the scoring polynomial at any one time and theremaining 22 being kept in reserve. After each move a low-term tally is re-corded against that active term which has the lowest correlation coefficientand, at the same time, a test is made to see if this brings its tally count upto some arbitrary limit, usually set at 8. When this limit is reached for any
specific term, this term is transferred to the bottom of the reserve list,
and it is replaced by a term from the head of the reserve list. This newterm enters the polynomial with zero values for its correlation coefficient,
times used, and low-tally count. On the average, then, an active term isreplaced once each eight moves and the replaced terms are given anotherchance after 176 moves. As a check on the effectiveness of this procedure,the program reports on the usage which has accrued against each discarded
term. Terms which are repeatedly rejected after a minimum amount ofusage can be removed andreplaced with completely new terms.

It might be argued that this procedure of having the program selectterms for the evaluation polynomial from a supplied list is much too simpleand that the program should generate the terms for itself. Unfortunately,no satisfactory scheme for doing this has yet been devised. With a man-
generated list one might at least ask that the terms be members of anorthogonal set, assuming that this has some meaning as applied to the evalu-
ation of a checker position. Apparently, no one knows enough about
checkers to define such a set. The only practical solution seems to be that°f including a relatively large number of possible terms in the hope that
all of the contributing parameters get covered somehow, even though inan involved and redundant way. This is not an undesirable state of affairs,
however, since it simulates the situation which is likely to exist when an at-
tempt is made to apply similar learning techniques to real-life situations.

Many of the terms in the existing list are related in some vague way
to the parameters used by checker experts. Some of the concepts which
checker experts appear to use have eluded the writer's attempts at de-
finition, and he has been unable to program them. Some of the terms are

¥

88 ARTIFICIAL INTELLIGENCE

I

quite unrelated to the usual checker lore and have been discovered more
or less by accident. The second moment about the diagonal axis through
the double corners is an example. Twenty-seven different simple terms are
now in use, the rest being combinational terms, as will be described later.

A word might be said about these terms with respect to the exact way
in which they are defined and the general procedures used for their evalu-
ation. Each term relates to the relative standings of the two sides, with
respect to the parameter in question, and it is numerically equal to the dif-
ference between the ratings for the individual sides. A reversal of the sign
obviously corresponds to a change of sides. As a further means of in-
suring symmetry the individual ratings of the respective sides are deter-
mined at corresponding times in the play as viewed by the side in question.
For example, consider a parameter which relates to the board conditions
as left after one side has moved. The rating of Black for such a parameter
would be made after Black had moved, and the rating of White would not
be made until after White had moved. During anticipation play, these in-
dividual ratings are made after each move and saved for future reference.
When an evaluation is desired the program takes the differences between
the most recent ratings and those made a move earlier. In general, an at-

tempt has been made to define all parameters so that the individual-side
ratings are expressible as small positive integers.

Binary Connective Terms
In addition to the simple terms of the type just described, a number of com-
binational terms have been introduced. Without these terms the scoring
polynomial would, of course, be linear. A number of different ways of intro-
ducing nonlinear terms have been devised but only one of these has been
tested in any detail. This scheme provides terms which have some of the
properties of binary logical connectives. Four such terms are formed for
each pair of simple terms which are to be related. This is done by making
an arbitrary division of the range in values for each of the simple terms
and assigning the binary values of 0 and 1 to these ranges. Since most of
the simple terms are symmetrical about 0, this is easily done_on a sign
basis. The new terms are then of the form A " B, A " B, A " B, and
A " B, yielding values either of 0 or 1. These terms are introduced into
the scoring polynomial with adjustable coefficients and signs, and are there-
after indistinguishable from the other terms.

As it would require some 1404 such combinational terms to inter-
relate the 27 simple terms originally used, it was found desirable to limit
the actual number of combinational terms used at any one time to a small
fraction of these and to introduce new terms only as it became possible to
retire older ineffectual terms. The terms actually used are given in Ap-
pendix C.

I
i

MACHINE LEARNING USING THE GAME OF CHECKERS 89

Preliminary Learning-by-generalization Tests
An idea of the learning ability of this procedure can be gained by analyzing
an initial test series of 28 games12 played with the program just described.
At the start an arbitrary selection of 16 terms was chosen and all terms
were assigned equal weights. During the first 14 games Alpha was assigned
the White side, with Beta constrained as to its first move (two cycles of the
seven different initial moves). Thereafter, Alpha was assigned Black and
White alternately. During this time a total of 29 different terms was dis-
carded andreplaced, the majority of theseon two different occasions.

Certain other figures obtained during these 28 games are of interest. At
frequent intervals the program lists the 12 leading terms in Alpha's scoring
polynomial with their correlation coefficients and a running count of the
number of times these coefficients have been altered. Based on these sam-
plings, one observes that at least 20 different terms were assigned the
largest coefficient at some time or other, some of thesealternating with other
terms a number of times, and two even reappearingat the top of the list
with their signs reversed. While these variations were more violent at the
start of the series of games and decreased as time went on, their presence
indicated that the learning procedure was still not completely stable.
During the first seven games there were at least 14 changes in occupancy
at the top of the list involving 10 different terms. Alpha won three of
these games and lost four. The quality of the play was extremely poor.
During the next seven games there were at least eight changes made in the
top listing involving five different terms. Alpha lost the first of these games
and won the next six. Quality of play improved steadily but the machine
still played rather badly. During Games 15 through 21 there were eight
changes in the top listing involving five terms; Alpha winning five games
and losing two. Some fairly good amateur players who played the machine
during this period agreed that it was "tricky but beatable." During Games
22 through 28 there were at least four changes involving three terms.
Alpha won two games and lost five. The program appeared to be ap-
proaching a quality of play which caused it to be described as "a better-
than-average player." A detailed analysis of these results indicated that the
learning procedure did work and that the rate of learning was surprisingly
high, but that the learning was quite erratic and none too stable.

Second Series of Tests

Some of the more obvious reasons for this erratic behavior in the first
series of tests have been identified. The program was modified in several

"The games averaged 68 moves (34 to a side) of which approximately 20 caused
changes to be made in the scoring polynomial,

"pi
fi I,

it

1 1..ii.;1
I 1

' I')

''IP!; '$]"
ul-
"LP! !
1 i ii

i ii

I]

'

'-tlri-I i i

!

t

i

tf

90 ARTIFICIAL INTELLIGENCE

respects to improve the situation, and additional tests were made. Four
of these modifications are important enough to justify a detailed explana-
tion.

In the first place, the program was frequently fooled by bad play on the
part of its opponent. A simple solution was to change the correlation co-

efficients less drastically when delta was positive than when delta was
negative. The procedure finally adopted for the positive delta case was to

make corrections to selected terms in the polynomial only. When the scoring
polynomial was positive, changes were made to coefficients associated with
the negatively contributing terms, and when the polynomial was negative,
changes were made to the coefficients associated with positively contributing

terms. No changes were made to coefficients associated with terms which
happened to be zero. For the negative delta case, changes were made
to the coefficients of all contributing terms, just as before.

A second defect seemed to be connected with the too frequent intro-
duction of new terms into the scoring polynomial and the tendency for
these new terms to assume dominant positions on the basis of insufficient
evidence. This was remedied by the simple expedient of decreasing the
rate of introduction of new terms from one every eight moves to one every
32 moves.

The third defect had to do with the complete exclusion from considera-
tion of many of the board positions encountered during play by reason of
the minimum limit on delta. This resulted in the misassignment of credit
to those board positions which permitted spectacular moves when the
credit rightfully belonged to earlier board positions which had permitted
the necessary ground-laying moves. Although no precise way has yet been
devised to ensure the correct assignment of credit, a very simple ex-
pedient was found to be most effective in minimizing the adverse effects
of earlier assignments. This expedient was to allow the span of remembered
moves, over which delta is computed, to increase until delta exceeded the
arbitrary minimum value, and then to apply the corrections to the co-
efficients as dictated by the terms in the retained polynomial for this
earlier board position. In this case, the difficulty which was mentioned in
the section on Instabilities in connection with an arbitrary increase in span,
does not occur after each correction, since no changes are made in the co-
efficients of the scoring polynomial as long as delta is below the minimum
value. Of course, whenever delta does exceed the minimum value the pro-
gram must then recompute the initial scoring polynomial for the then cur-
rent board position and so restart the procedure with a span of a single
remembered move pair. This over-all procedure rectifies the defect of
assigning credit to a board position that lies too far along the move chain,

but it introduces the possibility of assigning credit to a board position that
is not far enough along.

'if
-i

»

MACHINE LEARNING USING THE GAME OF CHECKERS 91

Ii

As a partial expedient to compensate for this newly introduced danger,
a change was made in the initial board evaluation. Instead of evaluating
the initial board positions directly, as was done before, a standard but
rudimentary tree search (terminated after the first nonjump move) was
used. Errors due to impending jump situations were eliminated by this pro-
cedure, and because of the greater accuracy of the evaluation it was pos-
sible to reduce the minimum delta limit by a small amount.

Finally, to avoid the danger of having Beta adopt Alpha's polynomial
as a result of a chance win on Alpha's part (or perhaps a situation in which
Alpha had allowed its polynomial to degenerate after an early or midgame
advantage had been gained), it was decided to require a majority of wins
on Alpha's part before Beta would adopt Alpha's scoring polynomial.

With these modifications, a new series of tests was made. In order
to reduce the learning time, the initial selection of terms was made on the
basis of the results obtained during the earlier tests, but no attention was
paid to their previously assigned weights. In contrast with the earlier
erratic behavior, the revised program appeared to be extremely stable, per-
haps at the expense of a somewhat lower initial learningrate. The way in
which the character of the evaluation polynomial altered as learning pro-
gressed is shown in Fig. 4.

The most obvious change in behavior was in regard to the relative num-
ber of games won by Alpha and the prevalence of draws. During the first
28 games of the earlier series Alpha won 16 and lost 12. The corresponding
figures for the first 28 games of the new series were 1 8 won by Alpha, and
four lost, with six draws. In all cases the games were terminated, if not
finished, in 70 moves and a judgment made in terms of the final positions.
Unfortunately, these figures are not strictly comparable because of the de-
creased frequency with which Beta adopted Alpha's polynomial during the
second series, both by design and because a programming error im-
mobilized the adoption procedure during part of the tests. Nevertheless,
the great decrease in the number of losses and the prevalence of draws
seemed to indicate that the learning process was much more stable. Some
typical gamesfrom this second series are given in AppendixB.

As learning proceeds, it should become harder and harder for Alpha
to improve its game, and one would expect the number of wins by Alpha
to decrease with time. If secondary maxima in scoring space are en-
countered, one might even find situations in which Alpha wins less than
half of the games. With Beta at such a maximum any minor change
in Alpha's polynomial would result in a degradation of its play, and several
oscillations about the maximum might occur before Alpha landed at a
Point which would enable it to beat Beta. Some evidence of this trend
is discernible in the play, although many more games will have to be played
before it can be observed with certainty.

i

;

' !
i '

I ' I1 i i
.!. i."I i"i

,-

ii

,
'-

(Im

i' 1 " '
' I i
f. i.
'I "
� !|
i;l|!
'Ul',

:;

¥

92 ARTIFICIAL INTELLIGENCE

Figure 4. Second series of learning-by-generalization tests. Coefficients assigned by
plotted as a function of the number of games played. Two regions of special
found that the initial signs of many of the terms had been set incorrectly, and
or 32 games.

The tentative conclusions which can be drawn from these tests are:

(1) A simple generalization scheme of the type here used can be an
effective learning device for problems amenable to tree-searching pro-
cedures.

(2) The memory requirements of such schemes are quite modest and
remain fixed with time.

(3) The operating times are also reasonable and remain fixed, independ-
ent of the amountof accumulated learning.

(4) Incipient forms of instability in the solution can be expected but, at
least for the checker program, these can be dealt with by quite straight-
forward procedures.

(5) Even with the incomplete and redundant set of parameters which

7

!

MACHINE LEARNING USING THE GAME OF CHECKERS 93

I
i

,i'!'i' I

i

IH"
HI

the program to the more significant parameters of the evaluation polynomial
interest might be noted: (1) the situation after 13 or 14 games, when the program
(2) the conditions of relative stability which are beginning to show up after 31

I 'ill'
have been used to date, it is possible for the computer to learn to play a
better-than-average game of checkers in a relatively short period of time.

As a final precautionary note, it should be stated that these experiments
have not encompassed a sufficiently large series of games to demonstrate
unambiguously that the learning procedure is completely stable or that
it will necessarily lead to the best possible choice of parameters and co-
efficients.

Ii

■iii;"
Rote Learning vs. Generalization

1 II'd '
Some interesting comparisons can be made between the playing style de-

veloped by the learning-by-generalization program and that developed by
tile earlier rote-learning procedure. The program with rote learning soop

('■

' i
i

i

. 'I

|l
i 'ii

i !"! I
'\ ; j

MM 1

l|'l I

i['Ml i
'\ v\\<!' ii

i
I- .i

■:l : !

w

V

94 ARTIFICIAL INTELLIGENCE

learned to imitate master play during the opening moves. It was always
quite poor during the middle game, but it easily learned how to avoid most
of the obvious traps during end-game play and could usually drive on
toward a win when left with a piece advantage. The program with the
generalization procedure has never learned to play in a conventional
manner and its openings are apt to be weak. On the other hand, it soon
learned to play a good middle game, and with a piece advantage it usually
polishes off its opponent in short order. Interestingly enough, after 28
games it had still not learned how to win an end game with two kings
against one in a doublecorner.

Apparently, rote learning is of the greatest help either under conditions
when the results of any specific action are long delayed or in those situa-
tions where highly specialized techniques are required. Contrasting with
this, the generalization procedure is most helpful in situations in which the
available permutations of conditions are large in number and when the
consequences of any specific action are not long delayed.

Procedures Involving Both FormsofLearning
The next obvious step is to combine the better features of the rote-learning
procedure with a generalization scheme. This must be done with some care,
since it is not practical to update the previously saved information after
every change in the evaluation polynomial. A compromise solution might
be to save only a very limited amount of information during the early
stages of learning and to increase the amount as warranted by the in-
creasing stability of the evaluation coefficient with learning. For example,
the program could be arranged to save only the piece-advantage term at

the start. At some stage in the learning process the next term could be
added, perhaps when no change had been made in the parameter used
for this term during some fairly long period, say for three complete games.
If and when the program is able to play an additional period without
changes in the next parameter, this could also be added, et cetera. When-
ever a change does occur in a parameter previously assumed to be stable,
the entire memory tape could be reviewed, all terms involving the changed
parameter and those lower on the list could be expunged, and the pro-
gram could drop back to the earlier condition with respect to its term-
saving schedule.

Another solution would be to utilize the generalization scheme alone
until it had become fairly stable and to introduce rote learning at this time.
It is, of course, perfectly feasible to salvage much of the learning which
has been accumulated by both of the programs studied to date. This could
be done by appending an abridged form of the present memory tape to the
generalization scheme in its present stage of learning and by proceeding
from there in accordance with the first solution proposed above.

1

I

MACHINE LEARNING USING THE GAME OF CHECKERS 95

I?

t'

!'; j

\]

i

i

j
I

Future Development
While it is believed that these tests have reached the stage of diminishing
returns, some effort might well be expended in an attempt to get the
program to generate its own parameters for the evaluation polynomial.
Lacking a perfectly general procedure, it might still be possible to generate
terms based on theories as proposed by students of the game. This pro-
cedure would be at variance with the writer's previous philosophy, but it is
highly likely that similar compromises will have to be made when one
attempts to apply learning procedures to problems of economic importance.

Conclusions

As a result of these experiments one can say with some certainty that
it is now possible to devise learning schemes which will greatly outperform
an average person and that such learning schemes may eventually be
economically feasible as applied to real-life problems.

Appendix A: Programming Details
Approximate Size of Program

Basic checker-playing routine 1100 instructions
Input, moveverification and output 1400 instructions
Game starting and terminating routines 600 instructions
Loaders, table generators, dumping, et cetera 850 instructions
Statistical and analytical routines 700 instructions
Rote-learning routines 1500 instructions
Generalization-learning routines 650 instructions
Tables and constants for basic play 700 words
Working space for basic play 2000 words
Working space for generalization learning 500 words
Working space for rote learning Balance of memory

Approximate Computation Times
To find all available moves from given board position 2.6 milliseconds
To makea single move and find resulting board position 1.5 milliseconds
To evaluate a board position (4 terms) 2.4 milliseconds
To find score for a saved board position (rote learning) 2.3 milliseconds
To evaluate position (with 16 terms for generalizationlearning) 7.5 milliseconds

Board Representations
The standard checkerboard numbering system (see Appendix B) is used
in communicating with the machine. A modified numbering system is used
for internal computations, the numbers shown on the squares in Fig. 5
corresponding to the bit positions in an IBM 704 word. Any given board
Position is represented by four such words; one word (FA) containing l's

(

i

I j
I
I
I ':''

!

;i

-i
i PI'M. i I
', I I

" I
',]'
; ji

t:\

V

96 ARTIFICIAL INTELLIGENCE

!

Black

Figure 5. Checkerboard notation for internal computations.

in those bit positions corresponding to squares containing pieces of the
color whose turn it is to move and which normally move in a forward
direction. To be specific, if it is Black's turn to move (i.e., if Black is
"active") FA designates the location of all of Black's pieces, both men
and kings. Conversely, if White is active, FA designates the location of
White's kings only, since White's men can only move in the direction arbi-
trarily called backward. The other words designate, respectively: BA,

backward active pieces; FP, forward passive pieces; and BP, backward
passive pieces.

To conserve space when writing on tape, three words are used to record
board positions with kings, and only two words are used for board positions
without kings. These are saved in a standardized form, as explained in the
text.

Possible moves are designated by five words; one word to indicate by its
sign (with the word itself containing other information) whether the
moves are jumps or not. (If a jump is available, only jump moves are
saved.) The other four words designate the location of those pieces which
can move in the four different diagonal directions: RF, for right forward;
LF, for left forward; LB for left backward; and RB, for right backward,
respectively.

By reference to Fig. 5, it will be observed that a right-forward move
results in an increase of 4 in the square designation, while a left-forward

*' i !
MACHINE LEARNING USING THE GAME OF CHECKERS 97

)"■'

hip 1' I !, I'M-'

move results in an increase of 5. Bit positions 9, 18 and 27 do not appear
on the board. This notation makes it possible to compute available moves
for all pieces simultaneously. Having previously computed a word called
EMPTY, which contains l's in locations corresponding to all unoccupied
squares, one can compute RF, for the normal move case, in four instruc-
tions, as listed below (in IBM 704 symbolic language) :

CLA EMPTY (puts word EMPTY into the accumulator)
ALB 4 (shifts word to left by 4 positions)
ANA FA (forms logical and between EMPTY and FA)
STO RF (stores word as newly computed RF)

Jump moves are computed by a simple extension of this procedure. Multiple
jumps are handled as a sequence of single jumps separated by null-reply
moves.

Additional Timesaving Expedients
Bit counting is done by a table look-up procedure in a closed subroutine
of 16 executed instructions (408 microseconds). This requires a 256-word
table which is generated at the start by a 13-word program. Similar table
look-up procedures are used, to turn a word end for end, and to locate the
l's in a word for move reporting.

Multiplications are usually avoided. In several places where multiplica-
tion by small integers must be done, it is programmed in terms of shifts
and logical operations.

During the look-ahead procedure a complete record is kept of the
sequence of board positions currently under investigation. As a result, no
computing is needed toretract moves.

Appendix B: Sample Games from the Second Series with
Generalization Learning

Typical Openings
The first eight moves of selected games in which Alpha played Black
against Beta, showing the way in which different types of play were tried.

G-4 G-6 0-12 G-17 G-l9 G-21 G-31 G-37 G-39 G-41 G-43
10 14 11 16 11 16 11 16 11 16 11 16 11 16
24 19 22 18 22 17 24 20 24 20 24 20 23 18
14 18 16 20 16 20 10 14 711 811 711
23 14 18 14 17 13 20 11 22 17 28 24 27 23
918 918 914 815 10 14 10 14 16 20

22 15 23 14 23 18 22 17 17 10 23 18 23 19
UlB 10 17 14 23 711 615 14 23 20 27
21 17 21 14 27 18 17 10 28 24 27 18 31 24

12 16 11 16 10 14 11 16
24 20 24 20 24 20 23 19

8 12 10 15 11 15 16 23
28 24 20 11 27 24 26 19
10 14 7 16 7 10 8 11
23 18 21 17 23 18 22 17
14 23 6 10 14 23 10 14
27 18 23 19 26 19 17 10

ij.i

i

!
I

Pi'

1 ,
i ,

i
It !

'"' if!'*
I' I.1 '. 1

I ,n'>, I
"I'll
Ul' I i

jw["r ' -!

! "_'

"<, i

'' 'l !

\, t

i

98 ARTIFICIAL INTELLIGENCE

Figure 6. Square designations used in reporting games.

:

Figure 7. Eight-move opening utilizing generalization learning. (See Appendix
B, Game G-43.)

I*'

i

MACHINE LEARNING USING THE GAME OF CHECKERS 99

Typical Games
Sample games in which Alpha played White against forced Beta openings.

G-l G-18 G-80 G-40 I G-l G-18 G-SO G-40
12 16 12 16 12 16 10 14 913 12 16 914 4 8
24 19 24 20 24 20 24 20 16 24 20 18 9 16

8 12 8 12 8 12 11 15 13 17 16 19 8 11 10 14
22 18 28 24 28 24 27 24 32 27 29 25 15 8 610
10 14 10 15 10 14 710 16 20 13 17 411 14 17
26 22 22 18 22 18 23 18 18 14 10 7 19 15 10 15
16 20 15 22 6 10 14 23 11 16 2 11 11 18 17 21
30 26 25 18 24 19 26 19 610 14 10 23 14 32 28
11 16 7 10 16 10 14 15 18 19 23 13 17 5 9
28 24 18 14 32 28 19 10 14 9 21 14 9 5 27 24
7 11 10 17 3 8 6 15 Terminated 23 26 12 16 20 27

22 17 21 14 26 22 22 17 manually 10 7 28 24 19 16
3 8 9 18 9 13 2 7 26 30 17 22 12 19

17 10 23 14 18 9 17 10 25 21 610 15 22 31
6 15 22 6 9 5 14 7 14 30 26 30 25 9 14

26 17 30 25 22 18 24 19 7 3 16 31 26
9 13 9 18 6 9 15 24 11 15 25 21 14 18

17 14 26 23 25 22 28 19 14 10 5 1 28 24
2 7 3 8 2 6 14 17 5 9 21 17 8 11

23 18 23 14 30 25 21 14 10 6 24 20 24 19
J 6 23 16 14 17 918 15 19 16 19 21 25
14 10 27 23 21 14 5 25 22 6 1 20 16 30 21
7 14 6 9 6 9 18 25 26 22 17 13 Beta

18 9 14 10 18 15 29 22 16 6 2 concedes
514 913 11 18 5 9 913 13 17

27 18 9 25 21 20 11 2 31 27 20 16 10 6
20 27 11 15 10 14 15 19 23 Beta
31 24 20 11 22 15 20 16 6 9 concedes
12 16 15 18 14 17 3 7 23 27
21 17 23 14 5 1 22 17 16 11
13 22 815 17 21 811 22 25
25 18 24 19 25 22 17 13 11 7
15 15 24 21 25 11 20 25 30
9 6 32 28 22 18 13 6 , 7 222 18 13 6 , 7 2
5 9 24 27 25 30 710 27 32
6 1 31 24 2 6 6 1 70 Move termination

Appendix C: Evaluation Polynomial Details for Second Series

Method of Computing Terms
The 16 terms called for in the evaluation polynomial are computed, indi-
vidually, by taking the value of the appropriate parameter, as defined be-
low, for the board position under consideration and subtracting the value
of this same parameter computed for the board position just prior to the

r ■

i

i-,

■:i'i !'

!■ Jl
'

'Mil:
, I. J
"

S

.

' 'I

■PI
i .

i ' '
1 M-l'
[UP I

l|,l ! I.J' 1

ijinl,pp>p
':,' : <I'M:.'■;;

1 >

iip
it

'' p

if '

;',;!;' |
* X i. ii' I

', I'll'!

¥

100 ARTIFICIAL INTELLIGENCE

last move (with the necessary reversal in the definitions of active and pas-
sive sides). This difference is then multiplied by the corresponding pro-
gram-computed coefficient, which can vary between —2 18 and +218 , and
credited to the side which was passive on the board position under con-
sideration.

Definitions of Parameters
ADV (Advancement)
The parameter is credited with 1 for each passive man in the sth and 6th
rows (counting in passive's direction) and debited with 1 for each passive
man in the 3rd and 4th rows.

APEX (Apex)
The parameter is debited with 1 if there are no kings on the board, if
either square 7 or 26 is occupied by an active man, and if neither of these
squares is occupied by a passive man.

BACK (Back Row Bridge)
The parameter is credited with 1 if there are no active kings on the board
and if the two bridge squares (1 and 3, or 30 and 32) in the back row are
occupied by passive pieces.

CENT (Center Control 1)
The parameter is credited with 1 for each of the followingsquares: 11, 12,
15, 16, 20, 21, 24 and 25 which is occupied by a passive man.

CNTR (Center Control II)
The parameter is credited with 1 for each of the following squares: 11, 12,
15, 16, 20, 21, 24 and 25 that is either currently occupied by an active
piece or to which an active piece can move.
CORN (Double-corner Credit)
The parameter is credited with 1 if the material credit value for the active
side is 6 or less, if the passive side is ahead in material credit, and if the
active side can move into one of the double-corner squares.

CRAMP (Cramp)
The parameter is credited with 2 if the passive side occupies the cramping
square (13 for Black, and 20 for White) and at least one other nearby
square (9 or 14 for Black, and 19 or 20 for White), while certain squares
(17, 21, 22 and 25 for Black, and 8, 11, 12 and 16 for White) are all
occupied by the active side.
DENY (Denial of Occupancy)
The parameter is credited with 1 for each square defined in MOB if on the
next move a piece occupying this square could be captured without an
exchange.

DIA (Double DiagonalFile)
The parameter is credited with 1 for each passive piece located in the
diagonal files terminating in the double-corner squares.

DIAV (Diagonal Moment Value)
The parameter is credited with % for each passive piece located on squares
2 removed from the double-corner diagonal files, with 1 for each passive
piece located on squares 1 removed from the double-corner files and with
% for each passive piece in the double-corner files.
DYKE (Dyke)
The parameter is credited with 1 for each string of passive pieces that
occupy three adjacent diagonal squares.

EXCH (Exchange)
The parameter is credited with 1 for each square to which the active side
may advance a piece and, in so doing, force an exchange.
EXPOS (Exposure)
The parameter is credited with 1 for each passive piece that is flanked
along one or the other diagonalby two empty squares.

FORK (Threat of Fork)
The parameter is credited with 1 for each situation in which passive pieces
occupy two adjacent squares in one row and in which there are three
empty squares so disposed that the active side could, by occupying one of
them, threaten a sure capture of one or the other of the two pieces.

GAP (Gap)
The parameter is credited with 1 for each single empty square that separates
two passive pieces along a diagonal, or that separates a passive piece from
the edge of theboard.
GUARD (Back-row Control)
The parameter is credited with 1 if there are no active kings and if either
the Bridge or the Triangleof Oreo is occupied by passive pieces.
HOLE (Hole)
The parameter is credited with 1 for each empty square that is surrounded
by three or more passive pieces.

KCENT (King Center Control)
The parameter is credited with 1 for each of the following squares: 11, 12,
15, 16, 20, 21, 24 and 25 which is occupied by apassive king.
MOB (Total Mobility)
The parameter is credited with 1 for each square to which the active side
could move one or more pieces in the normal fashion, disregarding the
fact that jump moves mayor may notbe available.

i

I l '
i'

i
i ■;

i

> i

! "

I] '
i

i' ,
'I:i j
ii i

:. l
I: '
p|:
ii;
t

I

MACHINE LEARNING USING THE GAME OF CHECKERS 101

V

102 ARTIFICIAL INTELLIGENCE

MOBIL (Undenied Mobility)
The parameter is credited with the difference between MOB and DENY.

MOVE (Move)
The parameter is credited with 1 if pieces are even with a total piece count
(2 for men, and 3 for kings) of less than 24, and if an odd number of
pieces are in the move system, defined as those vertical files starting with
squares 1,2,3 and 4.

NODE (Node)
The parameter is credited with 1 for each passive piece that is surrounded
by at least three empty squares.

OREO (Triangle of Oreo)
The parameter is credited with 1 if there are no passive kings and if the
Triangle of Oreo (squares 2, 3 and 7 for Black, and squares 26, 30 and
31 for White) is occupied by passive pieces.

POLE (Pole)
The parameter is credited with 1 for each passive man that is completely
surrounded by empty squares.

RECAP (Recapture)
This parameter is identical with Exchange, as defined above. (It was
introduced to test the effects produced by the random times at which
parameters are introduced and deleted from the evaluation polynomial.)

THRET (Threat)
The parameter is credited with 1 for each square to which an active piece
may be moved and in so doing threaten the capture of apassive piece on a
subsequent move.

Binary Connective Terms
The abbreviations used for the terms of this type which have been em-
ployed are listed below, in the order of A " B, A " B A ■ B, and A ■ B,
where A and B are the two respective parameters heading the sublists of
abbreviations.

Undenied mobility—
center control I

Denial of occupancy—
total mobility

Undenied mobility—
denial of occupancy

DEMO
DEMMO
DDEMO
DDMM

MODE 1
MODE 2
MODE 3
MODE 4

MOC 1
MOC 3
MOC 2
MOC 4

Mi
MACHINE LEARNING USING THE GAME OF CHECKERS 103

<
:

I

1
Evaluation Polynomial (First 12 Terms Only) after 42 Games, during
Which a Total of 1,039 Different Sets of Adjustments Were Made to the
Terms and Their Coefficients13

J:'Correlation Sign of Power of 2 Times
Term coefficient coefficient used as coefficient adjusted

1 l 1MOC 2
KCENT
MOC 4
MODE 3
DEMMO
MOVE

0.45 18 84
i '0.40 + 16 127

■' i ,

"J ill
I .
i .

0.35 14 95
0.33 13 210
0.27 11 132
0.19 + 8 91

ADV 0.19 8 739
MODE 2
BACK

0.19 8 55
0.14 6 6

CNTR
THRET
MOC 3

0.13 5 12
0.13 5 442
0.10 4 89

I

Discarded Terms during 42 Games 1

13 An additional 20 games have recently been played. Although some significant
changes were noted, the general stabilization of the learning process suggested by
Fig. 4 has been confirmed. During this play, 412 more adjustments were made to the
terms and their coefficients and 12 additionswere made to the list of discarded terms.

Appendix D: Game Played by Mr. R. W. Nealey and the
Samuel Checker Program

In the summer of 1962, at the request of the editors of this collec-
tion, Dr. Samuel arranged a match between his checker-playing
program (on an IBM 7090 computer) and a human checker
champion.

Mr. Robert W. Nealey is described in the IBM Research News for
August, 1962, as "a former Connecticut checkers champion, and
one of the nation's foremost players."

! J ,
iiVI

' jf;! 1

i J

, I i
Hi,

■■ i
■ I

ii.iL'

;i

+
++

1 : ■'
, i

Times adjusted
before discard

Times adjusted
before discard

1
Term Term

I
CORN
CRAMP
GUARD
EXPOS
DDMM
DYKE
MOC 1
EXCH
DDEMO

0
0
0

102
19

115
1

445
53

MODIO 1
CENT
MODE 4
FORK
MOBIL
POLE
HOLE
GAP
MOB

1
386

0
400
707

11
598
792
008

' 5'
i,
1

i '
IPI "* 1? 1

,i

I,

i

I

V

104 ARTIFICIAL INTELLIGENCE

The Samuel program bested Mr. Nealey in the game reprinted
below. The annotations were made by Dr. Samuel. Mr. Nealey's
comments, as quoted by the IBM Research News, are as follows:

Our game . . . did have its points. Up to the 31st move, all of our
play had been previously published, except where I evaded "the book"
several times in a vain effort to throw the computer's timing off. At
the 32-27 loser and onwards, all the play is original with us, so far
as I have been able to find. It is very interesting to me to note that
the computer had to make several star moves in order to get the win,
and that I had several opportunities to draw otherwise. That is why
I kept the game going. The machine, therefore, played a perfect end-
ing without one misstep. In the matter of the end game, I have not

had such competition from any human being since 1954, when I lost
my last game.

Nealey (WHITE) vs. Samuel CheckerProgram (BLACK)

Date: July 12, 1962
Place: Yorktown, New York
Mr. Nealey was given the option and chose to defend. The Old Fourteenth
opening was followed.

23 19
8 11

22 17
4 8

17 13 25-22 wouldrestrict Black's variety of play a little more

15 18
24 20 Lee's Old Fourteenth, Var. 9. 11-15 is the trunk move.
9 14

26 23 Doran's Var. 100 listed as an even game.
10 15
19 10

6 15
28
15

24
19

Doran lists 23-19 as giving an easier game for White.
An aggressive move for Black.

24 15
5 9

13 6
1 19 26

31 22 15
XI 18 Still in Lee's Var. 9 and Doran's Var. 100,

r

IMACHINE LEARNING USING THE GAME OF CHECKERS 105
30 26

8 11
25 22
18 25
29 22
11 15
27 23
15 19
23 16
12 19
32 27
19 24
27 23
24 27
22 18
27 31
18 9
31 22

9 5
22 26
23 19
26 22
19 16
22 18
21 17
18 23
17 13
2 6

16 11
7 16

20 11
23 19 Le coup mortel
White concedes,

Location of Black pieces-3,6,19K
Location of White pieces-5, 11,13.

This is probably a poor move on Mr. Nealey's part.
A good reply maintaining control of the center.

White makes a losing move.
The obvious reply, guaranteeing Black a king.

Black now has his king.

A delaying move to force White to advance.

Le coup de maitre. A Black win is now certain.

;

l

■ji t-

'

j

i I

; : 'jj;
I 1 '< i'

/'in 1

!■■'

'

■

I

I- 1
section 3

!■
Machines That Prove
Mathematical Theorems

\l ■]

"i .i
1

i

i

i

The discovery of proofs for mathematical theorems constitutes intel-
lectual activity of a high order. The learning of mathematical proof
techniques is considered by many to be good training in general
problem-solving discipline.

Ironically, the elegant proofs that mathematicians present in their
scholarly reports and textbooks usually do not provide one with much
insight into the actual mental processes of discovery that were used
to find the proofs. Occasionally one catches a glimpse of these
processes during a classroom lecture by an excellent teacher of
mathematics. Such an experience is probably the closest point of
contact with the private problem-solving world of the mathematician.

1 I *

i

r

i ,

I',

1 J v
The fascination with mechanical theorem proving for most of the

researchers working in this area lies less with the end (the produc-
tion of theorems, perhaps new and important) than with the means
(a thorough understanding of the organization of information process-
ing activity in mathematical discovery). It is felt that understanding
these problem-solving processes is an important step toward the
programming of more complex and general problem-solving processes
for a variety of intellectual tasks. In theorem-proving research, as in
the game-playing studies, the simplicity of the formal system allows
most of the research effort to be devoted to understanding problem-
solving processes rather than to modeling the task environment.

1 HI-
IT
I !I,; .

H! !

1 ! i '
, j

■| id

I'll. i|

Not all work on mechanical theorem proving is concerned with
problem-solving means—the more generalproblem. Some researchers,
notably Wang, are deeply concerned with the end—the production

i I1 1

til

108 ARTIFICIAL INTELLIGENCE

of theorems. They have achieved impressive results using advanced
and sophisticated mathematical decision rules.

The Logic Theorist is a computer program which discovers proofs
to the theorems in symbolic logic (chapter 2 of the Whitehead-
Russell Principia Mathematica) . It uses proof methods no more ad-
vanced than those available to the student just beginning a first course
in Principia.

The Logic Theorist was programmed by Newell, Shaw, and Simon
in early 1956. It was the first heuristic program fully realized on a
computer, the first foray by artificial intelligence research into high-
order intellectual processes.

It is interesting to note that the Logic Theorist was accompanied
by, or gave rise to, another development of great importance to arti-
ficial intelligence research and the computer sciences in general: the
first list processing computer language. The language was reported by
Newell and Shaw in a companion piece to the paper which is reprinted
(the piece was called "Programming the Logic Theory Machine,"
and the language is called Information ProcessingLanguage, or IPL).

The work of Gelernter and his associates extends heuristic pro-
gramming ideas to the proof of theorems in euclidean geometry. His
program makes use of heuristic methods where they are most effec-
tive, but it also applies more powerful, more direct symbol manipula-
tion processes where these are useful. Of special interest in the
geometryproof program is the use of the diagram as a heuristic device
in guiding search of the subproblem structure.

The geometry group, too, developed a list processing language for
writing their program. Called FORTRAN List Processing Language
(FLPL), it combines the ordinary capabilities of FORTRAN (for
specifying numerical computations) with certain list processing
features.

H. Gelernter and J. R. Hansen are members of the research staff
of the IBM Research Laboratory in Yorktown Heights, N.Y. D. W.
Loveland is at the Courant Institute, New York, N.Y.

II

' i

EMPIRICAL EXPLORATIONS WITH
THE LOGIC THEORY MACHINE;

A CASE STUDY IN HEURISTICS

by Allen Newell, J. C. Shaw, & H. A. Simon

This is a case study in problem-solving, representing part of a program
of research on complex information-processingsystems. We have specified
a system for finding proofs of theorems in elementary symbolic logic, and
by programming a computer to these specifications, have obtained
empirical data on the problem-solving process in elementary logic. The
program is called the Logic Theory Machine (LT); it was devised to learn
how it is possible to solve difficult problems such as proving mathematical
theorems, discovering scientific laws from data, playing chess, or under-
standing the meaning of English prose.

The research reported here is aimed at understanding the complex
processes (heuristics) that are effective in problem-solving. Hence, we are
not interested in methods that guarantee solutions, but which require vast
amounts of computation. Rather, we wish to understand how a mathema-
tician, for example, is able to prove a theorem even though he does not
know when he starts how, or if, he is going to succeed.

This focuses on the pure theory of problem-research solving (Newell
and Simon, 1956a). Previously we specified in detail a program for the
Logic Theory Machine; and we shall repeat here only as much of that
specification as is needed so that the reader can understand our data. In a
companion study (Newell and Shaw, 1957) we consider how computers
can be programmed to execute processes of the kinds called for by LT, a
problem that is interesting in its own right. Similarly, we postpone to later
Papers a discussion of the implications of our work for the psychological
theory of human thinking and problem-solving. Other areas of application

109

!

i

i.'

I:
I,

■

, i

: '1,
!I

' I'
f

■|:i i j,

1 1
i ,
i.i.i;
" '^!

■ i' :

i

■: ;,i !
'

>■ i
I

I
V

' I'lil

110 ARTIFICIAL INTELLIGENCE

will readily occur to the reader, but here we will limit our attention to the
nature of the problem-solving process itself.

Our research strategy in studying complex systems is to specify them in
detail, program them for digital computers, and study their behavior
empirically by running them with a number of variations and under a
variety of conditions. This appears at present the only adequate means to
obtain a thorough understanding of their behavior. Although the problem
area with which the present system, LT, deals is fairly elementary, it
provides a good example of a difficult problem—logic is a subject taught
in college courses, and is difficult enough for most humans.

Our data come from a series of programs run on the JOHNNIAC, one
of RAND's high-speed digital computers. We will describe the results of
these runs, and analyze and interpret their implications for the problem-
solving process.

The Logic Theory Machine in Operation

We shall first give a concrete picture of the Logic Theory Machine in
operation.LT, ot course, is a program, written for the

JOHNNIAC,

repre-
sented by marks on paper or holes in cards. However, we can think of
LT as an actual physical machine and the operation of the program as the
behavior of the machine. One can identifyLT with JOHNNIAC after the
latter has been loaded with the basic program, but before the input of data.

LT's task is to prove theorems in elementary symbolic logic, or more
precisely, in the sentential calculus. The sentential calculus is a formalized
system of mathematics, consisting of expressions built from combinations
of basic symbols. Five of these expressions are taken as axioms, and there
are rules of inference for generating new theorems from the axioms and
from other theorems. In flavor and form elementary symbolic logic is
much like abstract algebra. Normally the variables of the system are inter-
preted as sentences, and the axioms and rules of inference as formaliza-
tions of logical operations, e.g., deduction. However, LT deals with the
system as a purely formal mathematics, and we will have no further need
of the interpretation. We need to introduce a smattering of the sentential
calculus to understand LT's task.

There is postulated a set of variables p, q, r, . . . A, B, C, . . .
with which the sentential calculus deals. These variables can be combined
into expressions by means of connectives. Given any variable p, we can
form the expression "not-p." Given any two variables p and q, we can
form the expression "p or q," or the expression "p implies q," where "or"
and "implies" are the connectives. There are other connectives, for example
"and," but we will not need them here. Once we have formed expressions,

*

\

these can be further combined into more complicated expressions. For
example, we can form: 1

There is also given a set of expressions that are axioms. These are taken
to be the universally true expressions from which theorems are to be de-
rived by means of various rules of inference. For the sake of definiteness
in our work with LT, we have employed the system of axioms, definitions,
and rules that is used in the Principia Mathematica, which lists five axioms :

(p or p) implies p (1.2)
p implies (q or p) (1.3)
(p or q) implies (q or p) (1.4)
[p or (q or r)] implies [q or (p or r)] (1.5)
(p implies q) implies [(r or p) implies (ror<?)]. (1.6)

Given some true theorems one can derive new theorems by means of
three rules of inference: substitution, replacement, and detachment.

1. By the rule of substitution, any expression may be substituted for
any variable in any theorem, provided the substitution is made throughout
the theorem wherever that variable appears. For example, by substitution
°f "p or q" for "p," in the second axiom we get the newtheorem:

(p or q) implies [q or (p or q)].

2. By the rule of replacement, a connective can be replaced by its defini-
tion, and vice versa, in any of its occurrences. By definition "p implies q"
means the same as "not-p or q." Hence the former expression can always
be replaced by the latter and vice versa. For example from axiom 1.3, by
replacing "implies"with "or," we get the new theorem:

not-/? or (q or p).
3. By the rule of detachment, if "A" and "A implies B" are theorems,

then "B" is a theorem. For example, from:
(p or p) implies p,

and [(p or p) implies p] implies (p implies p),
we get the new theorem:

p implies p.

Given an expression to prove, one starts from the set of axioms and
theorems already proved, and applies the various rules successively until

For easy reference we have numbered axioms and theorems to correspond to
their numbers in Principia Mathematica,2nd cd., vol. 1, New York: by A. N. White-
head and B. Russell, 1935.

i
r I

i
j

i

!

"Si 1

j'v
ii;l

j i
i

,1

\ ■

i

■I,
i i

t

/J'ljj'
!,i l'f 1!'

< 1 1

ii
1 ! ,'

' ' i

i
i .■ i

■ 1 1 >■ ii
i j

THE LOGIC THEORY MACHINE 111

"(p implies not-p) implies not-p." (2.01)

112 ARTIFICIAL INTELLIGENCE

the desired expression is produced. The proof is the sequence of expres-
sions, each one validly derived from the previous ones, that leads from
the axioms andknown theorems to the desiredexpression.

This is all the background in symbolic logic needed to observe LT in
operation. LT "understands" expressions in symbolic logic—that is, there
is a simple code for punching expressions on cards so they can be fed into
the machine. We give LT the five axioms, instructing it that these are
theorems it can assume to be true. LT already knows the rules of inference
and the definitions—how to substitute, replace, and detach. Next we give
LT a single expression, say expression 2.01, and ask LT to find a proof
for it. LT works for about 10 seconds and then prints out the following
proof:

(p implies not-p) implies not-p
1. (A or A) implies A

(theorem 2.01, to be proved)
(axiom 1.2)
(subs, of not-A for A)2. (not-A ornot-A) implies not-A

3. (A implies not-A) implies not-A
4. (p implies not-p) implies not-p

(repl. of "or" with "implies")
(subs. ofpfor/I;<2ED).

Next we ask LT to prove a fairly advanced theorem (Whitehead and
Russell, 1935), theorem 2.45; allowing it to use all 38 theorems proved
prior to 2.45. After about 12 minutes, LT produces the followingproof:

not (p or q) implies not-p
1. A implies (A or B)

(theorem 2.45, to be proved)
(theorem 2.2)
(subs, p for A, q for B in 1)
(theorem 2.16)

2. p implies (p or q)
3. (A implies B) implies (not-B

implies not-A)
[subs, p for A, (p or q) for B
in 3]

4. [p implies (p or q)] implies
[not (p or q) implies not-p]

5. not (p or q) implies not-p (detach right side of 4, using 2;
QED).

Finally, all the theorems prior to (2.31) are given to LT (a total of 28) ;
and then LT is asked to prove:

[p or (q or r)] implies [(p or q) or r]. (2.31)

LT works for about 23 minutes and then reports that it cannot prove
(2.31), that it has exhausted its resources.

Now, what is there in this behavior of LT that needs to be explained?
The specific examples given are difficult problems for most humans, and
most humans do not know what processes they use to find proofs, if they
find them. There is no known simple procedure that will produce such
proofs. Various methods exist for verifying whether any givenexpression is

I

THE LOGIC THEORY MACHINE 113 '

'J-!
*

true or false; the best known procedure is the method of truth tables. But
these procedures do not produce a proof in the meaning of Whitehead and
Russell. One can invent "automatic" procedures for producing proofs.
We will look at one briefly later, but these turn out to require computing
times of the orders of thousands of years for the proof of (2.45) .

We must clarify why such problems are difficult in the first place, and
then show what features of LT account for its successes and failures.
These questions will occupy the rest of this study.

Problems, Algorithms, and Heuristics

In describing LT, its environment, and its behavior we will make re-
peated use of three concepts. The first of these is the concept of problem.
Abstractly, a person is given a problem if he is given a set of possible solu-
tions, and a test for verifyingwhether a given element of this set is in fact a
solution to his problem.

The reason why problems are problems is that the original set of pos-
sible solutions given to the problem-solver can be very large, the actual
solutions can be dispersed very widely and rarely throughout it, and the
cost of obtainingeach new element and of testing it can be very expensive.
Thus the problem-solver is not really "given" the set of possible solutions;
instead he is given some process for generating the elements of that set in
some order. This generatorhas properties of its own, not usually specified
in stating the problem; e.g., there is associated with it a certain cost per
element produced, it may be possible to change the order in which it
produces the elements, and so on. Likewise the verification test has costs
and times associated with it. The problem can be solved if these costs are
not too large in relation to the time and computing power available for
solution.

One very special and valuable property that a generator of solutions
sometimes has is a guarantee that if the problem has a solution, the gen-
erator will, sooner or later, produce it. We will call a process that has this
property for some problem an algorithm for that problem. The guarantee
provided by an algorithm is not an unmixed blessing, of course, since
nothing has been specified about the cost or time required to produce the
solutions. For example, a simple algorithm for opening a combination safe
is to try all combinations, testing each one to see if it opens the safe. This
algorithm is a typical problem-solving process: there is a generator that
produces new combinations in some order, and there is a verifier that deter-
mines whether each new combination is in fact a solution to the problem.
This search process is an algorithm because it is known that some combina-
tion will open the safe, and because the generatorwill exhaust all combina-
tions in a finite interval of time. The algorithm is sufficiently expensive,

i!
i

i t
i

j

i
i

'i

i

i

; , if
ml

1 ml
It ,'

; I "
I I

�

j

I,' I
I >' '
I "I

'

I

114 ARTIFICIAL INTELLIGENCE

however, that a combination safe can be used to protect valuables even
from people whoknow the algorithm.

A process that may solve a given problem, but offers no guarantees of
doing so, is called a heuristic2 for that problem. This lack of a guaranteeis
not an unmixed evil. The cost inflicted by the lack of guarantee depends
on what the process costs and what algorithms are available as alternatives.
For most run-of-the-mill problems we have only heuristics, but occasionally
we have both algorithms and heuristics as alternatives for solving the same
problem. Sometimes, as in the problem of finding maxima for simple dif-
ferentiable functions, everyone uses the algorithm of setting the first deriva-
tive equal to zero; no one sets out to examine all the points on the line one
by one as if it were possible. Sometimes, as in chess, everyone plays by
heuristic, since no one is able to carry out the algorithm of examining all
continuations of the game to termination.

The Problem of Proving Theorems in Logic

Finding a proof for a theorem in symbolic logic can be described as
selecting an element from a generated set, as shown by Fig. 1. Consider
the set of all possible sequences of logic expressions—call it E. Certain of
these sequences, a very small minority, will be proofs. A proof sequence
satisfies the following test:

Each expression in the sequence is either

1. One of the accepted theorems or axioms, or
2. Obtainable from one or two previous expressions in the sequence by

application of one of the three rules of inference.

Call the set of sequences that are proofs P. Certain of the sequences in E
have the expression to be proved—call it X, as their final expression. Call
this set of sequences Tx. Then, to find a proof of a given theorem X means
to select an element of E that belongs to the intersection of P and Tx. The
set E is given implicitly by rules for generating new sequences of logic
expressions.

The difficulty of proving theorems depends on the scarcity of elements
in the intersection of P and Tx, relative to the number of elements in E.
Hence, it depends on the cost and speed of the available generators that
produce elements of E, and on the cost and speed of making tests that
determine whether an element belongs to Tx or P. The difficulty also de-

2As a noun, "heuristic" is rare and generally means the art of discovery. The
adjective "heuristic" is defined by Webster as: serving to discover or find out. It is.
in this sense that it is used in the phrase "heuristic process" or "heuristic method."
For conciseness, we will use "heuristic" as a noun synonymous with "heuristic proc-
ess." No other English word appears to have this meaning.

If
l';

" I:
"ft;THE LOGIC THEORY MACHINE 115

pends on whether generators can be
found that guarantee that any ele-
ment they produce automatically
satisfies some of the conditions.
Finally, as we shall see, the difficulty
depends heavily on what heuristics
can be found to guide the selection.

A little reflection, and experience
in trying to prove theorems, make it
clear that proof sequences for speci-
fied theorems are rare indeed. To re-
veal more precisely why proving

Figure 1. Relationships between E, P,
and Tx.

theorems is difficult, we will construct an algorithm for doing this. The
algorithm will be based only on the tests and definitions given above, and
not on any "deep" inferred properties of symbolic logic. Thus it will re-
flect the basic nature of theorem proving; that is, its nature prior to build-
ing up sophisticated proof techniques. We will
British Museum algorithm, in recognition of the
procedures of this type.

call this algorithm the
supposed originators of

The British Museum Algorithm
The algorithm constructs all possible proofs in a systematic manner, check-
ing each time (1) to eliminate duplicates, and (2) to see if the final
theorem in the proof coincides with the expression to be proved. With this
algorithm the set of one-step proofs is identical with the set of axioms
(i.e., each axiom is a one-step proof of itself). The set of n-step proofs is
obtained from the set of (n — l)-step proofs by making all the permissible
substitutions and replacements in the expressions of the (n — l)-step
proofs, and by making all the permissible detachments of pairs of expres-
sions as permitted by the recursive definition of proof.3

Figure 2 shows how the set of n-step proofs increases with n at the very
start of the proof-generating process. This enumeration only extends to
replacements of "or" with "implies," "implies" with "or," and negation of
variables (e.g., "not-p" for "p"). No detachments and no complex sub-
stitutions (e.g., "q or r" for "p") are included. No specializations have
been made (e.g., substitution of p for q in "p or q"). If we include the
specializations, which take three more steps, the algorithm will generate

3 A number of fussy but not fundamental points must be taken care of in con-
structing the algorithm. The phrase "all permissible substitutions" needs to be quali-
fied, for there is an infinity of these. Care must be takennot to duplicate expressions
that differ only in the names of their variables. We will not go into details here, but
simply state that these difficulties can be removed. The essential feature in construct-
ing the algorithm is to allow only one thing to happen in generating each new ex-
Pression, i.e., one replacement, substitution of "not-p" for "p," etc.

'
i >

i
i

>V

I.

J'

il f
liI'
I,

V

116 ARTIFICIAL INTELLIGENCE

i

an (estimated) additional 600 theorems, thus providing a set of proofs
of 11 steps or less containing almost 1000 theorems, none of them
duplicates.

In order to see how this algorithm would provide proofs of specified
theorems, we can consider its performance on the sixty-odd theorems of
chap. 2 of Principia. One theorem (2.01) is obtained in step (4) of the
generation, hence is among the first 42 theorems proved. Three more
(2.02, 2.03, and 2.04) are obtained in step (6), hence among the first
115. One more (2.05) is obtained in step (8), hence in the first 246. Only
one more is included in the first 1000, theorem 2.07. The proofs of all the
remainder require complex substitutions or detachment.

We have no way at present to estimate how many proofs must be gener-
ated to include proofs of all theorems of chap. 2 of Principia. Our best
guess is that it might be a hundred million. Moreover, apart from the six
theorems listed, there is no reason to suppose that the proofs of these
theorems would occur early in the list.

Our information is too poor to estimate more than very roughly the
times required to produce such proofs by the algorithm; but we can esti-
mate times of about 16 minutes to do the first 250 theorems of Fig. 2 [i.e.,
through step (8)] assuming processing times comparable with those in LT.
The first part of the algorithm has an additional special property, which
holds only to the point where detachment is first used; that no check for
duplication is necessary. Thus the time of computing the first few thousand
proofs only increases linearly with the number of theorems generated. For
the theorems requiring detachments, duplication checks must be made, and
the total computing time increases as the square of the number of expres-
sions generated. At this rate it would take hundreds of thousands of years

200

o
Q.

O

J> too
£
3■z

012345678
Proof steps

Figure 2. Number of proofs generated
by first few steps of British Museum
algorithm.

of computation to generate proofs
for the theorems in chap. 2.

The nature of the problem of
proving theorems is now reasonably
clear. When sequences of expres-
sions are produced by a simple and
cheap (per element produced) gen-
erator, the chance that any particu-
lar sequence is the desired proof is
exceedingly small. This is true even
if the generator produces sequences
that always satisfy the most com-
plicated and restrictive of the solu-
tion conditions: that each is a proof
of something. The set of sequences
is so large, and the desired prool

F

i

■■

■<

so rare, that no practical amount of computation suffices to find proofs by
means of such an algorithm.

The Logic Theory Machine
If LT is to prove any theorems at all it must employ some devices that

alter radically the order in which possible proofs are generated, and the
way in which they are tested. To accomplish this, LT gives up almost all
the guarantees enjoyed by the British Museum algorithm. Its procedures
guarantee neither that its proposed sequences are proofs of something, nor
that LT will ever find the proof, no matter how much effort is spent. How-
ever, they often generate the desired proof in a reasonable computing time.

Methods
The major type of heuristic that LT uses we call a method. As yet we have
no precise definition of a method that distinguishes it from all the other
types of routines in LT. Roughly, a method is a reasonably self-contained
operation that, if it works, makes a major and permanent contribution
toward finding a proof. It is the largest unit of organization in LT, sub-
ordinated only to the executive routines necessary to coordinate and select
the methods.

THE SUBSTITUTION METHOD

This method seeks a proof for the problem expressionby finding an axiom
or previously proved theorem that can be transformed, by a series of sub-
stitutions for variables and replacements of connectives, into the problem
expression.

THE DETACHMENT METHOD

This method attempts, using the rule of detachment, to substitute for
the problem expression a new subproblem, which, if solved, will provide a
proof for the problem expression. Thus, if the problem expression is B,
the method of detachment searches for an axiom or theorem of the form
A implies B." If one is found, A is set up as a new subproblem. If A can

be proved, then, since "A implies B" is a theorem, B will also be proved.

THE CHAINING METHODS

These methods use the transitivity of the relation of implication to create
a new subproblem which, if solved, will provide a proof for the problem
expression. Thus, if the problem expression is "a implies c," the method
°f forward chaining searches for an axiom or theorem of the form "a

i

i

i
■ I i.

l-i

;,

li,

I

'

■

i

i ' '
i t

1 1 '

I
I

' i

THE LOGIC THEORY MACHINE 117

V

118 ARTIFICIAL INTELLIGENCE

implies b." If one is found, "b implies c" is set up as a new subproblem.
Chaining backward works analogously: it seeks a theorem of the form
"b implies c," and if one is found, "a implies b" is set up as a new
subproblem.

Each of these methods is an independent unit. They are alternatives to
one another, and can be used in sequence, one working on the subproblems
generated by another. Each of them produces a major part of a proof.
Substitution actually proves theorems, and the other three generate sub-
problems, which can become the intermediate expressions in a proof
sequence.

These methods give no guarantee that they will work. There is no guar-
antee that a theorem can be found that can be used to carry out a proof
by the substitution method, or a theorem that will produce a subproblem
by any of the other three methods. Even if a subproblem is generated,
there is no guarantee that it is part of the desired proof sequence, or even
that it is part of any proof sequence (e.g., it can be false). On the
other hand, the generated methods do guarantee that any subproblem
generated is part of a sequence of expressions that ends in the de-
sired theorem (this is one of the conditions that a sequence be a proof).
The methods also guarantee that each expression of the sequence is de-
rived by the rules of inference from the preceding ones (a second condi-
tion of proof). What is not guaranteed is that the beginning of the se-
quence can be completed with axioms or previously proved theorems.

There is also no guarantee that the combination of the four methods,
used in any fashion whatsoever and with unlimited computing effort, com-
prises a sufficient set of methods to prove all theorems. In fact, we have
discovered a theorem [(2.13), "p or not-not-not-p"] which the four meth-
ods of LT cannot prove. All the subproblems generated for (2.13) after a
certain point are false, and therefore cannot lead to a proof.

We have yet no general theory to explain why the methods transform
LT into an effective problem-solver. That they do, in conjunction with the
other mechanisms to be described shortly, will be demonstrated amply in
the remainder of this study. Several factors may be involved. First, the
methods organize the sequences of individual processing steps into larger
units that can be handled as such. Each processing step can be oriented
toward the special function it performs in the unit as a whole, and the
units can be manipulated and organized as entities by the higher-level
routines.

Apart from their "unitizing" effect, the methods that generate subprob-
lems work "backward" from the desired theorem to axioms or known
theorems rather than "forward" as did the British Museum algorithm.
Since there is only one theorem to be proved, but a number of known
true theorems, the efficacy of working backward may be analogous to the

:

THE LOGIC THEORY MACHINE 119
ease with which a needle can find its way out of a haystack, compared
with the difficulty of someone finding the lone needle in the haystack.

The Executive Routine
In LT the four methods are organized by an executive routine, whose flow
diagram is shown in Fig. 3.

1. When a new problem is presented to LT, the substitution method is
tried first, using all the axioms and theorems that LT has been told to
assume, and that are now stored in a theorem list.

2. If substitution fails, the detachment method is tried, and as each new
subproblem is created by a successful detachment, an attempt is made to
prove the new subproblem by the substitution method. If substitution fails
again, the subproblem is added to a subproblem list.

3. If detachment fails for all the theorems in the theorem list, the same
cycle is repeated with forward chaining, and then with backward chaining:
try to create a subproblem; try to prove it by the substitution method; if
unsuccessful, put the new subproblem on the list. By the nature of the
methods, if the substitution method ever succeeds with a single subproblem,
the original theorem is proved.

4. If all the methods have been tried on the original problem and no
proof has been produced, the executive routine selects the next untried
subproblem from the subproblem list, and makes the same sequence of at-
tempts with it. This process continues until (1) a proof is found, (2) the
time allotted for finding a proof is
used up, (3) there is no more avail- (start)
able memory space in the machine, I
°r (4) no untried problems remain Select problem
on the subproblem list. T '.. .r Try method -

(no more methods)

(no more theorems)-
In the three examples cited ear-

lier, the proof of (2.01) [(p ir- theorem-
plies not-p) implies not-p] was ob- 'tamed by the substitution method i
directly, hence did not involve use (get new problem)
of the subproblem list. T A-. .._

* Try suhctltntinn

The proof of (2.45) [not (p or
9) implies not-p] was achieved by
an application of the detachment
method followed by a substitution.
This proof required LT to create a
subproblem, and to use the substi-
tution method on it. It did not
require LT ever to select any sub- Figure 3,

Try substitution (""\)
Select theorem-"->

Try it (fail)-*-'

(proof)
I

through

Generalflow diagram of LT.

■m

i I

:
iiI
'i

lii
i i

" ;
1 1,

iji

! 1' I 't i i

1 l

'
"I

[

■ ■.. .I
i . i

I

!

P.,

i 'i
:ir ,

' m

V'

120 ARTIFICIAL INTELLIGENCE

r

i
I

not {p or q) implies not-/) problem from the subproblem list,
since the substitution was successful.
Figure 4 shows the tree of subprob-
lems corresponding to the proof of

x? (2.45). The subproblems are given in
the form of a downward branching

\ tree. Each node is a subproblem, the
i original problem being the single node

Figure 4. Subproblem tree of proof at the top. The lines radiating down
by LT of (2.45) (all previous from a node lead to the new subprob-

lems generated from the subproblem
corresponding to the node. The proof

theorems available).

sequence is given by the dashed line; the top link was constructed by the
detachment method, and the bottom link by the substitution method. The
other links extending down from the original problem lead to other sub-
problems generated by the detachment method (but not provable by direct
substitution) prior to the time LT tried the theorem that leads to the final
proof.

LT did not prove theorem 2.31, also mentioned earlier, and gave as its
reason that it could think of nothing more to do. This means that LT had
considered all subproblems on the subproblem list (there were six in this
case) and had no new subproblems to work on. In none of the examples
mentioned did LT terminate because of time or space limitations; however,
this is the most common result in the cases where LT does not find a proof.
Only rarely does LT run out of things to do.

This section has described the organization of LT in terms of methods.
We have still to examine in detail why it is that this organization, in con-
nection with the additional mechanisms to be described below, allows LT
to prove theorems with a reasonable amount of computing effort.

The Matching Process
The times required to generate proofs for even the simplest theorems by
the British Museum algorithm are larger than the times required by LT by
factors ranging from five (for one particular theorem) to a hundred and
upward. Let us consider an example from the earliest part of the genera-
tion, where we have detailed information about the algorithm. The 79th
theorem generated by the algorithm (see Fig. 2) is theorem 2.02 of
Principia, one of the theorems we asked LT to prove. This theorem, "p
implies (q implies p)," is generated by the algorithm in about 158 seconds
with a sequence of substitutions and replacements; it is proved by LT in
about 10 seconds with the method of substitution. The reason for the dif-
ference becomes apparent if we focus attention on axiom 1.3, "p implies
(q orp)," from which the theorem is derived in either scheme.

If :

THE LOGIC THEORY MACHINE 121
Figure 5 shows the tree of proofs of the first twelve theorems obtained

from (1.3) by the algorithm. The theorem 2.02 is node (9) on the tree
and is obtained by substitution of "not-q" for "q" in axiom 1.3 to reach
node (5); and then by replacing the "(not-g or p)" by "(q implies p)"
in (5) to get (9). The 9th theorem generated from axiom 1.3 is the 79th
generatedfrom the five axioms considered together.

This proof is obtained directly by LT using the following matching pro-
cedure. We compare the axiom with (9), the expression to be proved:

p implies (q or p) (1-3)
p implies (q implies p). (9)

First, by a direct comparison, LT determines that the main connectives
are identical. Second, LT determines that the variables to the left of the
main connectives are identical. Third, LT determines that the connectives
within parentheses on the right-hand sides are different. It is necessary to
replace the "or" with "implies," but in order to do this (in accordance
with the definition of implies) there must be a negation sign before the
variable that precedes the "or." Hence, LT first replaces the "q" on the
right-hand side with "not-q" to get the required negation sign, obtaining
(5). Now LT can change the "or" to "implies," and determines that the
resulting expression is identical with (9).

The matching process allowed LT to proceed directly down the branch
from (1) through (5) to (9) without even exploring the other branches.
Quantitatively, it looked at only two expressions instead of eight, thus re-
ducing the work of comparison by a factor of four. Actually, the saving is
even greater, since the matching procedure does not deal with whole ex-
pressions, but with a single pair of elements at a time.

An important source of efficiency in the matching process is that it pro-
ceeds componentwise, obtaining at each step a feedback of the results of
a substitution or replacement that can be used to guide the next step. This
feedback keeps the search on the right branch of the tree of possible ex-

figure 5. Proof tree of proof
2.02 by British Museum algo-
rithm (using axiom 1.3).

r i
t i

il
I

l i
j
i
Ei;
l

i*i
I 'I! |

I '
1

P
,1;
1 1

i

:
I, I

i

I

i

I _■ , '
I

\ " i
i
i„ 1 1

!'.'■
' ii

V

122 ARTIFICIAL INTELLIGENCE

pressions. It is not important for an efficient search that the goal be known
from the beginning; it is crucial that hints of "warmer" or "colder" occur
as the search proceeds. 4 Closely related to this feedback is the fact that
where LT is called on to make a substitution or replacement at any step,
it can determine immediately what variable or connective to substitute or
replace by direct comparison with the problem expression, and without
search.

Thus far we have assumed that LT knows at the beginning that (1.3)
is the appropriate axiom to use. Without this information, it would begin
matching with each axiom in turn, abandoning it for the next one if the
matching should prove impossible. For example, if it tries to match the
theorem against axiom 1.2, it determines almost immediately (on the sec-
ond test) that "p or p" cannot be made into "p" by substitution. Thus,
the matching process permits LT to abandon unprofitable lines of search
as well as guiding it to correct substitutions and replacements.

MATCHING IN THE SUBSTITUTION METHODS

The matching process is an essential part of the substitution method.
Without it, the substitution method is just that part of the British Museum
algorithm that uses only replacements and substitutions. With it, LT is
able, either directly or in combination with the other methods, to prove
many theorems with reasonable effort.

To obtain data on its performance, LT was given the task of proving
in sequence the first 52 theorems of Principia. In each case, LT was given
the axioms plus all the theorems previously proved in chap. 2 as the mate-
rial from which to work (regardless of whether LT had proved the
theorems itself).5

Of the 52 theorems, proofs were found for a total 38 (73 per cent).
These proofs were obtained by various combinations of methods, but the
substitution method was an essential component of all of them. Seventeen
of these proofs, almost a half, were accomplished by the substitution
method alone. Subjectively evaluated, the theorems that were proved by

4 The following analogy may be instructive. Changing the symbols in a logic ex-
pression until the "right" expression is obtained is like turning the dials on a safe
until the right combination is obtained. Suppose two safes, each with ten dials and
ten numbers on a dial. The first safe gives a signal (a "click") when any given dial
is turned to the correct number; the second safe clicks only when all ten dials are
correct. Trial-and-error search will open the first

safe,

on the average, in 50 trials;

the second

safe,

in five billion trials.
5 The version of LT used for seeking solutions of the 52 problems included a

similarity test (see next section). Since the matching process is more important than
the similarity test, we have presented the facts about matching

first,

using adjusted
statistics. A notion of the sample sizes can be gained from Table 1. The sample was
limited to the first 52 of the 67 theorems in chap. 2 of Principia because of memory

limitations of JOHNNIAC.

n

r ti
;.

THE LOGIC THEORY MACHINE 123
the substitution method alone have the appearance of "corollaries" of the
theorems they are derived from; they occur fairly close to them in the
chapter, generally requiring three or fewer attempts at matching per theo-
rem proved (54 attempts for 17 theorems).

The performance of the substitution method on the subproblems is
somewhat different, due, we think, to the kind of selectivity implicit in the
order of theorems in Principia. In 338 attempts at solving subproblems by
substitution, there were 21 successes (6.2 per cent). Thus, there was
about one chance in three of proving an original problem directly by the
substitution method, but only about one chance in 16 of so proving a sub-
problem generated from the original problem.

MATCHING IN DETACHMENT AND CHAINING

So far the matching process has been considered only as a part of the
substitution method, but it is also an essential component of the other
three methods. In detachment, for example, a theorem of form "A implies
B" is sought, where B is identical with the expression to be proved. The
chances of finding such a theorem are negligible unless we allow some
modification of B to make it match the theorem to be proved. Hence, once
a theorem is selected from the theorem list, its right-hand subexpression
is matched against the expression to be proved. An analogous procedure
is used in the chaining methods.

We can evaluate the performance of the detachment and chaining meth-
ods with the same sample of problems used for evaluating the substitution
method. However, a successful match with the former three methods gen-
erates a subproblem and does not directly prove the theorem. With the
detachment method, an average of three new subproblems were generated
for each application of the method; with forward chaining the average was
2.7; and with backward chaining the average was 2.2. For all the methods,
this represents about one subproblem per 7% theorems tested (the num-
ber of theorems available varied slightly).

As in the case of substitution, when these three methods were applied
to the original problem, the chances of success were higher than when they
were applied to subproblems. When applied to the original problem, the
number of subproblems generated averaged eight to nine; when applied to
subproblems derived from the original, the number of subproblems gen-
erated fell to an averageof two or three.

In handling the first 52 problems in chap. 2 of Principia, 17 theorems
were proved in one step—that is, in one application of substitution. Nine-
teen theorems were proved in two steps, 12 by detachment followed by
substitution, and seven by chaining forward followed by substitution. Two
others were proved in three steps. Hence, 38 theorems were proved in all.
There are no two-step proofs by backward chaining, since, for two-step

i
i "

1 ii
i

ii

f
i

■■

1 ;
i. i'

' ' i
i

i

i
i

i - ,

1 'Mm

124 ARTIFICIAL INTELLIGENCE

proofs only, if there is a proof by backward chaining, there is also one by
forward chaining. In 14 cases LT failed to find a proof. Most of these
unsuccessful attempts were terminated by time or space limitations. One
of these 14 theorems we know LT cannot prove, and one other we believe
it cannot prove. Of the remaining twelve, most of them can be proved by
LT if it has sufficient time and memory (see section on subproblems,
however).

Similarity Tests and Descriptions
Matching eliminates enough of the trial and error in substitutions and
replacements to make LT into a successful problem solver. Matching
permeates all of the methods, and without it none of them would be
useful within practical amounts of computing effort. However, a large
amount of search is still used in finding the correct theorems with which
matching works. Returning to the performance of LT in chap. 2, we find
that the over-all chances of a particular match being successful are 0.3
per cent for substitution, 13.4 per cent for detachment, 13.8 per cent for
forward chaining, and 9.4 per cent for backward chaining.

The amount of search through the theorem list can be reduced by
interposing a screening process that will reject any theorem for matching
that has low likelihood of success. LT has such a screening device, called
the similarity test. Two logic expressions are defined to be similar if both
their left-hand and right-hand sides are equal, with respect to, (1) the
maximum number of levels from the main connective to any variable; (2)
the number of distinct variables; and (3) the number of variable places.
Speaking intuitively, two logic expressions are "similar" if they look alike,
and look alike if they are similar. Considerfor example:

(p or q) implies (q or p)
p implies (q or p)
r implies (m implies r)

(1)
(2)
(3)

By the definition of similarity, (2) and (3) are similar, but (1) is not
similar to either (2) or (3).

In all of the methods LT applies the similarity tests to all expressions
to be matched, and only applies the matching routine if the expressions are
similar; otherwise it passes on to the next theorem in the theorem list. The
similarity test reduces substantially the number of matchings attempted,
as the numbers in Table 1 show, and correspondingly raises the prob-
ability of a match if the matching is attempted. The effect is particularly
strong in substitution, where the similarity test reduces the matchings
attempted by a factor of ten, and increases the probability of a successful
match by a factor of ten. For the other methods attempted matchings were

I

THE LOGIC THEORY MACHINE 125

Experiments have been carried out with a weaker similarity test, which
compares only the number of variable places on both sides of the expres-
sion. This test will not commit the particular type II error cited above,
and (2.07) is proved by substitution using it. Apart from this, the modifi- i

i \

i >
,j 1 ii

'viitt

'■]

TABLE 1 Statistics of Similarity Tests and Matching

Method
Theorems
considered

Theorems
similar

Theorems
matched

Per cent
similarof
theorems

considered

Per cent
matched

of theorems
similar

Substitution
Detachment

Chain,

forward

Chain,

backward

11,298
1,591

869
673

993
406
200
146

37
210
120
63

8.8
25.5
23.0
21.7

3.7
51.7
60.0
43.2

i
{

I.
Ii

I!reduced by a factor of four or five, and the probability of a match in-
creased by the same factor.

These figures reveal a gross, but not necessarily a net, gain in per-
formance through the use of the similarity test. There are two reasons why
all the gross gain may not be realized. First, the similarity test is only a
heuristic. It offers no guarantee that it will let through only expressions
that will subsequently match. The similarity test also offers no guarantee
that it will not reject expressions that would match if attempted. The
similarity test does not often commit this type of error (corresponding to
a type II statistical error), as will be shown later. However, even rare
occurrences of such errors can be costly. One example occurs in theproof
of theorem 2.07:

i 1

' I;

!

[

M

r

Ii'<]<'
r

p implies (p or p). (2.07)

This theorem is proved simply by substituting p for q in axiom 1.3:
p implies (q or p). (1.3)

However, the similarity test, because it demands equality in the number of
distinct variables on the right-hand side, calls (2.07) and (1.3) dissimilar
because (2.07) contains only p while (1.3) contains p and q. LT discovers
the proof through chaining forward, where it checks for a direct match
before creating the new subproblem, but the proof is about five times as
expensive as when the similarity test is omitted.

The second reason why the gross gain will not all be realized is that the
similarity test is not costless, and in fact for those theorems which pass
the test the cost of the similarity test must be paid in addition to the cost
of the matching. We will examine these costs in the next section when we
consider the effort LT expends.

Experiments have been carried out with a weaker similarity test, which
compares only the number of variable places on both sides of the expres-

■

r

1 1

r p
■

i

i

!

I

I

V

126 ARTIFICIAL INTELLIGENCE

cation had remarkably little effect on performance. On a sample of ten
problems it admitted only 10 per cent more similar theorems and about
10 per cent more subproblems. The reason why the two tests do not differ
more radically is that there is a high correlation among the descriptive
measures.

Effort inLT
So far we have focused entirely on the performance characteristics of the
heuristics in LT, except to point out the tremendous difference between
the computing effort required by LT and by the British Museum algorithm.
However, it is clear that each additional test, search, description, and the
like, has its costs in computing effort as well as its gains in performance.
The costs must always be balanced against the performance gains, since
there are always alternative heuristics which could be added to the system
in place of those being used. In this section we will analyze the computing
effort used by LT. The memory space used by the various processes also
constitutes a cost, but one that will not be discussed in this study.

MEASURING

EFFORTS

LT is written in an interpretive language or pseudocode, which is described
in the companion paper to this one. LT is defined in terms of a set of
primitive operations, which, in turn, are defined by subroutines in
JOHNNIAC machine language. These primitives provide a convenient
unit of effort, and all effort measurements will be given in terms of total
number of primitives executed. The relative frequencies of the different
primitives are reasonably constant, and, therefore, the total number of
primitives is an adequate index of effort. The average time per primitive is
quite constant at about 30 milliseconds, although for very low totals (less
than 1000 primitives) a figure of about 20 milliseconds seems better.

COMPUTING EFFORT AND PERFORMANCE
On a priori grounds we would expect the amount of computing effort re-
quired to solve a logic problem to be roughly proportional to the total
number of theorems examined (i.e., tested for similarity, if there is a
similarity routine; or tested for matching, if there is not) by the various
methods in the course of solving the problem. In fact, this turns out to be a
reasonably good predictor of effort; but the fit to data is much improved
if we assign greater weight to theorems considered for detachment and
chaining than to theorems considered for substitution.

Actual and predicted efforts are compared below (with the full similarity
test included, and excluding theorems proved by substitution) on the as-
sumption that the number of primitives per theorem considered is twice
as great for chaining as for substitution, and three times as great for de-

r

! :
i

» I

THE LOGIC THEORY MACHINE 127 !■■

tachment. About 45 primitives are executed per theorem considered with
the substitution method (hence 135 with detachment and 90 with chain-
ing). As Table 2 shows, the estimates are generally accurate within a few
per cent, except for theorem 2.06, for which the estimate is too low.

TABLE 2 Effort Statistics with
"PrecomputeDescription" Routine

Total primitives, thousands

There is an additional source of variation not shown in the theorems
selected for Table 2. The descriptions used in the similarity test must be
computed from the logic expressions. Since the descriptions of the theorems
are used over and over again, LT computes these at the start of a problem
and stores the values with the theorems, so they do not have to be com-
puted again. However, as the number of theorems increases, the space
devoted to storing the precomputed descriptions becomes prohibitive, and
LT switches to recomputing them each time it needs them. With recom-
putation, the problem effort is still roughly proportional to the total number
of theorems considered, but now the number of primitives per theorem
is around 70 for the substitution method, 210 for detachment, and 140 for
chaining.

Our analysis of the effort statistics shows, then, that in the first approxi-
mation the effort required to prove a theorem is proportional to the number
of theorems that have to be considered before a proof is found; the number
of theorems considered is an effort measure for evaluating a heuristic. A
good heuristic, by securing the consideration of the "right" theorems early
in the proof, reduces the expected number of theorems to be considered
before a proof is found.

EVALUATION OF THE SIMILARITY TEST

As we noted in the previous section, to evaluate an improved heuristic,
account must be taken of any additional computation that the improve-
ment introduces The net advantage may be less than the gross advantage,

I i-
i'-

!
i

i i

Ii

, 'l-
i|
i

i j

i

i»

i

i

-i ,

i

V saaasjSßsaasses

128 ARTIFICIAL INTELLIGENCE

or the extra computing effort may actually cancel out the gross gain in
selectivity. We are now in a position to evaluate the similarity routines as
preselectors of theorems for matching.

A number of theorems were run, first with the full similarity routine,
then with the modified similarity routine (which tests only the number of
variable places), and finally with no similarity test at all. We also made
some comparisons with both precomputed and recomputed descriptions.

When descriptions are precomputed, the computing effort is less with
the full similarity test then without it; the factor of saving ranged from 10
to 60 per cent (e.g., 3534/5206 for theorem 2.08). However, if LT must
recompute the descriptions every time, the full similarity test is actually
more expensive than no similarity test at all (e.g., 26,739/22,914 for
theorem 2.45).

The modified similarity test fares somewhat better. For example, in
proving (2.45) it requires only 18,035 primitives compared to the 22,914
for no similarity test (see the paragraph above). These comparisons in-
volve recomputed descriptions; we have no figures for precomputed
descriptions, but the additional saving appears small since there is much
less to compute with the abridged than with the full test.

Thus the similarity test is rather marginal, and does not provide anything
like the factors of improvement achieved by the matching process, although
we have seen that the performance figures seem to indicate much more
substantial gains. The reason for the discrepancy is not difficult to find. In
a sense, the matching process consists of two parts. One is a testing part
that locates the differences between elements and diagnoses the corrective
action to be taken. The other part comprises the processes of substituting
and replacing. The latter part is the major expense in a matching that
works, but most of this effort is saved when the matching fails. Thus match-
ing turns out to be inexpensive for precisely those expressions that the
similarity test excludes.

Subproblems

LT can prove a great many theorems in symbolic logic. However, there
are numerous theorems that LT cannot prove, and we may describe LT as
having reached a plateau in its problem solving ability.

Figure 6 shows the amountof effort required for the problems LT solved
out of the sample of 52. Almost all the proofs that LT found took less than
30,000 primitives of effort. Among the numerous attempts at proofs that
went beyond this effort limit, only a few succeeded, and these required a
total effort that was very much greater.

Thepredominance of short proofs is even more striking than the approxi-
mate upper limit of 30,000 primitives suggests. The proofs by substitution

' I ,

*

THE LOGIC THEORY MACHINE 129
20

|15
Q.

°10
Figure 6. Distribution of »j
LT's proofs by effort. Data § 5include all proofs from z

attempts on the first 52 fclJiiJil ■ ■ ■ ■
theorems in chap. 2 of o 10 20 30 40 50 60 70 80 90 100frmcipia. Effort, thousonds of primitives

—almost half of the total—required about 1000 primitives or less each.
The effort required for the longest proof—89,000 primitives —is some 250
times the effort required for the short proofs. We estimate that to prove
the 12 additional theorems that we believe LT can prove requires the
effort limit to be extended to about a million primitives.

From these data we infer that LT's power as a problem solver is largely
restricted to problems of a certain class. While it is logically possible for
LT to solve others by large expenditures of effort, major adjustments are
needed in the program to extendLT's powers to essentially new classes of
problems. We believe that this situation is typical: good heuristics produce
differences in performance of large orders of magnitude, but invariably a
"plateau" is reached that can be surpassed only with quite different
heuristics. These new heuristics will again make differences of orders of
magnitude. In this section we shall analyze LT's difficulties with those
theorems it cannot prove, with a view to indicating the general type of
heuristic that might extend its range of effectiveness.

The Subproblem Tree
Let us examine the proof of theorem 2.17 when all the preceding theorems
are available. This is the proof that cost LT 89,000 primitives. It is repro-
duced below, using chaining as a rule of inference (each chaining could be
expanded into two detachments, to conform strictly to the system of
Principia).

(not-q implies not-p) implies (p-im- (theorem 2.17, to be proved)
plies q)
1. A implies not-not-^4 (theorem 2.12)
2. p implies not-not-p (subs, p for A in 1)
3. (A implies B) implies [(B implies (theorem 2.06)

C) implies (A implies C)]
4. (p implies not-not-p) implies [(not- (subs, p for A, not-not-p for

not-p implies q) implies (p implies B, q for Cm 3)

i
(

i

i

I

i;
i

x
I

\

i ,

!■'■';

J

V

130 ARTIFICIAL INTELLIGENCE

I
I
I

A.

5. (not-not-p implies q) implies (p ir- (det. 4 from 3)
plies q)

6. (not-A implies B) implies (not-B (theorem 2.15)
implies A)

7. (not-q implies not-p) implies (not- (subs, q for A, not-p for B)
not-p implies q)

8. (not-? implies not-p) implies (p ir- (chain 7 and 5; QED)
plies q)

The proof is longer than either of the two given earlier. In terms of
LT's methods it takes three steps instead of two or one: a forward chain-
ing, a detachment, and a substitution. This leads to the not surprising notion,
given human experience, that length of proof is an important variable in
determining total effort: short proofs will be easy and long proofs difficult,
and difficulty will increase more than proportionately with length of proof.
Indeed, all the one-step proofs require 500 to 1500 primitives, while the
number of primitives for two-step proofs ranges from 3000 to 50,000.
Further, LT has obtained only six proofs longer than two steps, and these
require from 10,000 to 90,000 primitives.

The significance of length of proof can be seen by comparing Fig. 7,
which gives the proof tree for (2.17), with Fig. 4, which gives the proof
tree for (2.45), a two-step proof. In going one step deeper in the case of
(2.17), LT had to generate and examine many more subproblems. A
comparison of the various statistics of the proofs confirms this statement:
the problems are roughly similar in other respects (e.g., in effort per
theorem considered); hence the difference in total effort can be attributed
largely to the difference in number of subproblems generated.

Let us examine some more evidence for this conclusion. Figure 8 shows
the subproblem tree for the proof of (2.27) from the axioms, which is the
only four-step proof LT has achieved to date. The tree reveals immediately

(not-? implies not-jD) implies {p implies q)

Figure 7. Subproblem tree
of proof by LT of (2.17)
(all previous theorems
available).

I,
THE LOGIC THEORY MACHINE 131 1

I j

why LT was able to find the proof. Instead of branching widely at each
point, multiplying rapidly the number of subproblems to be looked at, LT
in this case only generates a few subproblems at each point. It thus man-
ages to penetrate to a depth of four steps with a reasonable amount of
effort (38,367 primitives). If this tree had branched as the other two did,
LT would have had to process about 250 subproblems before arriving at a
proof, and the total effort would have been at least 250,000 primitives.
The statistics quoted earlier on the effectiveness of subproblem generation
support the general hypothesis that the number of subproblems to be ex-
amined increases more or less exponentially with the depth of the proof.

Ml
'i. i

!'

n;

The difficulty is that LT uses an algorithmic procedure to govern its
generationof subproblems. Apart from a few subproblems excluded by the
type II errors of the similarity test, the procedure guarantees that all sub-
problems that can be generated by detachment and chaining will in fact be
obtained (duplications are eliminated).LT also uses an algorithm to deter-
mine the order in which it will try to solve subproblems. The subproblems
are considered in order of generation, so that a proof will not be missed
through failure to consider a subproblem that has been generated.

i

i

Because of these systematic principles incorporated in the executive
program, and because the methods, applied to a theorem list averaging 30
expressions in length, generate a large number of subproblems, LT must
find a rare sequence that leads to a proof by searching through a very
large set of such sequences. For proofs of one step, this is no problem at
all; for proofs of two steps, the set to be examined is still of reasonable
size in relation to the computing poweravailable. For proofs of three steps,
the size of the search already presses LT against its computing limits; and
if one or two additional steps are added the amount of search required to

p implies Up implies q) implies q\

A\r V \

// 4b b \ i I \\\hfigure 8. Subproblem tree of proof by / \
LT of (2.27) (using the axioms). llllllb

i J

li

1 ,1

I

)

iJl
ii
h

i

.1 i

I
i
'fi

I,

i*

!'j,
r\-

.l
!

! i
j

ii '
1 1

1 1;

V

132 ARTIFICIAL INTELLIGENCE

find a proof exceeds any amount of computing power that could practically
be made available.

The set of subproblems generated by the Logic Theory Machine, how-
ever large it may seem, is exceedingly selective and rich in proofs compared
with the set through which the British Museum algorithm searches. Hence,
the latter algorithm could find proofs in a reasonable time for only the
simplest theorems, while proofs for a much larger number are accessible
with LT. The line dividing the possible from the impossible for any given
problem-solving procedure is relatively sharp; hence a further increase in
problem-solving power, comparable to that obtained in passing from the
British Museum algorithm to LT, will require a corresponding enrichment
of the heuristic.

Modification of the Logic Theory Machine
There are many possible ways to modify LT so that it can find proofs
of more than two steps in a way which has reason and insight, instead of
by brute force. First, the unit cost of processing subproblems can be sub-
stantially reduced so that a given computing effort will handle many more
subproblems. (This does not, perhaps, change the "brute force" character
of the process, but makes it feasible in terms of effort.) Second, LT can

be modified so that it will select for processing only subproblems that have
a high probability of leading to a proof. One way to do this is to screen
subproblems before they are put on the subproblem list, and eliminate
the unlikely ones altogether. Another way is to reduce selectively the num-
ber of subproblems generated.

For example, to reduce the number of subproblems generated, we may
limit the lists of theorems available for generating them. That this approach
may be effective is suggested by the statistics we have already cited, which
show that the number of subproblems generated by a method per theorem
examined is relatively constant (about one subproblem per seven
theorems).

An impression of how the number of available theorems affects the
generation of subproblems may be gained by comparing the proof trees of
(2.17) (Fig. 7) and (2.27) (Fig. 8). The broad tree for (2.17) was pro-
duced with a list of twenty theorems, while the deep tree for (2.27) was
produced with a list of only five theorems. The smaller theorem list in the
latter case generated fewer subproblems at each application of one of the
methods.

Another example of the same point is provided by two proofs of
theorem 2.48 obtained with different lists of available theorems. In the
one case, (2.48) was proved starting with all prior theorems on the
theorem list; in the other case it was proved starting only with the axioms
and theorem 2.16. We had conjectured that the proof would be more

I

THE LOGIC THEORY MACHINE 133
difficult to obtain under the latter conditions, since a longer proof chain
would have to be constructed than under the former. In this we were
wrong: with the longer theorem list, LT proved theorem 2.48 in two steps,
employing 51,450 primitives of effort. With the shorter list, LT proved
the theorem in three steps, but with only 18,558 primitives, one-third as
many as before. Examination of the first proof shows that the many "ir-
relevant" theorems on the list took a great deal of processing effort. The
comparison provides a dramatic demonstration of the fact that a problem
solver may be encumbered by too much information, just as he may be
handicapped by too little.

We have only touched on the possibilities for modifying LT, and have
seen some hints in LT's current behavior about their potential effective-
ness. All of the avenues mentioned earlier appear to offer worthwhile
modifications of the program. We hope to report on these explorations at a
later time.

Conclusion

We have provided data on the performance of a complex information
processing system that is capable of finding proofs for theorems in ele-
mentary symbolic logic. We have used these data to analyze and illustrate
the difference between systematic, algorithmic processes, on the one hand,
and heuristic, problem-solving processes, on the other. We have shown
how heuristics give the program power to solve problems in a reasonable
computing time that could be solved algorithmically only in large numbers
of years. Finally, we have assessed the limitations of the present program of
the Logic Theory Machine and have indicated some of the directions that
improvement would have to take to extend its powers to problems at newlevels of difficulty.

Our explorations of the Logic Theory Machine represent a step in aprogram of research on complex information processing systems that isaimed at developing a theory of such systems, and applying that theory
to such fields as computer programming and human learning and problem-
solving.

I-'-

|.(

ii

i

'
■K:

!

.1

>

t

REALIZATION OF A
GEOMETRY- THEOREM PROVING
MACHINE

H. Gelernter

Introduction

Few of those who have seen a modern high-speed digital computer
digest and transform a mass of data in less time than it takes to follow
the process in the mind can suppress a certain amount of speculation con-
cerning the future of such machines. Under the assumption that the
computer is operating at the mere threshhold of its capacity in performing
the tasks we have thus far delegated to it, a long-range program directed
at the problem of "intelligent" behavior and learning in machines has been
established at the IBM Research Center in New York (Gelernter and
Rochester, 1958). In particular the technique of heuristic programming
is under detailed investigation as a means to the end of applying large-
scale digital computers to the solution of a difficult class of problems cur-
rently considered to be beyond their capabilities; namely those problems
that seem to require the agent of human intelligence and ingenuity for
their solution. It is difficult to characterize such problems further, except,
perhaps, to remark rather vaguely that they generally involve com-
plex decision processes in a potentially infinite and uncontrollable en-
vironment.

If, however, we should restrict the universe of problems to those that
amount to the discovery of a proof for a theorem in some well-defined
formal system, then the distinguishing characteristics of those problems of
special interest to us are brought clearly into focus. We should like our
machine to be able to prove many of the theorems presented to it in a
formal system that is manifestly undecidable. Further, as the machine
134

gains "experience" in proving theorems, we should expect it to be able
to solve problems that were earlier beyond its capabilities.

The requirement that a machine should deal with undecidable systems
places a fundamental restriction on its modus operandi. Finding a suitable
algorithm, the obvious technique for the solution of problems on a digital
computer, is no longer acceptable for the simple reason that no such
algorithm exists. An exhaustive search for the initial axioms and theorems
of the proof, combined with exhaustive development of the proof sequence
by systematically applying the rules of transformation until the required
proof has been produced, has been shown to be much too time-consuming
for so simple a logic as propositional calculus (Newell, Shaw and Simon,
1957a). It is a fortiori out of the question for any of the more interesting

logics. A remaining alternative is to have the machine rely upon heuristic
methods, as people usually do under similar circumstances.

Heuristic Methods

A heuristic method is a provisional and plausible procedure whose pur-
pose is to discover the solution of a particular problem at hand. The use of
heuristic methods by the human mathematician is quite well understood, at
least in its less subtle forms. The reader is referred to the excellent two-
volume treatise by Prof. G. Polya (1954) for a definitive treatment of
heuristics and mathematical discovery. A machine that functioned under
the full set of principles indicated by Polya would be aformidable problem-
solver in mathematics, and would be well on the way toward satisfying
Turing's requirements for a machine able to compete successfully in the
"imitation game" (1950). Such a machine, however, lies in the indefinite
future, for the art of instructing a computer is yet in too primitive a state
to consider translating Polya into machine language. As a representative
problem more in keeping with the present state of computer technology,
we have selected the discovery of proofs for theorems in elementary
euclidean plane geometry in the manner, let us say, of a high-school
sophomore. This problem contains in relatively pure form the difficulties
we must surmount in order to attain our stated goal. It must be emphasized
that although plane geometry will yield to a decision algorithm, the proofs
offered by the machine will not be of this nature.. The methods developed
will be no less valid for problem-solving in systems where no such decision
algorithm exists.

Although we have narrowed the scope of our study to include only those
machines that deal with formal systems, there is ample justification for
such a restriction. First, the concept of a problem is now well defined, as is
the concept of a solution for that problem. Second, our ultimate goal stands
clearly before us; it is the design of an efficient theorem-prover in some un-

;

I

I;

I-

i :

!':
I '

I,

.i

3

I

I, I

I

!■-■

'

1 11

A GEOMETRY-THEOREM PROVING MACHINE 135

V

136 ARTIFICIAL INTELLIGENCE

decidable system. And, finally, just as manipulation of numbers in arith-
metic is the fundamental mode of operation in contemporary computers,
manipulation of symbols in formal systems is likely to be the fundamental
operating mode of the more sophisticated problem-solving computers of
the future. It seems clear that while the problems of greatest concern to
lay society will be, for the most part, not completely formalizable, they
will have to be expressed in some sort of formal system before they can be
dealt with by machine. 1

Our problem, then, is a statement (or string) in some formal logistic
system. A solution for the problem will be a sequence of statements, each
of which comprises a string of symbols of the alphabet of the system. The
last string of the solution will be the problem itself; the first will always be
an axiom or previously established theorem of the system. Every other
string will be immediately inferable from some set preceding it or will
itself be an axiom or previously established theorem.2 It is the task of the
machine to choose from its stock of axioms and theorems the appropriate
ones for the base of the proof, and to generate from these the remaining
strings necessary to completetheproof.

The problem of theorem-proving is, in a sense, of a particularly simple
nature. Once a sequence of expressions is found that passes the test for a
proof of the theorem (such a test always exists), one may, so to speak,
"close the book" on that problem, provided that no stipulations have been
made concerning the elegance required of the proof. But, basing our esti-
mate on the work of Newell, Shaw, and Simon (1957), any computer
extant would require times of the order of a thousand years to prove a not
uncommon ten-step geometry theorem by exhaustively developing se-
quences until one emerged that passed the test for a proof. What is clearly
called for is a technique for generating sequences with a much higher a
priori probability of being the solution to the problem than those generated
by an exhaustion algorithm.

As did the Logic Theorist of Newell, Shaw, and Simon, the geometry
machine relies upon the well-known analytic method to achieve this end.
By working backward, the machine is assured that every sequence it con-
siders does indeed terminate in the required theorem. This in itself, how-
ever, represents no striking improvement over exhaustion without addi-
tional heuristics, for the advantages of working backward are purchased
at a steep price; each sequence generated, while terminating properly, is
no longer guaranteed to be a proof of anything at all. Indeed, most of the
strings generated in this way will be false! But it is here that the great

"For a critique of some attempts to formalize

scientific,

but nonmathematical
theories, see Dunham, Fridshal, and Sward (1959).

2 The machine will use the deduction theorem to get h- {premises} {conclusions}
from {premises}|-{conclusions}.

A GEOMETRY-THEOREM PROVING MACHINE 137

t

h
|; ;

j; j

i

- 1

I

power of the analytic method lies, for if one could find a way of making
their falseness manifest, such sequences could be immediately rejected,
allowing most of the deadwood to be pruned away from the highly
branched problem-solving tree. The set of sequences generated under such
a process would contain fewer members by many orders of magnitude
by the time the search reached any depth, and the density of possible
proofs for the theorem among them would be proportionately greater.
It is here, too, that the geometry machine finds the additional theorem-
proving power necessary for the complex formal system assigned to it;
theorem-proving power that was not necessary, and therefore not sought
for in the propositional calculus machine of Newell, Shaw, and Simon
(Polya, 1954). Like the human mathematician, the geometry machine
makes use of the potent heuristic properties of a diagram to help it distin-
guish the true from the false sequences. Although the diagram is useful
to the machine in other ways as well, the single heuristic "Reject as false
any statement that is not valid in the diagram" is sufficient to enable the
machine to prove a large class of interesting theorems, some of which con-
tain a certain trivialkind of construction.

Before examining the internal structure of the geometrymachine in some
detail, we remark on two fundamental, if obvious, principles that must
guide the choice of heuristics for any problem-solving machine. A heuristic
is, in a very real sense, a filter that is interposed between the solution gen-
erator and the solution evaluator for a given class of problems. The first
requirement for such a filter is a consequence of the fact that its introduc-
tion into the system is never costless. It must, therefore, be sufficiently
"nonporous" to result in a net gain in problem-solving efficiency. Secondly,
a heuristic will generally remove from consideration a certain number of
sequences that are quick and elegant solutions, if not indeed all solutions,
to some potential problems within the domain of the problem-solving ma-
chine. The filter must, then, be carefully matched to that subclass of prob-
lems in the domain containing those that are considered "interesting," and
are therefore likely to be posed to the machine. For a given class of
heuristics, the balance between these essentially opposing requirements
is largely a function of the organization and computing power of the ma-
chine, and can under certain rather easily attainable conditions be quite
critical. In the case of the Logic Theorist 3 experiments with varying
"strengths" of a particular heuristic (the similarity test) indicated that the
optimum porosity of that heuristic varied markedly with the length of the

The designers of the Logic Theorist were not unaware of this heuristic device.In a later version of that machine, they did, in

fact,

include some syntactic heuristics
to reject false subgoals. To use a semantic interpretation of the propositional cal-
culus (a truth table, for example) for this purpose would have reduced the Logic
Theorist to triviality.

138 ARTIFICIAL INTELLIGENCE

problem and the number of theorems already established in the theorem
memory, a consequence of the limited storage capacity of the computer.

The Geometry Machine

With the object of our research program clearly determined, there were
a number of specific alternatives to theorem-proving in Euclidean geometry
that might have been adopted as a test problem; the evaluation of indefi-
nite integrals, for example, or theorem-proving in the pure functional
calculus. The decisive point in favor of geometry was the great heuristic
value of the diagram. The creative scientist generally finds his most valu-
able insights into a problem by considering a model of the formal system
in which the problem is couched. In the case of Euclidean geometry, the
semantic interpretation is so useful that virtually no one would attempt the
proof of a theorem in that system without first drawing a diagram; if not
physically, then in the mind's eye. If a calculated effort is made to avoid
spurious coincidences in the figure, one is usually safe in generalizing any
statement in the formal system that correctly describes the diagram, with
the notable exception of those statements concerning inequalities. Further
geometry provides illustrative material in treatises and experiments in
human problem-solving. It was felt that we could exchange valuable in-
sights with behavioral scientists during the course of our research. In any
event, elementary Euclidean geometry is comprehensible to every segment
of the scientific community to which we should wish to communicate our
results. Finally, it should not be a difficult task to generalize our machine
to include the more interesting case of the non-Euclidean geometries. A
program of the same theorem-proving power as our Euclidean theorem-
prover should be sufficient to prove a large class of non-obvious theorems
in non-Euclidean geometry. A machine furnished with a non-Euclidean dia-
gram (no more difficult to supply than the Euclidean one in suitable
analytic form) encounters none of the assault on rationality experienced
by a human mathematician searching from some heuristic insight into a
theorem by considering a non-Euclidean diagram.

The formalization of geometry must be carried out within the framework
of the lower functional calculus. Since we are interested in having the
machine produce proofs comparable to those of a high-school student,
we have preferred to construct a more or less ad hoc system following the
scheme of most elementary texts, rather than to adopt as a primitive basis
the fundamental axiomatization of Tarski, Hilbert, or Forder. No attempt
has been made to provide a formalization that is either complete or non-
redundant. If at some later time, the machine is able to prove one axiom
from the others, that axiom will be discarded and we shall applaud the
elegance displayed by our automaton. With regard to completeness, the

I

I
A GEOMETRY-THEOREM PROVING MACHINE 139

i Heuristic computer 1,—T^ ,
Syntax computer / Diagram computer

; :
f

I'"
1 i

i
Figure 1.

machine is granted the same privileges enjoyed by the high-school student
who is always assuming (i.e., introducing as additional axioms) the truth
of a plethora of "obviously self-evident" statements concerning, for exam-
ple, the ordering properties of points on a line and the intersection proper-
ties of lines in a plane. Some of these statements are indeed independent
of his original axioms, and must be introduced to complete the system.
Most could be derived (but usually with some difficulty) from what he
already has. There is nothing essentially wrong with this procedure of
extracting assumptions from the model, provided that one is fully aware
that this is being done (of course, this is rarely the case for the average
student), and it simplifies the proof considerably without invalidating it.
The geometry machine explicitly records its assumptions for a given proof.
It could, if necessary, minimize the danger that it is proving a specific
instance of a given theorem by drawing alternate diagrams to test the
generality of its assumptions.

I-
h

■i :-i

iThe geometry machine is in reality a particular state configuration of
the IBM 704 electronic Data Processing Machine specified by a rather
long and complex program written for the computer. Its organizationfalls
naturally into three parts: a syntax computer and a diagram computer
both embedded in an executive routine, which is a heuristic computer. The
flow of control is indicated in Fig. 1 .

Manipulation of the formal system is relegated to the syntax computer,
which has within it the equivalent of most of the syntactic heuristics used
by the Logic Theorist.4 The diagram computer contains a coordinate
representation of the theorem to be established together with a series of
routines that produce a qualitative description of the diagram. It is im-
portant to point out that although the procedures of analytic geometry are
used to generate the description, the only information transmitted to the
heuristic computer (there is no direct link between the diagram and the
formal system) is of the form: "Segment AB appears to be equal to seg-
ment CD in the diagram," or "Triangle ABC does not contain a right angle
in the diagram." The behavior of the system would not be changed if the
diagram computer were replaced by a device that could draw figures on
paper and scan them.

■ i , i

i

4 The process of chaining as denned by Newell et al. is under the control of theheuristic computer.

i I

j

I I

I

, I

iJIL«

140 ARTIFICIAL INTELLIGENCE

-

The major function of the heuristic computer for our first system, the
subject of this report, is to compare strings generated by the syntax com-
puter (working backward) with their interpretation in the diagram, reject-
ing those sequences that are not supported by the model. In addition to
the above, the heuristic computer performs several other tasks. Among
these are the organization of the proof-search process and the recognition
of the syntactic symmetry of certain classes of strings. The latter function
produces behavior equivalent to that of the human mathematician who,
when A and B are syntactically symmetric, and both must be established,
will merely prove A, and say "Similarly,B." It is an important feature, and
is described in detail in an earlier report (Gelernter, 1959a). The proce-
dures above are clearly independent of geometry; they are applicable to
any formal system with its corresponding interpretation. The heuristic
computer applies some additional semantic heuristics that are not inde-
pedent of geometry. These may be "switched off" so that the behavior of
the machine can be observed with and without specific geometry heuristics.

The character of the theorem-proving machine is determined largely by
the heuristic computer. Modifications and improvements in the system (the
introduction of learningprocesses, for example) will be made by modifying
this part of theprogram.

Our first system does not "draw" its own initial figure, but is, instead,
supplied with the diagram in the form of a list of possible coordinates for
the points named in the theorem. This point list is accompanied by another
list specifying the points joined by segments. Coordinates are chosen to

Figure 2. Problem-solving graph. The nodes G," represent subgoals of order i,
with a numbering the subgoals of a given order. Pt"» is a transformation on

G,"

into G<? ,

I,-

'■■I

'J,

A GEOMETRY-THEOREM PROVING MACHINE 141

reflect the greatest possible generality in the figures. Later systems will
construct their own interpretation of the premises, but since most problems
for high school students are accompanied by a diagram, it was felt that we
could dispense with this additional spate of programming at the current
stage. When the machine is drawing its own figures, points will be chosen
at random, subject to the constraints of the premises.

In working backward, the system generates a problem-solving graph,
defined in the following way: Let G0 be the formal statement to be estab-
lished by the proof. It will be called the problem goal. If G, is a formal
statement with the property that Gi_ x may be immediately inferred from
Gi, then G, is said to be a subgoal of order i for the problem. All Gj such
that j< i are higher subgoals than Gb where G0 is considered to be a
subgoal of order zero. The problem-solving graph (Fig. 2) has as nodes
the Gj, with each G, joined to at least one d-i by a directed link. Each
link represents a given transformation from G, to Gi-!. The problem is
solved when any Gi can be immediately inferred from the premises and
axioms. If, as is generally the case in geometry, a given subgoal is a con-
junction of statements, the graph splits at that point, and each parallel
subgoal must be separately established. At any given time, the problem-
solving graph is a complete representation of the current status of the
proof-search process.

The organization of the heuristic computer (which is also the organiza-
tion of the entire system) is displayed in greatly simplified form in Fig. 3.
The diagram and syntax computers are accessible as subroutines to the
heuristic computer. In operation, the machine executes the following proc-
esses (numbered below to correspond with like-numbered blocks in the
flow chart).

1. The diagram is scanned to construct three lists, one containing every
segment in the figure, one the angles, and one the triangles. Each element
on a list is followed by a sublist describing that element.

2. The initial configuration of the system is set up, with the premises
placed on a list of established formulas, and the conclusion on the problem-
solving graph as a zero-ordersubgoal.

3. Definitions of nonprimitive predicates in the premises are added to
the list of established formulae.

4. A subgoal to be established (the generating subgoal) is chosen from
the problem-solving graph.

5. Appropriate axioms and theorems are selected from the theorem
memory and, by working backward, a set of lower subgoals is generated
such that if any one of these is established, the generating subgoal may be
established by modus ponens and the generating axiom (or theorem). If
the generating subgoal was labeled "provisionally fruitless" (see step 8),
constructions are attempted (seebelow, p. 144).

j

i

I
i
!

Ir
i
i
i

i

11,I 1 ,
i

i

142 ARTIFICIAL INTELLIGENCE

!

*.

Figure 3. Simplified flow chart for the geometry-theorem proving machine.

6. Subgoals that are not valid in the diagram are rejected, as are those
that appear as higher subgoals on the graph (or are syntactically symmetric
to some higher subgoal).

7. If any lower subgoal is valid by virtue of its instance on the list of
established formulas or if it may be assumed from the diagram, the gen-
erating subgoal is established; otherwise—8. Acceptable nonredundant lower subgoals are added to the graph,
and a new subgoal generator is chosen (4). If there are no acceptable
lower subgoals and a construction is possible at this point, the generating
subgoal is designated as provisionally fruitless. If a construction is not
possible, or if the machine has tried and failed to find one, the generating
subgoal is designated as fruitless.

r
p

If:
A GEOMETRY-THEOREM PROVING MACHINE 143

■ !

9. If the generating subgoal is established, it is added to the list ofestablished formulas, together with all of its higher consequences as deter-mined by the graph. If there are no parallel subgoals remaining to be estab-lished, the machine reconstructs the proof from the problem-solving graph
and prints it (11).

10. If at any time, every free subgoal on the graph is fruitless, the ma-chine fails, providing it has not previously exhausted its available storageor thepatience of the operator.

It is within blocks 4, 5 and 6, where subgoals are chosen, developed, anddiscarded, that the major heuristics reside. These subprograms represent,if you like, the seat of our artificial intelligence.
!

Some Early Results ;.< i
The geometry machine is able to prove many of the theorems withinthe scope of its ad hoc formal system using the diagram only to indicatewhich subgoals are probably valid. In this way, the following theorem is

proved in less than a minute."
Theorem: A point on the bisector of an angle is equidistant from thesides of the angle (see Fig. 4 in Appendix A).
In less than five minutes, the machine is able to find the attached proof,which requires the construction of an auxiliary segment.
Theorem: In a quadrilateral with one pair of opposite sides equal andParallel, the other pair of sides are equal (see Fig. 5 in Appendix B).
Although the introduction of a new element by the machine is impres-sive, the construction in this proof is essentially trivial, for the new segment

merely joins two already existing points. It was discovered by the follow-mg process. In attempting to develop subgoals for the string "AB = CD,"the machine could find none that were valid in the diagram. The normalProcedure at this point is to seek an alternative path on the problem-solving graph. But when none is available (as was the case here, sincethe offending string is a zero-order subgoal), the machine reexaminesthose of the previously rejected subgoals containing instances of predi-cates for which there was no representation in the diagram. The machinethen considers for each one an augmented set of premises such that the
In the proofs displayed herein, the nonobvious predicates have the following

interpretations:

■

t ■

,

OPP-SIDE XYUV Points X and V are on opposite sides of the line through
points U and V.

SAME-SIDE XYUV Points X and V are on the same side of the line through
points U and V.

PRECEDES XYZ Points X,V, and Z are collinearin that order.COLLINEAR XYZ Points X, V, and Z are collinear.

i
I i

144 ARTIFICIAL INTELLIGENCE

k.

interpretation does contain a representation of the predicate. If the string
is valid in the augmented system, and there exist theorems permitting the
required additional premises to be derived from the original set, then the
string becomes a subgoal in the augmented system. The added premises
specify a construction in the diagram that is permitted by virtue of the
theorems through which they were derived. Returning to our example, the
subgoal "AABD aCDB" is generated for the string "AB = CD," but
the required triangles are not represented in the diagram until the premise
"Segment BD exists" is added. The axiom "Two distinct points determine
a segment" justifiesthe construction." The entire process is a variant of the
major heuristic above, and is clearly independent of the particular formal
system under consideration. Note, too, that the process is finite, since no
new points are introduced into the predicates; the old ones are merely
reconsidered.

Our second example illustrates one further point. Although it is clear
in the diagram (Fig. 5) that the transversal BD makes alternate interior
angles with sides BC and AD, this is a consequence of the theorem
"Opposite vertices of a convex quadrilateral fall on opposite sides of the
diagonal through the other vertices." That this is not true of a general
quadrilateral becomes clear when one considers the outside diagonal of a
reflex quadrilateral. A completely rigorous solution, then, requires that one
prove the lemma above if it is not already available, and that one demon-
strate that the quadrilateral ABCD can only be convex. Rather than do
this, the machine makes the usual assumption that the diagonal forms
alternate interior angles with the opposite sides of the quadrilateral. Un-
like the usual high-school text, however, the assumption is made explicit in
theproof.

The theorem-proving system described thus far is adequate for many
problems of greatercomplexity than the ones cited above. However, with a
linear increase in the number of individual points mentioned in the prem-
ises, the rate of growth of the problem-solving graph increases exponen-
tially and the time required to explore the graph increases correspondingly.
If the machine were able to select those among a given set of subgoals that
were more likely to lead to a solution, much of the wasted search time
could be eliminated. Two specific geometry heuristics have been introduced
to enable the machine to do this. The first is a routine that recognizes cer-
tain of the subgoals that are usually established in just one step. Identities
are in this category, for example, as are equalities between angles that
are observed to be vertical angles in the diagram. Such subgoals

6 Our ad hoc formal system requires that the segments joining the vertices of a
triangle be specified, as well as the vertices themselves, to define the triangle. This is
necessary in order to avoid the difficulties that would otherwise arise when the theo-
rem names a large number of noncollinear points. If our formal system were a true
point geometry, all such constructions would be implicit in the diagram.

j

I

A GEOMETRY-THEOREM PROVING MACHINE 145

\i
\i

i

■

! .

! ; i i

' '

:'"]

are placed on a priority list and developed before any of the othersare considered. The second specific heuristic is a routine that assigns adistance between each subgoal string and the set of premise strings insome vaguely defined formula space. After those on the priority list havebeen developed, the next subgoal chosen is that which is "closest" to thepremise set in formula space.
It is instructive to examine the machine's behavior in proving complextheorems both with and without the expanded set of semantic heuristics,

the theorem "Two vertices of a triangle are equidistant from themedian to the side determined by those vertices," the machine finds a proofm about eight minutes with the basic heuristics alone (see Fig 6 in Ap-pendix C). The expanded set of heuristics produces a proof in oneminute,m addition, the second proof is quite short and to the point, while the firstproof meanders blindly about the direct path to the goalbefore reaching itReflecting the greater efficiency with which the machine attacked theProblem in the second trial, only four circuits of the subgoal-generatingoop were required compared with twenty-four circuits required withoutme extended heuristics. Twenty-one intermediate subgoals were gener-ated compared with sixty-one in the first case, and the problem-solvinggraph extended to a depth of only three levels, rather than twelve levelstor the proof with basic heuristics alone.
For a particular case of a problem taken from a Brooklyn technical highschool final examination in plane geometry a solution was found with theextended heuristics in less than five minutes. With the basic heuristicsaione, the machine exhausted its working storage in half an hour withoutHaving completed the problem. On the other hand, there are problems forwhich the machine achieves no net gain by applying the additionalheuristics. The theorem: "Diagonals of a parallelogram bisect one an-°tner was proved in about three minutes in either mode. The proofsProduced m each trial were equivalent, though not the same. A Brooklyntechnical high school final examination supplied an example of an inter-mediate case, where the machine found identical proofs in both modesout took almost three times as long with the basic heuristics alone (eightminutes, compared with three minutes with extended heuristics) We shallundoubtedly encounter cases for which the application of the extended setwill result in a net loss of efficiency, although none has appeared yet in ourlimited tests.

Conclusion
It is well at this point in our discussion to reemphasize the fact that theobject of this research has not been the design of a machine capable ofProving theorems in Euclidean plane geometry, or even one able to prove

146 ARTIFICIAL INTELLIGENCE

theorems in some undecidable system such as number theory. We are,
rather, interested in understanding the use of heuristic methods (or strate-
gies) by machines for the solution of problems that would otherwise be in-
accessible to them. Theorem-proving machines in themselves are objects of
much interest to mathematicians and logicians, and important work at
IBM is being done on this approach by Wang and by Gilmore. Wang
(1960a) has written a program for the IBM 704 that is able to prove all
theorems in propositional logic offered by Russell and Whitehead in the
Principia Mathematica, whereas the Logic Theorist could master only
about 38 of the 52 theorems appearing in chap. 2 of that volume. Also,
the time required by the latter machine was far in excess of that used by
the former. Newell, Shaw, and Simon, however, were interested in heuristic
methods, whereas Wang, and also Gilmore, whose machine deals with the
first order predicate calculus, are searching for algorithms, which, though
less than a decision procedure, will produce "interesting" proofs within a
reasonable amount of time. Both Wang and Gilmore find that for more
complex formal systems, heuristics are required (they prefer the word
"strategies") to make their algorithms sufficiently selective to produce,
within acceptable bounds on space and time, proofs of any great interest.

The work of Wang and Gilmore is most relevant to a new branch of
applied logic first characterized by Wang. He names this discipline "in-
ferential analysis," and defines it to include "treatment of proofs as numer-
ical analysis does calculations" (1960a). The results of inferential analysis
are expected to "lead to mechanical checks of new mathematical results,"
and ultimately "lead to proofs of difficult new theorems by machine." The
present author feels that inferential analysis is relevant, too, to the problem
of intelligent behavior in machines. An automaton confronted with the real
world, however, will certainly have to rely heavily on heuristics, for the
unorthodox formal systems describing its environment will probably be far
from amenable to the traditional methods of mathematical logic.

In conclusion, we should like to specify the course of this research for
the immediate future. The machine described above is purely a problem-
solving system. Except for the annexation of new theorems to the list of
axioms, its structure is static. A sequence of practice problems given to
the machine will not improve its performance unless a usable theorem is
among them. Because it is incapable of developing its own structure, the
machine will always be limited in the class of problems it can solve by the
initial intent of the designer. It seems that the problem of designing a more
general problem-solving machine will be enormously greater than that of
designing one not so intelligent but with the capacity to learn.

An immediately obvious approach to the problem of introducing learn-
ing into the geometry machine is to allow the machine to adjust all of the
parameters that determine its specific semantic heuristics, maximizing the

r
'I

1 !ii i

A GEOMETRY-THEOREM PROVING MACHINE 147

:

predicted utility of those subgoals that prove to be useful in practice. The
machine will thus improve the match of its heuristic filters to the class of
problems considered interesting enough to be presented to it for solution.
Of greater significance would be the introduction of routines enabling the
machine to recognize recurring patterns in its proof-search procedure.
Once discovered, such a pattern would enable the machine to construct its
own heuristics designed to induce a repetition of the pattern in later proofs.
For example, the machine might notice that certain classes of premise
strings are regularly followed by the same first step in a proof. The heu-
ristic derived from this pattern would search the premises for such strings
and perform the first deduction before starting on the problem-solving
graph. The difficult subject of abstract pattern recognition must be under-
stood first, however, and the transformation of pattern to effective heuristic
is by no means trivial. But whatever approach to learning is considered
most worthwhile to explore, the geometry machine should serve as an ex-
cellent framework within which the explorations may be pursued.

AppendixA

Premises
Angle ABD equals angle DBC
Segment AD perpendicular segment AB
Segment DC perpendicular segment BC

Definition
Right angle DAB
Right angle DCB
Syntactic Symmetries
CA, 88, AC, DD

Goals
Segment AD equals segment CD

Solution
AngleABD equals angle DBC

Premise
Right angle DAB

Definition of perpendicular
Right angle DCB

Definition of perpendicular
Angle BAD equals angle BCD

All right angles are equal

ii '
I

I;
;l

;

;i

;

I

,i

i

i
[

iI ,
f l '

i

t

Figure 4.

V

148 ARTIFICIAL INTELLIGENCE

Segment DB
Assumption based on diagram

Segment BD equals segmentBD
Identity

TriangleBCD
Assumption based on diagram

Triangle BAD
Assumption based on diagram

Triangle ADB congruent triangle CDB
Side-angle-angle

Segment AD equals segment CD
Corresponding elements of congruent triangles are equal

Total elapsed time = 0.3200 minute

Appendix B

Premises
Quad-lateral ABCD
Segment BC parallel segment AD
Segment BC equals segmentAD

CA BA DA
DB AB CB
AC DC BC
BD CD AD

Figure 5.
Goals
Segment AB equals segment CD

I am stuck, elapsed time = 0.88 minute
Construct segmentDB
Add premise segmentDB
Restart problem

Solution
Segment BC parallel segment AD

Premise
Opp-side CADB

Assumption based on diagram
Segment DB

Premise
Angle ADB equals angle CBD

Alternate interior angles of parallel lines

I

I

A GEOMETRY-THEOREM PROVING MACHINE 149

I j

i

]■
i

:
i

i t

\

\
!
i

1 i

I (
ft'

Segment BC equals segment AD
Premise

Segment BD equals segment DB
Identity

Triangle CDB
Assumption based on diagram

Triangle ABD
Assumption based on diagram

Triangle ABD congruent triangle CDB
Side-angle-side

Segment AB equals segment CD
Correspondingelements of congruent triangles

Total elapsed time = 4.06 minutes

Appendix C

Premises
Triangle ABC
Precedes BMC
Segment BM equals segment MC
Precedes ADM
Precedes DME
Segment BD perpendicular segment AM
Segment CE perpendicular segment ME

Figure 6.
Definition
Right angle MEC
Right angle BDM
Right angle BDA
Angle BDA equals angleBDM

No syntactic symmetries

Goals
Segment BD equals segmentEC

Solution
Precedes BMC

Premise
Segment EC

Assumption based on diagram

V

M

150 ARTIFICIAL INTELLIGENCE

AngleECM equals angle BCE
Same angle

Precedes DME
Premise

Angle CED equals angle MEC
Same angle

Right angle BDM
Definition of perpendicular

Right angle MEC
Definition of perpendicular

AngleBDM equals angle CEM
Right angles are equal

Angle CED equals angle BDM
Angles equal to the same angle are equal

Same side MEDB
Assumption based on diagram

Same side DACE
Assumption based on diagram

Collinear EDM
Ordered collinearity implies collinearity

Precedes ADM
Premise

Precedes EDA
Combinatorial properties of ordered collinearity

Collinear EDA
Ordered collinearity implies collinearity

Angle BDE equals angle AEC
Different names for equal angles

Precedes EMA
Combinatorial properties of ordered collinearity

Angle CEMequals angle AEC
Same angle

Angle BDE equals angle MEC
Angles equal to the same angle are equal

Angle CED equals angle EDB
Anglesequal to the same angle are equal

Opp side CBED
Assumption based on diagram

Segment ED
Assumption based on diagram

Segment EC parallel segment BD
Segments are parallel if alternate interior angles are equal

Opp side EDCB
Assumption based on diagram

>I: \<

■1

Segment CB
Assumption based on diagram

Angle BCE equals angle DBC
Alternate interior angles of parallel lines

Angle ECM equals angle DBC
Angles equal to the same angle are equal

Same side CMBD
Assumption based on diagram

Same side MBEC
Assumption based on diagram

Collinear CMB
Ordered collinearity implies collinearity

Angle DBM equals angle BCE
Different names for equal angles

Angle MBD equals angle MCE
Angles equal to the same angle are equal

Angle DMB equals angle EMC
Vertical angles

Segment BM equals segment MC
Premise

Triangle BDM
Assumption based on diagram

Triangle CEM
Assumption based on diagram

Triangle BDM congruent triangle CEM
Angle-side-angle

Segment BD equals segment EC
Corresponding elements of congruent triangles

Total elapsed time = 8.08 minutes

WITH BASIC HEURISTICS

Solution
Precedes DME

Premise
Precedes BMC

Premise
Angle DMB equals angle EMC

Vertical angles
Right angle BDM

Definition of perpendicular
Right angle MEC

Definition of perpendicular

V

M

152 ARTIFICIAL INTELLIGENCE

Angle BDM equals angle CEM
Right angles are equal

Segment BM equals segmentMC
Premise

Triangle CEM
Assumption based on diagram

Triangle BDM
Assumption based on diagram

Triangle BDM congruent triangle CEM
Side-angle-angle

Segment BD equals segment EC
Corresponding elements of congruent triangles

Total elapsed time = 1.06 minutes

WITH EXTENDED HEURISTICS

i

H

.; I

i ;
I

If
■ IP:

Ii

EMPIRICAL EXPLORATIONS
OF THE GEOMETRY -
THEOREM PROVING MACHINE

H. Gelernter, J. R. Hansen, & D. W. Loveland

Introduction
In early spring, 1959, an IBM 704 computer, with the assistance of a

program comprising some 20,000 individual instructions, proved its first
theorem in elementary Euclidean plane geometry (Gelernter, 19596).
Since that time, the geometry-theorem proving machine (a particular state
configuration of the IBM 704 specified by the afore mentioned machine
code) has found solutions to a large number of problems1 taken from high-
school textbooks and final examinations in plane geometry. Some of these
Problems would be considered quite difficult by the average high-school
student. In fact, it is doubtful whether any but the brightest students could
have produced a solution for any of the latter group when granted the same
amount of prior "training" afforded the geometry machine (i.e., the same
vocabulary of geometric concepts and the same stock of previously proved
theorems).

The research project which had as its consequence the geometry-
theorem proving machine was motivated by the desire to learn ways to
use modern high-speed digital computers for the solution of a new and
difficult class of problems; a class heretofore considered to be beyond the
capabilities of a finite-state automaton. In particular, we wished to make
pur computer perform tasks which are generally considered to require the
intervention of human intelligence and ingenuity for their successful com-
pletion. The reasons behind our choice of theorem proving in geometry as
a representative task are set forth in detail in an earlier study (1958). We

More than fifty proofs are on file at the present time.
153

V

*

154 ARTIFICIAL INTELLIGENCE

only remark here that problem-solving in geometry satisfies our definition
of an intellectual activity, while being at the same time especially well
suited to the approach we wished to explore. The fact that geometry is
decidable is irrelevant for the purpose of our investigation. The methods
employed by the machine are suitable as well for the proof of theorems in

systems for which no decision algorithm can exist.
We shall not labor the question as to whether our machine is indeed

behaving intelligently in performing a task for which humans are credited
with intelligence. The psychologists offer us neither aid nor comfort here;
they have yet to satisfactorily characterize such behavior in humans, and
have rarely considered the abstract concept of intelligence independent of
its agent. In the final analysis, people are occasionally observed to do
things that may best be described as intelligent, however vague the con-
notations of the word. These are, in general, tasks involving highly complex
decision processes in a potentially infinite and uncontrollable environment.
We should be most happy to have our machine duplicate this kind of be-
havior, whatever label is affixed to it.

Heuristic Programming and the GeometryMachine

The geometry machine is able to discover proofs for a significant number
of interesting theorems within the domain of its ad hoc formal system
(comprising theorems on parallel lines, congruence, and equality and in-
equality of segments and angles) without resorting to a decision algorithm
or exhaustive enumeration of possible proof sequences. Instead, the
theorem-proving program relies upon heuristic methods to restrain it from
generating proof sequences that do not have a high a priori probability of
leading to a proof for the theorem in question.

The general problem of heuristic programming has been discussed by

Minsky (1959a) and Newell, Shaw, and Simon (1959a). The particular
approach pursued by the authors has been described at length in the papers
to which we have already referred (Gelernter et al., 1958, 19596). We
shall therefore defer to the presentation of the machine's detailed results
in the full study summarized here for a description of how these results
were achieved. It should be recorded here, however, that the geometry

machine operates principally in the analytic mode (reasoning backward).

At each stage of the search for a proof, a goal exists which must be "con-
nected" with the premises for the problem by a bridge of axioms and
previously established theorems of lemmas. If the connection cannot be
made directly, then a set of "subgoals" is generated and the process is

repeated for one of the subgoals. Heuristic rules are used to reject subgoals
that are not likely to prove useful, to select one from those remaining to

work on, and to choose particular axioms and theorems to use in generat-

r

155EXPLORATIONS OF THE GEOMETRY MACHINE

j

1 !

ing new subgoals. The machine does depart from this procedure in a num-
ber of circumstances (in setting up an indirect proof, for example), but
these cases account for only a small fraction of the total search time.

The computer program itself was written within the framework of the
so-called Newell-Shaw-Simon list memory (19576). In order to ease the
task of writing so massive and complex a machine code, a convenient
special-purpose list processing language was designed to be compiled by
the already available FORTRAN system for the IBM 704 computer
(Gelernter et al., 19606). The authors feel that had they not made free
use of an intermediate programming language, it is likely that the geometry
program could not have been completed.

Summary of Results

Since its initial solo performance, the geometry machine has existed in
several different configurations. In its earliest and most primitive form, the
system was equipped with a single major semantic heuristic. 2 That first
system was, however, able to prove a large number of interesting, though
admittedly simple theorems in elementary plane geometry.3 The heuristic
rule in question, which is independentof the particular formal system under
consideration, may be described in the following way. All subgoal formulas
that are generated at a given stage of the proof search are interpreted in a
model of the formal system; in our case, the model is a diagram, a formal
semantic interpretation. If the interpreted subgoal is valid in the diagram,
it is accepted as a possible step in the proof, provided that it is noncircular
(Gelernter, 1959a). Otherwise, it is rejected.

As an experiment, a number of attempts were made to prove extremely
simple theorems with the latter heuristic "disconnected" from the system
(i.e., all noncircular subgoals generated were accepted). In each case, the
computer's entire stock of available storage space was quickly exhausted
by the initial several hundreds of first level subgoals generated, and, in
fact, the machine never finished generating a complete set of first level
subgoals. We estimate conservatively that on the average, a number of the
order of 1000 subgoals are generated per stage by the decoupled system.
If one compares the latter figure with the average of 5 subgoals per stage
accepted when the diagram is consulted by the machine, it is easy to see
that the use of a diagram is crucial for our system. (Note that the total
number of subgoals appearing on the problem-solving graph grows
exponentially with the number accepted per stage.)

Since the procedure described above is a heuristic one, errors are oc-
2 A semantic heuristic is one based on an interpretationof the formal system rather

than on the structure of the strings within that system.

' A number of these proofs arereproduced in

Gelernter,

19596.

V

156 ARTIFICIAL INTELLIGENCE

i

M

casionally made in the selection or rejection of formulas as subgoals. The
diagram is made available to the machine in coordinate representation to
finite precision. Formulas are interpreted by transforming them into an
appropriate calculation on the numerical coordinates representing the point
variables. For example, to check the validity of a statement concerning the
equality of two segments, the length of each segment in the figure is cal-
culated, and they are then compared to a certain preassigned number of
decimal places. If, instead, the statement concerned parallel segments, the
slopes would be calculated and compared. In a small number of cases,
round-off error has propagated beyond the allowed value, so that valid
subgoals were rejected, or invalid ones accepted. It is important to point
out, however, that in no case could this effect result in a false proof. Where
valid subgoals were rejected, the machine found alternate paths to the
solution. Where invalid ones were accepted, the machine failed, of course,
to establish them within the formal system. In the worst possible case, the
interpretation error could prevent the computer from finding any solution
at all, but never could it leadto an invalid proof.

It should be clear at this point that the diagram is used only to guide
the search for a proof by supplying yes or no answers to questions of the
form: "Is segment AB equal to segment CD in the figure?", or "Is angle
ABC a right angle in the figure?". There is no direct link between the
diagram and the formal system in the geometry machine. The behavior of
the machine would not be changed if the coordinate representation were
replaced by a device capable of drawing figures on paper and scanning
them.

In the basic theorem-proving system described above, after a set of sub-
goals has been generated, each member of the set is explored in order. The
next subgoal in line is not examined until the one preceding it has been
followed down to a dead end. Too, in generating the next level for a given
subgoal, every applicable theorem available is pressed into service.

This system was soon extended by the introduction of selection heuristics
for both subgoals and subgoal-generating theorems. The subgoal selection
heuristic assigns a "distance" between each subgoal string and the set of
premises in a vaguely defined ad hoc formula space. At each stage, the
next subgoal selected is that which is "closest" to the premises in formula
space. The generator selection routine recognizes certain classes of sub-
goals that are usually established in one step. For such "urgent" subgoals,
the appropriate generator is withdrawn immediately, and an attempt is
made for a one-step proof (of that particular subgoal) before generating
the full set for that formula.

The extended system is able to prove a number of somewhat more dif-
ficult theorems that are beyond the capacity of the basic machine. For
those problems within the range of both systems, the former is, on the

V
i

157EXPLORATIONS OF THE GEOMETRY MACHINE

■i

:

i

"

.■

'

v.

i '

I ,

JdM

average, about three times faster, and
generatesabout two-thirds the total num-
ber of subgoals in half as many subgoal
generationcycles as required by the basic
system. The average depth of the prob-
lem-solving graph for the refined system, A E D

about seven to nine levels, is two-thirds Figure 1.
the average depthfor thebasic system.

By the addition of a simple construction routine, the theorem-proving
power of the machine is expanded to include an entirely new class of
problem, hitherto logically unattainable. The routine, called upon only
when all other attempts have failed, allows the machine to join two pre-
viously unconnected points in the diagram, and extends the newly created
segment to its intersections with all other segments in the figure. The new
segment, when it intersects previously given ones, introduces new points
into the problem which are named by the machine and become part of the
problem system.

At this stage in its development, the geometry machine was capable of
producing proofs that were quite impressive (Appendix l).4 Its perform-
ance, however, fell off rapidly as the number of points in the diagram
increased. This effect was due largely to the fact that unlike humans, who
generally identify angles visually by their vertices and rays, the computer
specifies an angle by a predicate on three variables, the vertex and a point
on each ray. Consequently, the equality of angles 1 and 2 in Fig. 1 may be
represented in thirty-six different ways, since each angle has six different
names. Formal rigor demands, too, that the equality of angles ADH and
EDG, for example, be proved rather than taken for granted. It should be
clear that where the condition above exists, the search for a proof quickly
bogs down in a mass of uninterestingdetail.

In the current system, the angle problem is solved by allowing the
machine to use the diagram to identify a given angle with its full set of
names, and to assume the equality relationship between different names for
the same angle, as does its human counterpart. The geometry machine in
its present configuration is able to find proofs for theorems of the order of
difficulty represented by the following:

Theorem: If the segment joining the midpoints of the diagonals of a
4 In the proofs appended to this paper, the nonobvious predicates have the follow-

ing interpretations:
OPP-SIDE XYUV Points X and V are on opposite sides of the line through

points U and V.
SAME-SIDE XYUV Points X and V are on the same side of the line through

points U and V.
PRECEDES XYZ Points X,V, and Z are collinearin that order,
COLUNEAR XYZ Points X, V, and Z are collinear.

v-

!

M

158 ARTIFICIAL INTELLIGENCE

trapezoid is extended to intersect a side of the trapezoid, it bisects that side
(Appendix 2).

Limitations of the System

It will be immediately evident to those familiar with the properties of
formal logistic systems that unless a construction which generates a new
point is introduced by the machine, all problems are solved within the
framework of a propositional calculus, however complex its structure.
Although the machine's present construction routine can and does generate
new points, we could not expect our results to be of great interest to
logicians until a full set of possible constructions (corresponding to a com-
plete set of existentially quantified axioms) is made available to the system
to abet its search for a proof.

An equally serious limitation on the formal generality of the theorem-
proving machine is imposed by our method for determining the well-
formedness of strings within the logical system. In order to attain the
necessary speed and efficiency in processing, well-formed formulas are
defined by schema rather than recursively. The kind of statement that can
be made in the system is then determined by the schema available to the
machine. The practical effect of this loss in generality is to restrict rather
severely the freedom with which algebraic statements in geometry may be
manipulated.

In addition to the above, there are a number of nonessential bounds on
the theorem-proving ability of the machine. These are a consequence of
the limited speed and memory capacity of the computer for problems of
such highly combinatorial character. Improvements in either of the above
will be immediately effective in extending the class of machine-solvable
problems in both quantity and difficulty.

Conclusion

The initial goal of our research program in machine intelligence has been
attained. If the interrogator were to restrict his probing to the area of
theorem-proving in elementary Euclidean plane geometry, our machine
could be expected to give an excellent account of itself in competition with
a human in Turing's well-known "imitation game" (1950). Of course
there are many other problem areas (solving arithmetic problems, for ex-
ample) where computers have always been able to compete successfully
with humans. The significant point is that a knowledgeable interrogator
would certainly avoid such areas in his questioning, while he might well
(until now, at any rate) introduce a plane geometry problem in a cal-

f
i

EXPLORATIONS OF THE GEOMETRY MACHINE 159
culated attempt to separate the men from the machines. 5 Although the
stage is now set for the argument that any distinct area of human intel-
lectual activity will in the same way succumb to the inexorable logic of
electrons, switches, and gates, we defer to our philosopher colleagues for
debate on the implications of that contention, at least until the time that
computers have been programmed to consider such issues.

There are a number of consequences of our work that are, fortunately,
more concrete than that alluded to above. Perhaps the most important are
those relating to inferential analysis, a new branch of applied logic first
characterized by Wang (1960a). Inferential analysis "treats proofs as
numerical analysis does calculations," and is expected to "lead to mechan-
ical checks of new mathematical results" and, more important, "lead to
proofs of difficult new theorems by machine." It is expected that our tech-
niques for the manipulation and efficient search of problem-solving trees
and our results concerning syntactic symmetry will prove to be useful tools
in pursuing the goals of inferential analysis.

'■'\

Contributions have been made, too, in the area of techniques for com-
puter implementation of complex information processes. Results pertaining
to the design and use of intermediate languages for the specification of list
manipulation processes have been reported elsewhere (Gelernter et al.,
19606). The latter work indicates clearly the requirements of a digital
computer system designed for optimum execution of such list processes. In
brief, a list processing computer should possess hardware facilities for:

1. Generalized indirect addressing; specified in the indirectly addressed
instruction to arbitrary depth and in arbitrary order from either the left or
theright field of a two-address register,

2. Effective address recovery; making available the terminal content of
the address register (the final address in a long and complex indirect
address chain, for example) as the address field for a subsequent operation,

3. Field logic; a greatly expanded set of interfield operations within a
full register sectioned according to some previously established convention,
and

4. List search operations; a list equivalent of the conventional table
look-up instruction.
The bulk storage input-output requirements for a list processing computer
are severe, and are not included in the enumeration above. The system

*It may be argued (and undoubtedly, it will be argued) that the truly knowledge-
able interrogator, cognizant of the decidability of geometry, would certainly avoid
this area as well, perhaps preferring the manifestly undecidable parts of the predi-
cate calculus or number theory to effect the distinction between man and machine.
We recall here that our methods are independent of the decidability of the formal
system, and, in

fact,

Wang (1960a) and Gilmore (1960) have developed proofs for
theorems in the undecidablearea of the predicate calculus.

X

160 ARTIFICIAL INTELLIGENCE

M

design of a digital computer for the manipulation of list structures will be
described in detail in a subsequentpaper.

Finally, we consider the implications of our work for the basic problem
of machine intelligence. The geometry machine, we feel, offers convincing
evidence of the power and fruitfulness of heuristic programming for the
solution of problems of a certain class by computer. In our experience,
the theorem-proving power of the machine has often been extended by
the addition of a single heuristic to a degree equivalent to a three-to-
fivefold increase in the speed or storage capacity of the computer.

Our program has proved to be disappointing as a tool for the study of
the more elementary trial-and-error types of machine learning, largely be-
cause of the rather low rate at which it accumulates experience. It is rea-
sonable to expect, however, that the geometry machine might yet be
pressed into service in an investigation of the higher, conceptual types of
machine learning, providing that one will someday know how to formulate
theproblem.

If nothing else, our work offers some qualitativeindication of the order
of magnitude of difficulty for problems that could be expected to yield to
contemporary computer technology. Three years ago, the dominant opinion
was that the geometry machine would not exist today. And today, hardly
an expert will contest the assertion that machines will be proving interesting
theorems in number theory three years hence.

Appendix 1

Premises
Quad-lateral ABCD
Point E midpoint segment AB
Point F midpoint segment AC
Point G midpoint segment CD
Point H midpoint segmentBD

To Prove
ParallelogramEFGH

Figure 2.
Syntactic Symmetries

Segment DG equals segment GC
Definition of midpoint

BA, AB, DC, CD, EE, HF, GG, FH, CA, DB, AC, BD, GE, FF, EG,
HH, DA, CB, BC, AD, GE, HF, EG, FH

Proof

I

EXPLORATIONS OF THE GEOMETRY MACHINE 161
Segment CF equals segmentFA

Definition of midpoint
Triangle DCA

Assumption based on diagram
i 'jPrecedes DGC

Definition of midpoint
Precedes CFA

Definition of midpoint
Segment GF parallelsegment AD

Segment joining midpoints of sides of triangle is parallel tobase
Segment HE parallel segment AD

Syntactic conjugate
Segment GF parallelsegment EH

Segments parallel to the same segment are parallel
Segment HG parallel segmentFE

Syntactic conjugate
Quad-lateral HGFE MAssumption based on diagram
Parallelogram EFGH

Quadrilateral with opposite sides parallel is a parallelogram
Totalelapsed time = 1.03 minutes

Appendix 2

Premises i
I

,1

Quad-lateral ABCD
Segment BC parallel segment AD
Point E midpoint segment AC
Point F midpoint segment BD
Precedes MEF
Precedes AMB Figure 3.

To prove
Segment MB equals segment MA

j

No Syntactic Symmetries
I Am Stuck, Elapsed Time = 8.12 Minutes
Construct segment CF
Extend segment CF to intersect segment AD in point X

Add to Premises the Following Statements
Precedes CFK
Collinear AKD it

v

A

162 ARTIFICIAL INTELLIGENCE

Proof
Segment BC parallel segment AD

Premise
Collinear AKD

Premise
Segment KD parallel segment BC

Segments collinear with parallel segments are parallel
Opp-side KCDB

Assumption based on diagram
Segment DB

Assumption based on diagram
Angle KDB equals angle CBD

Alternate interior angles of parallel lines are equal
Precedes CFK

Premise
Precedes DFB

Definition of midpoint
Angle KFD equals angle CFB

Vertical angles are equal
Segment DF equals segment FB

Definition of midpoint
Triangle FDK

Assumption based on diagram
Triangle FBC

Assumption based on diagram
Triangle FDK congruent triangle FBC

Two triangles are congruent if angle-side-angle equals angle-side-angle
Segment KF equals segmentCF

Corresponding segments of congruent triangles are equal
Segment CE equals segmentEA

Definition of midpoint
Triangle AKC

Assumption based on diagram
Precedes CEA

Definition of midpoint
Segment EF parallel segment AX

Segment joining midpoints of sides of triangle is parallel to base
Segment EF parallel segment KD

Segments collinear with parallel segments are parallel
Segment FE parallel segment BC

Segments parallel to the same segment are parallel

1

! i >

EXPLORATIONS OF THE GEOMETRY MACHINE 163

.k.

Precedes MEF
Premise

Collinear MEF
Ordered collinear points are collinear

Segment FM parallel segmentBC
Segments collinear with parallel segments are parallel

Segment FM parallel segmentDA
Segments parallel to the same segment are parallel

Triangle DBA
Assumption based on diagram

Precedes AMB
Premise

Segment MB equals segment MA
Line parallel to base of triangle bisecting one side bisects other side

Total elapsed time = 30.68 minutes

j

i

■I

ii i

1

j

I

section 4

Two Important
Applications

What good is artificial intelligence research? Can the devices and
techniques developed be used in the solution of "real" problems?
These are questions which a practical man, an engineer, say, or an
operations research analyst, might reasonably ask.

The reports in this section describe heuristic programs which
solve complex problems in important areas of application. One pro-
gram handles integration problems in the elementary calculus. The
other handles problems of assembly line balancing in a manufacturing
process. The problemshave these features in common:

1. Both are problems which are moderately difficult for intelligent
human beings with college training.

2. Both are readily attackable by heuristic methods, and these
methods closely resemble the methods used by intelligent human
beings to solve theproblems.

3. It is economically feasible to use programs to solve these
problems. In most cases, it would be difficult to hire a man with
comparable skill to solve the problems as cheaply. The time required
by an IBM 7090 to solve the problems is generally much shorter
than would be required by the average human problem-solver skilled
in the problem area. This is true in spite of the fact that present-day
computers were not designed with heuristic programming applications
in mind and hence existing computer languages well suited to
heuristic programming use digital computers quite inefficiently.

The assembly line balancing program developedby F. Tonge is an

V"

166 ARTIFICIAL INTELLIGENCE

f

M

application of heuristic programming to an important management
science problem. Balancing an assembly line involves finding an ef-
ficient arrangement of workers, tasks, and work stations so as to
maximize the rate of assembly or minimize the number of workers
needed for a given rate of assembly. More or less "straightforward"
procedures for doing this have been devised, but they are generally
not practical, since they involve the enumeration of a very large num-
ber of "tries"—combinations of the work elements. Tonge's program
differs from these in that it employs a variety of line balancing
heuristics—"tricks of the trade"—to simplify the constraints, to struc-
ture the assignment part of the problem, and to carry out the actual
computations.

A significant feature of Tonge's program is its "level-of-aspiration"
effort-limiting heuristic. In the line balancing problem, the maximum
rate of assembly or the minimum number of workers for a given rate
can be computed easily, even though the actual assignment cannot.
Tonge's program does not seek the optimal solution but merely one

which is "satisfactory," i.e., within some (given) percentage of the
calculated optimum. The power of this heuristic derives from the
facts that, the closer to optimum one requires the solution to be, the
more computing effort is needed to find the solution (as one would
expect), and that therelationship is strongly nonlinear.

Slagle's SAINT program handles problems in an area familiar to
many of us. By now, the elementary calculus is almost a common
language among university graduates. The integration of elementary
functions (when the answer is not to be found by rote recall or look-
ing in a table of integrals) is not a trivial intellectual task. Many a
college sophomore has stayed up half the night searching for the
"key" which would unlock the solution to some complicated integral.
The successful human performer is generally considered to have not
only a wide repertory of "tricks and transformations" he can apply
but also a keen "intuitive feel" concerning which tricks to choose and
what sequence to apply them in. Finally, analytic integration of ele-
mentary functions constitutes a significant portion of the routine
mathematics of modern engineering and natural science.

SAINT is a program for performing analytic integration of ele-
mentary functions. It uses the same kinds of "tricks" that are taught
to and used by students in elementary calculus courses. In its con-
ception and structure, it is a linear descendant of the Logic Theory
machine. As with LT, the SAINT program shows that the behavior
vaguely labeled "cleverness" or "keen insight" in human problem-
solving is really just the result of the judicious application of

W '
I167TWO IMPORTANT APPLICATIONS

S

I

j

ij

}

;l

;(

I

;!

certain heuristics for narrowing and guiding the search for
solutions.

Fred Tonge is on the faculty of the Graduate School of Industrial
Administration, Carnegie Institute of Technology.

James Slagle is a member of the staff of the Lawrence Radiation
Laboratory, Livermore, California.

M

SUMMARY OF A HEURISTIC
LINE BALANCING PROCEDURE

Fred M. Tonge

1. Introduction

This study describes a heuristic program for assembly line balancing.
We employ heuristic methods because the assembly line balancing problem,
like many combinatorial problems, has not been solved in a practical sense
by advanced mathematical techniques.

Because this approach does not guarantee an optimum solution, the
ultimate measure of a heuristic program is whether it provides better solu-
tions more quickly and/or less expensively than other methods. However,

at this early stage in the development of heuristic procedures there is still
much tobe learned about both the specification and the mechanization on a
computer of such procedures. The research reported here was undertaken
to explore these questions. No special emphasis was placed on producing
an economically competitive program; but the results are sufficiently
interestingto report.

Here we summarize the heuristic program developed for assembly line
balancing and the operating results obtained with that program. A detailed
description of the procedure and further comments on this approach to
utilizing digital computers are presented elsewhere (Tonge, 1961a).

2. Assembly Line Balancing

In many industries (home appliances, automobiles) the product is as-
sembled on a continuous conveyor line. The elemental tasks making up the
assembly operation must be assigned to work stations along the line. (For
m

I
i

A HEURISTIC LINE BALANCING PROCEDURE 169

tiI

t

i

:i

:j

Figure 1. Twenty-one-element problem-directed graph representation.

our purposes, "work station" and "operator" are equivalent.) In the
simplest case, each elemental task (also called "task" or "element") is
characterized by an operation time per unit of product and a partial order-
ing relationship with other elemental tasks.

Figure 1 represents one such assembly (taken from Mitchell, 1957).
Here, for example, elemental task U5 requires nine time units. It cannot
be started until task U4 is completed, and must be completed before either
U6 or U7 can be started. The constraint that task U5 must precede task
Ul4 need not be represented explicitly; this information is implied by the
sequence U5 h> U7 -» Ul4.

In industrial practice the ordering constraints are not explicitly stated.
The industrial engineer works directly from bill of material and standard
time data for the product and from his own knowledge of manufacturing
technology.

A production rate set by management determines the maximum time
(cycle time) to be assigned to any work station. That is, hours per shift
divided by units per shift determine the maximum time an operator can
spend on each unit.

The assembly line balancing problem 1 can be stated as:
Given a production rate (or, equivalently, a cycle time), what is the

minimum number of work stations (operators) consistent with the time
and ordering constraints of theproduct?

1 There are, of course, many variants of the balancing problem, introducing such
factors as uncertainty of time values, varying operator capabilities, etc. None of
these other constraints are treatedhere.

v.

170 ARTIFICIAL INTELLIGENCE

F

M

A closely related problem is:
Given some number of men (work stations), what is the maximum

production rate consistent with the time and ordering constraints of the
product?

We shall consider the first formulation.
More explicitly, then, the assembly line balancing problem concerns a

set of elemental tasks such that:

1. each elemental task requires a known operation time per unit of
product, independent of whenperformed;

2. a partial ordering exists among the elemental tasks.

An optimal solution of the problem consists of an assignment of elemental
tasks to work stations such that:

1. each elemental task is assigned to one and only one work station;
2. the sum of the times of all elemental tasks assigned to any one station

does not exceed some maximum (the cycle time) ;
3. the stations thus formed can be ordered such that the partial order-

ings among elemental tasks are not violated;
4. the number of work stations thusformed is minimized.

A minimal work-station solution to the problem of Fig. 1 (given a cycle
time of 20) is shown in Table 1.

Actual instances of the assembly line balancing problem are much more
complex than the example given here. A representative problem from the
appliance industry would contain nearly a hundred elemental tasks. The
industrial engineer balancing a line works from a sheet listing the elements
and their operation times and from his knowledge of the manufacturing

process. In the absence of any formal procedures, he must rely on judicious
use of trial-and-error methods to find an acceptable grouping.

3. Exhaustive Procedures for AssemblyLine Balancing

Assembly line balancing techniques have received little attention in
standard production management literature; most works merely acknowl-

Work station Total time Elemental tasks

1
2
3
4
5
6

18
19
15
17
20
16

Ul, U3, U4
U2, U5, U2l
U6, U7, Ul4
UB, U9,

UlO,

Ull, Ul2
Ul3, Ul5, Ul6, UlB, Ul9
Ul7, U2O

1

I

A HEURISTIC LINE BALANCING PROCEDURE 171

I

1

1

edge that the problem is a common one. However, several management
scientists have studied the problem.

Salveson (1955) reviews the industrial setting of the problem and com-
ments on several difficulties associated with line balancing, e.g., determin-
ing before solution the minimum number of operators, taking into account
variances in operation times. He suggests application of limited combina-
torial analysis, but the procedure rests upon previous enumeration of all
possible work stations, an enormous task. However, many of Salveson's
observations on the nature of the assembly line balancing problem are
valid, and this article first brought the problem to the attention of the
management science audience.

Jackson (1956) presents an algorithm for systematically enumerating
and evaluating possible solutions. Comparisons of this exhaustive method
with the heuristic procedure developedhere are presented in a later section.

In commenting on Jackson's article, Helgeson and Kwo (1956) suggest
an additional criterion—minimizing the variation in work load among sta-
tions—in evaluatingpossible solutions.

Bryton (1954) develops a "convergence" procedure for shifting ele-
ments among given work stations so as to increase the maximum attainable
production rate. While not directly applicable to the problem stated here,
this procedure is useful for equalizing the work load among stations once
a solution has been found.

Mitchell (1957) extends Jackson's algorithm to include another com-
mon constraint, zoning. By zoning is meant the division of the set of ele-
mental tasks into (possibly overlapping) subsets corresponding to physical
constraints on the assembly operation. Zoning of an assembly line may be
determined by the position of the product on the conveyor, the layout of
the production facility, or both. For example, certain elements may be
performed only from the back of the product, or only while it is lying on
its side; likewise, some elements may be carried out on a smaller subline
joining the main conveyor. The constraint that all elemental tasks assigned
to a work station must be in the same zone is added to the definition of a
solution.

The methods mentioned above are not practical for large assembly line
balancing problems because of their computational requirements. Indeed,
no satisfactory general scheme for resolving large combinatorial problems
involving partial ordering relations has yetbeen devised.2

4. Heuristic Programs

Webster's New International Dictionary of the English Language, 1959,
defines the adjective "heuristic" as "serving to discover or reveal." Thus,

* However, much unreportedresearch is being done by industrial firms into assem-
bly line balancing andrelated problems.

V

172 ARTIFICIAL INTELLIGENCE

M

by heuristics we mean (after Newell, Shaw, and Simon, 1958a") principles
or devices that contribute, on the average, to reduction of search in
problem-solving activity. The admonitions "Draw a diagram" in geometry,
"Reduce everything to sines and cosines" in proving trigonometric identi-
ties, or "Always take a check—it may be mate" in chess are all familiar
heuristics.

Heuristic problem-solving procedures are procedures organized around
such effort-saving devices. A heuristic program is the mechanization on a
digital computer of some heuristic procedure. The computer attempts to
solve the problem by carrying out the heuristic program. At present this
use of digital computers is the only means we have of making explicit the
behavior of a complex heuristic procedure in dealing with a large class of
problems. The Logic Theorist (Newell, Shaw, and Simon, 1957a), the
Chess Machine (Newell, Shaw, and Simon, 1958b), and the Geometry
Machine (Gelernter and Rochester, 1958) are examples of working heu-
ristic programs in other areas.

The distinction between heuristic and non-heuristic problem-solving
procedures is often vague. Rather than attempt to specify a rule by which
all procedures can be so categorized, we shall cite some common charac-
teristics of existing heuristic procedures :

1. Factorization of the problem into a number of "smaller" problems and
subproblems (often through means-end analysis), with a corresponding
goal-subgoal organization of behavior. For example, the Chess Machine
might realize that it cannot play P-K4 because it would lose an exchange
on that square, and consequently sets up the subgoal of first bringing an-
other man to bear on its K4.

2. Use of cues in the environment to determine the particular behavior
evoked from a wide set of possible alternatives available to the program.
That is, a high degree of interdependence between the specific problem
(from a more general class) being considered and the particular problem-
solving methods used. Thus, the methods used by the assembly line bal-
ancing program for choosing elements to shift between groupings depend
on theparticular characteristics of those groupings.

3. Use of recursive procedures to bring to bear on subproblems the
same repertoire of problem-solving techniques used on the original prob-
lem. Thus, the Logic Theorist can use the same "bag of tricks" to prove
a derived expression as to prove the initial statement from which the de-
rived expression was produced.

4. No guarantee of a satisfactory solution or, often, of any solution.
For example, the Chess Machine, because of time and space limitations,
may not be able to consider some promising continuations, including the
a postiori optimum one.

I

A HEURISTIC LINE BALANCING PROCEDURE 173

}

)

I

4

Because a heuristic procedure substitutes the effort reduction of its
shortcuts for the guaranteed optimal solution of an exhaustive method, the
justificationof such a program as a problem-solver must be in terms of the
number of cases successfully solved and the relative amount of effort in-
volved. In a later section on operating results, the assembly balancing
program presented here is compared with several exhaustive procedures.

The set of heuristics outlined here for balancing an assembly line evolved
from several sources: discussions with industrial engineers of how they
actually balance lines; study of the various papers cited above; explorations
with several co-workers, particularly A. Newell, of possible techniques; and
finally extensive experimentation with particular instances of the problem.

5. The Assembly Line Balancing Program

This heuristic approach to assembly line balancing is based on simplifi-
cation—sufficient simplification of a complex combinatorial problem that it
becomes solvable (in most cases) by simple, straightforwardmethods.

Two recursively defined routines form the essence of this procedure.3

Phase I constructs a hierarchy of increasinglysimpler line balancing prob-
lems by aggregating groups of elements into a single compound element.
Each of these compound elements is itself a member of this same class of
line balancing problems, since it is made up of elements requiring a given
operationtime and among whom partial ordering relationships exist.

Phase II solves a simple (small number of elements) line balancing
problem by assigning groups of available workmen to elements and then
taking as subproblems those compound elements (simple problems in
themselves) which have been assigned more than one man.

This approach requires heuristics for aggregating groups of elements into
compound elements, for solving the simplified problems thus created, and
for reintroducing the detail of the original problem when the simplified
version does not yield a solution.

A third phase of theproblem-solving process, utilizing virtually the same
heuristics as already required, involves "smoothing" the final work load
(assigned time) among work stations. Since the greatest total time assigned
any work station limits the speed of the line, a smooth balance answers

"Several other strategies could be suggested as bases for heuristic approaches to
the problem: (1) division of the problem into relatively independent subproblems,
solution of these by optimizing techniques, and combination of the subsolutions by
heuristic methods; (2) solution of a problem abstracted from the original by replac-
ing all times with one of a single large or a single small value, and then adjustment
°f the result to fit actual times; (3) development of stations in an order determined
°y the density of partial ordering constraints, first building in those regions of the
Problem where there is least freedom among elements. None of these alternative
aPProaches are considered here in any further detail.

T

174 ARTIFICIAL INTELLIGENCE

M

the problem "What is the highest production rate achievable with a given
number of men?" That is, since both men and time are measured in dis-
crete units, a nonsmoothed optimum solution of the problem "given a pro-
duction rate, minimize the number of men required" need not be an opti-
mum solution of the dual problem "given a number of men, maximize
the production rate."

Thus, the general problem-solving scheme calls for:
Phase I. Repeated application of aggregative procedures, creating a hier-

archy of simplified line balancing problems ranging in complexity from the
initial problem to one containing a single compound element.

Phase 11. Recursive application to these simplified problems of a pro-
cedure for assigning men to tasks, down to the level of problems whose
component tasks require one man each. When the compound elements
making up a problem require more men than are available, these elements
are broken up and their components regrouped to require fewer men.

Phase 111. Smoothing the resulting balance by transferring tasks among
work stations until the distribution of assigned time is as even as possible.

The following sections discuss the heuristics entailed in each of these
procedures.

Since this approach does not guaranteean optimum solution to the over-
all line balancing problem, we must have some notion of a satisfactory solu-
tion and accept or reject proposed solutions based on this notion. Also,
since the solution of a problem does not guarantee that its subproblems will
be solved, whatever process generates solutions must remain active until
all subproblems have been solved, ready to generate another solution if
necessary. The methods by which these requirements are met are indicated
below.

6. Constructing the Hierarchy ofProblems

The ordering constraints present in the problem suggest two natural units
of aggregation of elements. Either a completely ordered relationship exists
between several elements—as U3 must always precede U4 (Fig. 1)—or
no ordering is specificd—as UlO, Ull, Ul2. We adopt the "chain" and
the "set" as basic aggregative units in constructing a simplified problem:

I. A group of adjacent elements whose relative order is completely de-
termined, each except the first having a single direct predecessor and each
except the last having a single direct follower, can be replaced by a single
compound element, called a chain.

11. A group of elements whose relative order is completely unspecified,
all having the same direct predecessors and followers, can be replaced by
a single compound element, called a set.

r

175A HEURISTIC LINE BALANCING PROCEDURE

■f

j

,i

i

}

it
f

Thus, UlO, Ull, Ul2 in Fig. 1 can be replaced by a set V2, and then
V2, Ul5 can be replaced by a chain V3. These aggregations can be indi-
cated on the original problem, as in Fig. 2a. However, it is convenient
to represent the aggregations as a branching tree, with each compound ele-
ment havingbeneath it the elements of which it is composed.

The tree of compound element V3is shown in Fig. 2b. Note that the
time requirement of a compound element is the sum of the times of its com-
ponents.

We use the term "chain relationship" to indicate that some ordering
(possibly indirect) exists between two elements and "set relationship" to
indicate that noneexists.

While the solution strategy calls for repeated application of the ag-
gregative operations to yield a hierarchy of simplified problems, these two
types of aggregation are not sufficient to completely reduce (to a single
compound element) most actual problems. We can proceed by first de-
fining more complex aggregative operations and then, if necessary, re-
moving "troublesome" ordering constraints. Proposed solutions must then
be checked to see that these missing constraints are not violated.

The one additional compound element introduced to date is the Z.

111. AZis a group of four elements with the two front elements having
common predecessors and the other two back elements having common fol-
lowers. The single direct follower of one front element is one of the back
elements; the two direct followers of the other front element are the back
elements. The back elements have no other direct predecessors.

An example of a Z and its representation in tree form are given in
Pigs. 3a and 3b. (Note that there is a canonical order of subelements in
the tree representationof the chain and the Z.)

The recursive procedure carrying out this aggregating process may be
aPplied to any assemblage of elements. By an assemblage of elements we

Figure 2. Chain and set aggregations.

V

176 ARTIFICIAL INTELLIGENCE

M

here mean those given elements without predecessors within the assem-
blage (called the front elements) and their direct followers, and their fol-
lowers' direct followers, and so forth, to and including those elements with
no direct followers. Thus, the illustrative problem of Fig. 1 is an assem-
blage with front element Ul.

While there is not space here to present the full details of this procedure,
a brief summary follows.

Given an assemblage of elements with a single front element, the routine
attempts to create a chain. When an element having several direct followers
is encountered, the program first sets up the subproblem of aggregating the
assemblage with those several front elements and then applies itself to that
problem. (The routine is recursive, so that attempting to solve that sub-
problem may involve setting up and attempting to solve sub-subproblems
and so forth.) If the subproblem is solved successfully, the higher-level
problem of creating a chain is continued. If the subproblem fails, or if
an element is encountered with direct predecessors outside the assemblage
(other than those of the front element), the higher-level problem fails.

Given an assemblage of elements with several front elements, the routine
attempts to create a set or, failing that, a Z. If this can be done, the prob-
lem becomes one of reducing an assemblage with a single front element.
If not, the routine first sets up the independent subproblems of aggregating
separate assemblages starting with each of the front elements, and applies
itself to each of these subproblems in turn. When these subproblems are
concluded, the higher level problem of creating a set or Z is resumed.

Trying to resolve these subproblems independently often reveals com-
plex ordering constraints between them. A Z is then postulated incorporat-
ing such constraints. Further constraints that prevent completion of an
already postulated Z are relaxed so that the Z can be completed, and the
higher level problem is thencontinued.

Figure 4 is the tree of compound elements constructed by application of
this recursive procedure to the problem of Fig. 1. The running commentary
of this routine is given in Appendix A; this is a dynamic statementof how

Figure 3. Z aggregations.

r

177A HEURISTIC LINE BALANCING PROCEDURE

i

ii

J

1

\

Figure 4. Twenty-one-element problem—Phase I output.

the routine is proceeding. It is instructive to follow through this "protocol"
while viewing Figs. 1 and 4. This first phase of the problem-solving process
need be carried out only once for a given product (set of constraints). The
resulting hierarchy is supplied as an input to the second phase of the
process.

7. Grouping Tasks into Work Stations

Inputs to the second phase, grouping tasks into work stations, are: the
Problem hierarchy as developed in Phase I; a cycle time determined by the
required production rate; and a "per cent usable time" supplied as a guide
for setting up and accepting potential work stations. Per cent usable time
is an estimate (at present made by the user) of how close to the required
station the task elements can be grouped. This measure reflects the struc-
ture and time values of the particular problem being solved.

The assignmentroutine consists of a simple recursive procedure for alio-

X

178 ARTIFICIAL INTELLIGENCE

eating men (work stations) to groups of tasks and a set of procedures for
regrouping the tasks when necessary. These regrouping heuristics are de-
scribed in the following section.

The recursive routine for allocating men to groups of tasks proceeds as
follows:

1. An initial estimate is made of the number of men required to meet
the given production rate, given a per cent usable time (per cent effective-
ness). This number of men is assigned to the "top" compound element,

representing a single grouping of all task elements. The recursive routine
described in step 2 is then applied to that element. If the routine succeeds,
the line has been balanced and Phase II ends. If the routine fails, the
number of men assigned to the top element is increased and the procedure
repeated.

2. (a) If the element being considered has been assigned more than
one man, these available men are allocated among the direct components
of the element according to their time requirements. This recursive routine
is then applied to each of these component elements in turn. If the routine
successfully solves each of the subproblems, then the problem of grouping
tasks into work stations is also solved at this level and the routine termi-
nates. If the available men cannot be allocated among the direct compo-
nents of the element in question—if, considered independently, they re-
quire more men than are available—thenregrouping procedures are called
upon to shift tasks among these groupings so that they are independently
solvable. If such a regrouping cannot be found, control is returned to the
next higher level, signaling failure to solve the subproblem.

If the recursive routine should fail to handle one of the components
below this level and report back failure, excess elements from the failing
subproblem are shifted to another grouping or, failing that, the regrouping
procedures are activated to produce another set of independent groupings.
Again, if solvable subproblems cannot be found, control is returned to the
nexthigher level with a failure signal.

(b) If the element being considered has been assigned a single man,
additional elements are added to it if necessary to bring near the maximum
allowable size and the grouping is marked as a work station. Control then
returns to the nexthigher level, signaling success.

Thus, this recursive routine, like that of Phase I, deals with examples of
a particular class of problems. It solves a problem by setting up within it
(and solving in the same way) other "easier" problems of the same class
whose solutions can be combined to solve the larger problem also. In par-
ticular, Phase I of the line balancing program makes use of natural group-
ings of the elemental tasks to build up a hierarchy of simplified problems,
and Phase II attempts to balance the line using these groupings as complete

I

A HEURISTIC LINE BALANCING PROCEDURE 179

i

1

J

units, transferring tasks among these groupings only when the simple
allocation scheme fails.

8. Regrouping Procedures

Five regrouping procedures—direct transfer, trading, sequential group-
ing, complete grouping, and exhaustive grouping—are available to the
Phase II recursive routine when its simple scheme for allocating available
men fails. Which of these regrouping heuristics will be called upon, and in
what order, is determined by characteristics of the compound elements
being regrouped. These procedures are also used by Phase 111 of the as-
sembly line balancing program in smoothing a proposed line balance.

All five methods make use of a single recursive routine that scans a given
Part of the hierarchy of elements (the "problem tree") and generates a
sequence of groups of elements lying within certain specifications (maxi-
mum total time of group, minimum total time of group, from front or from
back). This routine proceeds by building a first group, always taking the
largest element acceptable, and then constructs further groups by eliminat-
ing from consideration (or breaking down into components, if a compound
element) successive elements of that group and applying itself to the re-
maining elements of the given part of the hierarchy. Thus, if requested to
Produce groups totaling at least 8 but not more than 16 time units from the
back of compound element V6(see Fig. 4), the routine would generate
the sequence (V4, Ul3, U2O), and (U2O, Ul7). The routine generates
each element of this sequence as requested, remembering where it is in
the sequence to be able to generate the next one.

The first three methods—direct transfer, trading, and sequential group-
ing—are used to set up independently solvable subproblems which can
then be handled by the Phase II recursive routine.

Direct transfer is applied when only two components are involved. This
method tries simply to transfer elements from one component to the other
and thus reduce the number of men required by a straightforward totaling
°f whole men.

Thus, if VI I in Fig. 4 had been assigned six men (given a cycle time of
20), the direct transfer procedure would first attempt to shift elements
totaling at least 1 but not more than 16 time units from VlO to Ul, and
would in fact shift VO (14 time units) .

Trading also is applied only to two components, and assumes that direct
transfer has been attempted without success. Trading tries to regroup by
shifting an element larger than the acceptable limit from one component
m exchange for smaller elements (in a set relationship with the first ele-
ment shifted) from the other component.

An example of this method is cited in the nextsection.

h

180 ARTIFICIAL INTELLIGENCE

A

Sequential grouping is used when there are several components, and at-
tempts to construct an acceptable work station from the front of the given
group of components. If the remaining components can be handled by the
remaining men available, the method is considered successful. If not, an
attempt is made to construct another work station from the back of the
component group, and a similar test is made.

Suppose, for example, that V7in Fig. 4 had been assigned three men
(cycle time 20). Since V7is made up of three components requiring one,
one, and three men, regrouping procedures would be evoked. Sequential
grouping would first group together UB, U9, and V2and then, since the
remaining component V6would now total 36 time units, requiring only the
two remaining available men, the method would be successful.

The remaining two regrouping procedures, complete grouping and ex-
haustive grouping, try to completely solve the subproblems remaining.
They may be regarded as "last-ditch" methods at any particular level.

Complete grouping attempts, first from thefront of the component group
and then from the back, to construct work stations until all task elements
are grouped. If at any time the method cannot construct a station such
that the remaining elements total less than can be handled by the remain-
ing men, the method fails.

Exhaustive grouping generates all possible (independent) first work sta-
tions, then all possible following work stations for each of these. This
method is, in fact, the exhaustive algorithm suggested by Jackson (1956).
Because of the comparatively large amount of effort required to do an
exhaustive grouping, this procedure is used only when two men are to be
assigned. The method does furnish to the next higher level Phase II rou-
tine (on failure) the best groupings it was able to construct from the front

Figure 5. Twenty-one-element problem—Phase II output.

I
I

181A HEURISTIC LINE BALANCING PROCEDURE

;i

■i

Figure 6. Twenty-one-element problem with stations, cycle time

20,

and the back, as well as which elements were left ungrouped in those
solutions.

While these regrouping methods are clearly not foolproof, they have
proven satisfactoryfor all problems attempted to date. Figure 5 shows the
Problem of Figs. 1 and 4 after the Phase II recursive routine has been
applied to it (cycle time 20, 95 per cent usable time), and Fig. 6 pictures
the work stations thus created on the original problem. (See also Table
1.) Appendix B lists the protocol produced during this assignment.

9. Smoothing the Resulting Balance

Phase 111 of the assembly line balancing program seeks to even the dis-
tribution of work among work stations by repeatedly reducing the time
requirement of the largest work station. Inputs to this phase of the prob-
lem are a balanced line in hierarchical representation, such as would be
produced by Phase 11, and a cycle time. This iterative routine uses the
same regrouping heuristics used by the Phase II recursive routine.

The following steps comprise the Phase 111 procedure:

1. Calculate the least possible time value of the highest station (with
the given cycle time). If the largest station's time value is not greater
than this bound, no further smoothing is possible and the routine ter-
minates.

2. Given the largest station, consider in turn, in increasing order of size,
aU "adjacent" (in a set relationship or direct predecessors or followers)
stations to that largest station. Try to even the distribution of work between

i

iI

I
I

t

i

,i

182 ARTIFICIAL INTELLIGENCE

A

Figure 7. Twenty-one-element problem—Phase 111 output.

them using the direct transfer heuristic. If successful, return to step 1. If
not, go to step 3.

3. Consider again those stations adjacent to the largest station in in-
creasing order of size. Try to reduce the work load of the larger using
the trading heuristic. If successful, return to step 1. If not, proceed to

step 4.
4. Once again, consider adjacent stations in increasing order of size.

For each one, using first direct transfer and then trading, try to make any
transfer that reduces the largest station, even if the formerly smaller sta-
tion is now as large or larger. If some such transfer is found, set up the
subproblem of reducing this new larger station and apply this routine to it
(excepting that step 4, setting up further subproblems, cannot be used).
If successful, return to step 1; if not, the Phase 111 routine terminates.

The procedure outlined above has not yet been coded (which should be
a relatively easy task, as it relies so heavily on already codedroutines), but
it has been hand-simulated for several cases. The results of this hand
simulation for the problem of Figs. 1 and 4 is shown in Fig. 7. The simu-
lated output of this phase of the assembly line balancing program is given
in Appendix C.

10. Operating Results

Three sample problems were used in developing and testing this heuristic
procedure. These are an 11-element problem taken from Jackson (1956),
the 21-element problem used as an example here, taken from the Mitchell
(1957), and a 70-element problem representing actual appliance industry

I

A HEURISTIC LINE BALANCING PROCEDURE 183

I

1
i

i

I

TABLE 2

Phase I Phase II

Per Per Effort per
Effort Cycle cent No. of cent station

Problem IPL instr. time usable stations idle Effort X 103

data. While these few cases do not completely test the method's general
validity,4 we can extract some interesting measures of performance in differ-
ent types of problems.

Data summarizing these problem-solving exercises are given in Table 2.
Note the increase in computing effort with problem-size in both Phases I
and 11. We also observe for the several cases of the 21-element problem
an increase in effort per station as per cent idle time decreases. It appears
that the amount of effort required to reach a balance depends upon the
number of elements in the problem, number of stations desired and the
Per cent idle time available. Additional experience with actual problems
will enable us to develop a method for estimating the effort required in
Particular cases.

To get some feeling for the effort required by exhaustive algorithms, we
also attempted the 11-element problem with only the "exhaustive group-
ing" method, thus solving the problem using Jackson's algorithm (1956).
(This is only a rough comparison, since the algorithm is carried out here
using list processes and would benefit more than the heuristic program as
a whole from use of matrix representation. Also, since the method is im-
bedded in the midst of our procedure, some amount of processing not re-
quired by that algorithm per se is included in the measure.) Under these
conditions the program required about 389,000 IPL instructions to reach
a balance, a factor of 2.5 over the heuristic approach. While this difference
is not striking in light of the above warnings, the disparity will growrapidly
with increasing problem size.

We also tested Salveson's (1955) linear programming formulation of
It is necessary to test this procedure against other large problems not only to

"leasure its economic efficiency but also to ensure that the heuristics incorporated
nere have not been unconsciously adapted to meet the requirements of these par-
ticular test problems.

1-element
!l-element

O-element

14,478
51,386

207,194

10
20
19
14
18
21
176

95
90
95
95
98

100
93

5
6
6
8
6
5

23

8
12
8
6
3
0
9

153,075
141,868
143,183
627,809
483,458
760,803

2,495,118

30.6
23.7
23.8
78.5
80.5

152.2
108.5

T

184 ARTIFICIAL INTELLIGENCE

A

the assembly line balancing problem on our 11 -element problem, using the
RAND Simplex Code. The formulation required 11 equations in 62 un-
knowns (1 unknown for each possible legal grouping, given acycle time of
10). This program required 15 iterations (starting from an artificial basis)

to reach an optimum solution. As was expected, this answer contained
groupings of fractional parts of elements. We must await an operating
integer programming code in order to really test a linear programming
approach.

The next areas we hope to analyze are (1) the effort saved through
incremental changes—that is, starting from a nearby balance as opposed to
starting from scratch with each new cycle time—and (2) the usefulness
of initially producing balances at a range of interesting production rates,

thus providing an approximation to the labor cost function for the assembly
operation.

11. Adding the Zoning Constraint

One of the advantages sought from the heuristic approach to complex
decision problems is the ability to redefine the problem, adding or deleting
restrictions on a solution, with ease. As a specific example, we introduce
the zoning restriction treated by Mitchell (1957). Under this restriction

Figure 8. Twenty-one-elementproblem with zoning constraint—Phase II output.

I

185A HEURISTIC LINE BALANCING PROCEDURE

J

I
:!

TABLE 3

Zone Elemental tasks

1 Ul, U2, U3, TJ4, U5, U7, UB, TJ2I

each elemental task is assigned to one or more zones reflecting the physical
limitationsof theproduction process.

To incorporate this new restriction, the basic grouping generator (see
Regrouping Procedures) is modified to produce only groupings within a
specified zone or zones, and the routine that accepts work stations is modi-
fied to reject groups whose elements are not in a common zone. These
modifications can be made relatively easily without affecting other parts
of the over-all program. These modifications have been hand-simulated
for several problems. Table 3 indicates the zoning of elements in the
sample problem of Fig. 1. Figure 8 is the result of the modified Phase II
operationon that problem (cycle time 20).

12. Mechanizing the Assembly Line Balancing Program

The assembly line balancing program described here is programmed in
an interpretative system, IPL-IV, on the RAND Corporation's digital com-
puter, JOHNNIAC. The IPL-IV system uses about 1200 of the JOHN-
NIAC's 4096 words of high-speed core memory and about 650 words of
the 12,288-word auxiliary drum memory. In running the line balancing
Problem, which makes heavy use of the drum for temporary storage of
data, the system interprets at the rate of about 9,000 to 10,000 IPL in-
structions per minute. While there has been no published account of
IPL-IV, the closely related IPL-V for the IBM 650, 704 and 709 is fully
documented (Newell and Tonge, 1960c, Newell et al., 1961e).

Why symbol manipulation languages5 are extremely useful research tools
for exploring techniques for problem-solving in Complex and ill-structured
situations is examined in more detail in another place (Tonge, 1961a).
The essential point is that the "parameters" which the problem-solver
wishes to vary freely are policies—general principles, rules of thumb, or
what have you. The diversity of these principles cannot be anticipated
when the problem-solving process begins with the problem of finding a
good problem-solving process for the problem at hand. Some system for
Using the computer is required which frees the problem-solver from making

"Such programming languages include the IPL (Information Processing Lan-
-BUaBe) Series (Newell and Tonge, 1960c; Newell et al., 1961e), LISP (McCarthy,
l959), COMIT (Yngve, 1958), and FORTRAN List Processing Language (Gelern-
ter and Rochester, 1958).

3 U3, U4, U6, U7, UB, U9,

UlO,

Ull, Ul2, Ul3, Ul5, Ul6, TJIB
4 TJI3, Ul4, Ul5, Ul6, Ul7, UlB, Ul9, U2O

186 ARTIFICIAL INTELLIGENCE

A

early commitments (which he will later regret) about storage allocation,
information to be carried, and so forth. This system must allow the user
(possibly at the cost of machine speed and storage usage) to state his in-
completely formulated problem and method of solution and start experi-
menting. List structure languages are a first step toward such a system.

The assembly line balancing program itself requires about 6700 machine
locations, of which about 6100 are in auxiliary storage. In keeping with
our preference for quick results rather than "efficient" operation, the
entire structure of the problem was encoded in list form. With a satis-
factory program (from the performance standpoint) developed, savings in
machine space and speed could be made by encoding some structural in-
formation in matrix form. Bryton (1954), Marimont (1959), and others
have made interesting contributions in this direction. Such a recoding
would require only changing those routines that locate the value of certain
properties of elements. The rest of the code is independent and would
remain unchanged. Other reductions in operating time can be obtained by
recoding in basic machine language certain operations now in interpretive
code. Using IPL-V on the 704, it will be possible to implement the program
described here at 5 times the speed achieved on the JOHNNIAC. At such
speeds (about an hour maximum to balance an appliance line) this ap-
proach seems close to economic feasibility in treating some complex in-
dustrial decision problems.

13. Final Remarks

The aims of this research have been broader than just trying toproduce a
method for solving the assembly line balancing problem. We have set out to

test the feasibility of a heuristic approach to complex decision-making in a
particular industrial area and to examine the use of new computer tech-
niques in implementing such an approach. As always, many interesting
questions remain unexplored. But based on the experience reported here,

we must conclude that the combination of a heuristic approach and these
new methods of computer utilization are useful research tools in complex
problem-solving.

Our program is not economically competitive when measured against
the dollar per hour cost of line balancing by the industrial engineer. How-
ever, a true evaluation of the method must also consider (1) the possibility
of fewer men required along the line on the average (a subject not yet fully
explored), (2) the value of quick production of balances at a large numbel
of production rates and (3) the value of releasing industrial engineers to

do other, more creative analytic work.
Also, our research has indicated that present symbol manipulation

languages, while a great advance for these purposes over conventional

I

A HEURISTIC LINE BALANCING PROCEDURE 187

i

J

programming techniques, are still relatively primitive. While it is difficult
to conceive preparing this program in a less powerful language than
IPL-IV, much effort is required in machine-oriented aspects of com-
municating the problem-solving procedure to the computer. Further re-
search in this area is needed before the heuristically oriented problem-
solver will be free to expend his effort primarily on developing satisfactory
problem-solving techniques, using the computer as a tool for spelling out
the implications of his procedures.

Appendix A
Phase I—2l-Element Problem
1 Propose chain Ul

2 Propose set U2, U3
3 Propose chain U2

4 Cannotreduce U2 to U2l
3 Propose chain U3

4 Define chain VO = U3, U4
4 Propose set U5, U2l

5 Cannotreduce U2l
3 Propose Z VO, U2

4 Propose chain U2l
4 Propose chain U5

5 Propose set U6, U7
6 Propose chain U6

7 Cannot reduce U6 to U8
6 Propose chain U7

7 Propose set UB, Ul4
8 Cannot reduce U8

6 Propose Z U7, U6
7 Delete constraint Ul4 to Ul9
7 Propose chain U8

8 Define chain VI = UB, U9
8 Propose set UlO, U11,U12, Ul3

9 Define set V2= UlO, Ull,Ul2
9 Propose chain V 2

10 Define chain V3= V2, Ul5
10 Propose set Ul 6, Ul B

11 Cannot reduce UlB
9 Propose chain Ul3

10 Propose set Ul7, UlB
11 Cannot reduce Ul7
11 Cannot reduce UlB

188 ARTIFICIAL INTELLIGENCE

A

9 Propose Z Ul3, V3
10 Delete constraint Ul3 to Ul7
10 Propose chain UlB

11 Define chain V4= UlB, Ul9
10 Propose chain Ul6

11 Define chain V5= Ul6, Ul7, U2O
10 Define Z V6= Ul3, V4, V3, V5

8 Propose chain V6
8 Define chain V7= UB, U9, V6

7 Propose chain Ul4
7 Define Z V8= U6, V7, U7, Ul4

5 Propose chain V 8
5 Define chain V9= U5, V8

4 Define Z VlO = U2, U2l, VO, V9
2 Propose chain VI O
2 Define chain VI I = Ul, VlO

Appendix B
Phase ll—2l-Element Problem—Cycle Time 20—PCT Usable 90

1 Consider VI 1—components Ul, V10—6 men available
2 Activate direct transfer

3 Combine VO, Ul
4 Redefine chain VII = V1,V13
4 Define chain VI = Ul, U3, U4
4 Define chain Vl2 = U2, U2l
4 Define set Vl3 = Vl2, V 9

2 Assign 1 man toVI, 5 to VI 3
3 Consider VI—components Ul, U3, U4—1 man available

4 Mark VI as work station—time =18
3 Consider V13—components Vl2, V9—5 men available

4 Assign 1 man to VI 2, 4to V 9
5 Consider VI 2—components U2, U21—1 man available

6 Combine U5, Vl2
7 Redefine set Vl3 = Vl4, V8
7 Define Vl4 = U5, Vl2

6 MarkVI4 as work station—time = 19
5 Consider VB—components U6, V7, U7, Ul4

6 Add Ul4, U6 to waiting list
6 Assign 3 men toV7, 1 to U7

7 Consider U7—1 man available
8 Combine U7, Ul4, U6

9 Define set VIB = U6, VIS

I

A HEURISTIC LINE BALANCING PROCEDURE 189

9 Define chain VI7 = VI B, V7
9 Define chain VI S = U7, Ul4
9 Redefine set Vl3 = Vl4, Vl7

8 Mark VIB as work station—time = 15
7 Consider V7—components UB, U9, V6—3 men available

8 Activate sequential grouping
9 Combine UB, U9, V2

10 Redefine chain V7= V2O, V 6
10 Define V2O = UB, U9, V 2
10 Redefine Z V6= Ul3,V4, Ul5,V5

8 Assign 1 man to V2O, 2 toV6
9 Consider V20—components UB, U9, V2— 1 man

available
10 Mark V2O as work station—time = 17

9 Consider V6—components Ul3, V4, Ul5, Vs—2
men available
10 Activate sequential grouping

11 Combine Ul5, Ul3, V4, Ul6
12 Define chain V23 = V25, V5
12 Define chain V25 = V2l, UlB, Ul9

Ul6
12 Redefine chain V5= Ul7, U2O
12 Define set V2l = Ul3, Ul5
12 Redefine chain V7= V2O, V23

10 Assign 1 man to V25, 1 toV 5
11 Consider V5—components Ul7, U20—1

man available
12 Mark V5as work station—time =16

11 Consider V25—components V2l, UlB,
Ul9, U16— 1 man available
12 Mark V25 as work station—time = 20

Define chain Vl7 = VI B, V2O, V25, V 57

Appendix C
Phase lII—2I-Element Problem—Cycle Time 20—PCT Usable 90
1 Least possible high station = 105/6 = 17+ = 18 time units
1 Consider V25—time = 20

2 Activate direct transfer, V25 toV5
3 Combine Ul9, V 5

4 Redefine chain Vl7 = VlB, V2O, V25, V27
4 Redefine chain V25 = V2l, UlB, Ul6
4 Define chain V27 = Ul9, Ul7, U2O

190 ARTIFICIAL INTELLIGENCE

A

1 Consider Vl 4—Time = 19
2 Activate direct transfer, Vl4 to VI B
2 Activate direct transfer, VI 4 to VI
2 Activate trade, Vl4 and VlB

3 Combine Vl4, U7
4 Redefine set Vl3 =V2B, Vl7
4 Redefine set V2B = Vl2, U5, U7
4 Redefine set VlB = U6, Ul4

3 Combine VI 2, VI B
4 Redefine set V2B = U5, U7
4 Redefine chain Vl7 = V3O, V2O, V25, V27
4 Define set V3O = Vl2, U6, Ul4

I

■f

J

A HEURISTIC PROGRAM THAT
SOLVES SYMBOLIC INTEGRATION
PROBLEMS IN FRESHMAN
CALCULUS

JamesR. Slagle

A large high-speed general-purpose digital computer (IBM 7090) was
Programmed to solve elementary symbolic integration problems at approxi-
mately the level of a good college freshman. The program is called SAINT,
an acronym for "Symbolic Automatic INTegrator." The SAINT program
is written in LISP (McCarthy, 1960), and most of the work reported here
Js the substance of a doctoral dissertation at the Massachusetts Institute of
Technology (Slagle, 1961). This discussion concerns the SAINT program
and its performance.

Some typical samples of SAINT's external behavior are given so that
the reader may think in concrete terms. Let SAINT read in its card reader
an IBM card containing (in a suitable notation) the symbolic integration
Problem fxexi dx. In less than a minute and a half, SAINT prints out the
answer, 1/2ex\ Except where otherwise noted, every problem mentioned in
this chapter has been solved by SAINT. Note that SAINT omits the con-
stant of integration, and we, too, shall ignore it throughout our discussion.
After working for less than a minute on the problem fe* dx (which cannot
be integrated in elementary form) SAINT prints out that it cannot solve it.

SAINT performs indefinite integration, also called antidifferentiation. In
addition it performs definite and multiple integration when these are trivial
extensions of indefinite integration. SAINT handles integrands that repre-
sent explicit elementary functions of a real variable which, for the sake of
brevity, will be elementary functions. The elementary functions are the
tunctions normally encountered in freshman integral calculus, except that

does not handle hyperbolic notation. The elementary functions are
defined recursively as follows:

191

192 ARTIFICIAL INTELLIGENCE

I A

a. Any constant is an elementary function.
b. The variable is an elementaryfunction.
c. The sum or product of elementary functions is an elementary function.
d. An elementary function raised to an elementary function power is an

elementary function.
c. A trigonometric function of an elementary function is an elementary

function.
/. A logarithmic or inverse trigonometric function of an elementary

function (restricted in range if necessary) is an elementary function.

Currently SAINT uses twenty-six standard forms. It uses eighteen kinds
of transformations including integration by parts and various substitution
methods (but excluding, among others, the method of partial fractions).
Since the SAINT program uses heuristic methods, it is by definition a
heuristic program. Although many authors have given many definitions,
in this discussion a heuristic method (or simply a heuristic) is a method
which helps in discovering a problem's solution by making plausible but
fallibleguesses as to what is the best thing to do next.

Indefinite Integration Procedure of SAINT

This section describes how SAINT performs indefinite integration. An
attempt is made to orient the reader before a detailed description of the
procedure is given. The executive organization of SAINT is like that of
the Logic Theorist of Newell, Shaw, and Simon (1957) . It will help to take
a preview of Sec. 14 (especially Fig. 3). The "try for an immediate solu-
tion" mentioned twice in Fig. 3 may be described roughly as follows: As
soon as a new goal g is generated, SAINT uses its straightforward methods
in an attempt to achieve it. While doing this, SAINT may add g or certain
of g's subgoals to the "temporary goal list." If g is achieved, an attempt
is made to achieve the original goal. Slagle (1961) includes among other
things, a full description together with a detailed example and suggestions
for future work.

As a concrete example we sketch how SAINT solved

in eleven minutes. SAINT's only guess at a first step is to try substitution:
y = arcsin x, which transforms the original problem into

/ (1 - x*)*dx

f^dyJ cos4 y

f

SYMBOLIC INTEGRATION PROBLEMS 193

I

1

For the second step SAINT makes three alternative guesses:

SAINT immediately brings the 32 outside of the integral.
After judging that (A) is the easiest of these three problems SAINT

guesses the substitution z = tan y, which yields

SAINT immediately transforms this into

Judging incorrectly that (B) is easier than

SAINT temporarily abandons the latter and goes off on the following
tangent. By substituting z = cot y,

Now SAINT judges that

is easy and guesses the substitution, w = arctan z which yields / dw. Im-
mediately SAINT integrates this, substitutes back and solves the original
Problem.

The indefinite integration procedure may be described as follows:

!" Goals
In each application of the present procedure, the solutions of certain prob-
lems, namely, performing integrations with side conditions, are goals. How
goals are generated, manipulated, and achieved is described later. For now,

A. By trigonometric identities f dy = f tan4 vdvJ cos4 y J " "
B. By trigonometric identities f dy = f cotr4 ydvJ cos4 y J d a

C. By substituting z = tan (y/z) f dy =[32 � , ** dzJ cos4 ?/ y (1 + z 2)(l —zl)*

f tan4 ydy=j 1 * dz

/(- 1 +22 +r^) d2=- 2 +f + /rf^
f dz
J 1 + z2

/ cot- 4 ydy =J - g4(l + g2) =- / 2)

f dz
i r+T2

/x4

�

_—^ dx = arcsin x + J^ tan3 arcsin x — tan arcsin x

194 ARTIFICIAL INTELLIGENCE

A

let us limit ourselves to describing what we shall call the "original goal,"

which consists of the originally given integrand and variable of integration.

2. The Goal List
The original goal is made the first member of a list called the goal list.
From time to time new goals may be generated. Each newly generated
goal is added to the end of the goal list.

3. Standard Forms
Whenever an integrand of a newly generated goal is of "standard form,

that goal is immediately achieved by substitution. An integrand is said to

be of standard form when it is a substitution instance of one of a certain

set of forms. For example, \2X dx is an instance of jcv dv = C/(ln c)

and hence has the solution 2V(hi 2). Currently SAINT uses twenty-six

standard forms (Slagle, 1961).

4. Algorithmlike Transformations
Whenever an integrand is found to be not of standard form, it is tested to

see if it is amenable to an algorithmlike transformation. By an algonthmhke
transformation is meant a transformation which, when applicable, is always

or almost always appropriate. For a goal, a transformation is called
appropriate if it is the correct next step to bring that goal nearer to

achievement. Three of the eight algorithmlike transformations used in

SAINT are:

a. Factor constant, i.e.,

b. Decompose, i.e.,

c. Linear substitution, i.e., if the integral is of the form

J/(ci + c 2v) dv

substitute u=c, + c2v, and obtain an integral of the form

[-f(u) dvJ c%

for example, in

jcg(v) dv = cfg(v) dv

J2fifi(y) dv = Sjsri(y) dv

f cos 3x ,
J (1 - sin ZxJ2

substitute y = 3x.

r

195SYMBOLIC INTEGRATION PROBLEMS

i

1

i

I
.1

:t

t

k.

5. The AND-OR Goal Tree
When a heuristic transformation (to be described in Sec. 11) or an
algorithmlike transformation is applied to a goal, new goals are generated.
These goals, in turn, may generate more goals, and a certain hierarchy is
created. Such a hierarchy is conveniently represented by a graph or tree
growing downward. To facilitate understanding, the terminology of ordinary
and family trees is adopted by analogy, for example pruning, alive, dead,
child, parent, descendant, ancestor, etc.

Suppose we have an integration to perform, or more generally, any
goal g, which we shall represent graphically by a point. A goal may be
transformed into one or more subgoals which may be related to the goal
in many ways. This integration procedure incorporates two common rela-
tions, namely AND and OR.

a. AND relationship
An AND relationship between a goal and at least two subgoals exists

when the achieving of all of the subgoals causes the achieving of the goal.
Figure 1 depicts a relationship with three subgoals. The arc joining the
three branches denotes the AND relationship.

b. OR relationship
An OR relationship between a goal and its subgoals exists when the

achieving of any one of the subgoals causes the achieving of the goal.
Examples of this will appear later.

From these two basic relationships, more complicated relationships
among goals may be built up; for example, see Fig. 2a and b in Sec. 12.

6. The Temporary Goal List
The first attempt on new goals is performed by the procedures "imsln"
("IMmediate SoLutioN") described in Sec. 13 below. Any goal en-

Figure 1. An AND relationship,

196 ARTIFICIAL INTELLIGENCE

A

countered by imsln which is neither of standard form nor amenable to an
algorithmlike transformation is added to the end of the "temporary goal
list" (not to be confused with the "goal list") and later transferred to the
"heuristic goal list" described in Sec. 10 below. If the goal were added
directly to the heuristic goal list rather than to the temporary goal list,
time might be wasted by finding the goal's character (cf. Sec. 8).

7. The Role of the Resource Allotment
The resource allotment, or the total amountof work space, is a side condi-
tion of the original goal. Before proceeding to apply heuristic transforma-
tions, it must be verified that the resource allotment has not been exceeded.
If the resource allotment has been exceeded, SAINT reports this fact as
its final answer. Although other kinds of resources, for example, time,
might also be considered, the only kind of resource allotment handled by
SAINT is the total amount of work space. For hand simulation, the work
space can be measured by the number of pages or by the number of lines
used for the final and all intermediate results.

8. Character of a Goal
When a goal is taken off the temporary goal list its "character" is obtained,
that is, an ordered list of "characteristics." A characteristic of a goal is a

feature which might be useful either in estimating the cost of attempting
its attainment or in selecting appropriate heuristic transformations (see
Sec. 11) . In SAINT, the character is composed of eleven characteristics of
the integrand (Slagle, 1961) including its function type (whether it is a
rational function, algebraic function, rational function of sines and cosines,
etc.) and its depth. The depth of an integrand is the maximum level of
function composition which occurs in that expression:

x is of depth 0,
x 2 is of depth 1,
cex* is of depth 2,

xez* is of depth 3.

As one might guess, this helps get a crude estimate of the problem's
difficulty.

9. Relative Cost Estimate
Although other estimates could be tried, for the relative cost estimate of a
goal we take simply the depth of its integrand. This makes use of the fact
that, ordinarily, the deeper the integrand the more will be the resources
needed to investigatethat goal.

I

SYMBOLIC INTEGRATION PROBLEMS 197

t

10. The Heuristic Goal List
A list of goals requiring heuristic transformations, or, more briefly, a
heuristic goal list, is an ordered list of those goals which are neither of
standard form nor amenable to an algorithmlike transformation. A member
of the heuristic goal list is called a heuristic goal. New such goals are
inserted in order of increasing relative cost estimate.

11. The Heuristic Transformations
A transformation of a goal is called heuristic when, even though it is
applicable and plausible, there is a significant risk that it is not the ap-
propriate next step. A transformation may be inappropriate either because
it leads no closer to the solution or because some other transformation
would be better. The heuristic transformations are analogous to the
methods of detachment, forward chaining and backward chaining in the
Logic Theorist of Newell, Shaw, and Simon (1957). The ten types of
heuristic transformation (Slagle, 1961) used by SAINT are designed to
suggest plausible transformations of the integrand, substitutions, and
attempts using the method of integration by parts. Below is given only the
most successful heuristic, "substitution for a subexpression whose deriva-
tive divides the integrand."

Let g(v) be the integrand. For each nonconstant nonlinear subexpres-
sion s(v) such that neither its main connective is MINUS nor is it aproduct
with a constant factor, and such that the number of nonconstant factors of
the fraction g(v)/s'(v) (after cancellation) is less than the number of
factors of g(v), try substituting v = s(v). Thus, in xc*2 dx, substitute
v = x 2. (When SAINT tried this problem it used this heuristic but surprised
me by substituting v = c*2, which is somewhat better.)

12. Pruning the Goal Tree
Whenever some goal g has been achieved, the goal tree is pruned, that is,
certain closely related goals are automatically achieved and certain other
goals, newly rendered superfluous, are killed.

The pruning procedure will be clarified by an example. In Fig. 2a the
achieving of g221 allows g22 to be achieved (since, as indicated by the black
dot, g222 has already been achieved). In turn, the achieving of g22 allows g.,
to be achieved (since there is an OR relationship). Since the achieving of
82 now has rendered g23 superfluous, it is killed. However, another of g2 's
children gl2 is not killed since, through its other parent gt it has direct
living ancestry to the original goal g. The original goal g cannot be achieved
from the achieving of g2 since there is an AND relationship and gi has not
yet been achieved. Therefore, the result of the pruning process is as shown

198 ARTIFICIAL INTELLIGENCE

A

Figure 2.

in Fig. 2b. If either gtl or gl2 is later achieved, the original goal could and
would be achieved.

13. Trying for an Immediate Solution
As soon as a new goal g is generated, SAINT uses its straightforward
methods in an attempt to achieve it. While doing this, SAINT may add g

or certain of g's subgoals to the temporary goal list. If g is achieved, an
attempt is made to achieve the original goal.

14. Executive Organization
Precisely how all the various elements 1 through 13 are pieced together to
form an integration procedure is described below. The original goal is given
as a triplet, namely, the integrand, the variable of integration, and the
resource allotment. Theprocedure (see Fig. 3) is as follows:

a. If a try for an immediate solution with the original goal is successful,
return with the answer, the actual indefinite integral.

b. If the resource allotment has been exceeded, report failure.
c. Obtain and associate with each goal on the temporary goal list its

character and relative cost estimate. Take the goals off the temporary goal
list, and insert each one in the heuristic goal list according to its relative
cost estimate. If no goals remain on the heuristic goal list, report failure.

I

SYMBOLIC INTEGRATION PROBLEMS 199

l
I

i

f

I
:i

Originol goal

5

6

Figure 3.

d. Take the next goal gi off the heuristic goal list and let it be the goal
under consideration in the following innerloop.

c. If no heuristic transformations applicable to gi remain, go to step b.
/. Apply the next heuristic transformation applicable to g*. As soon as a

new goal g is so generated, add it to the goal list, and try for an immediate
solution with g. Then there are three cases. If this try achieves the original
goal, return with the answer. Failing this, if gi is achieved, go to step b.
Otherwise go to step c.

Definite Integration Procedure
SAINT can perform some definite integrations by first finding the cor-

responding indefinite integrals. Thus, for example, for the problem

f 3 xVx2 + lGdxJq

A

200 ARTIFICIAL INTELLIGENCE

SAINT first finds the indefinite integral,

SAINT substitutes the limits and obtains the answer cl/3 .
Multiple Integration Procedure
SAINT can perform multiple integration when it can perform the re-

quired definite integrations, e.g.,

ii Ly^^
Experiments andFindings with SAINT

This section describes some of SAINT's typical observed behavior and
how one modification changes its behavior. Slagle (1961) describes other
experiments and gives further details. The experiments to measure SAINT s

behavior involve 86 problems. Largely for the purposes of debugging, 32

of the problems were selected or constructed by the author, who fully
expected SAINT to solve them all. More objectively, the remaining 54
problems were selected from MIT freshman calculus final examinations by

the author's assistant, Gerald Shapiro, with instructions to select the more

diverse and difficult problems, provided only that the method of partial

fractions was not needed for the solution. The measures of behavior that
we use are:

1. Power
The power of a version of SAINT refers to the size of the class of prob-

lems that it can solve.
2. Time
All the times mentioned refer to the IBM 7090 computer.
3. Number of subgoals and unused subgoals
The original goal is not included in the number of subgoals. An unused
subgoal is a subgoal which is not neededin the solution chain.
4. Level
The level of a solution is the maximum level at which a used subgoal
occurs in the goal tree during that solution.
5. Heuristic level of a solution
This measure is similar to "level" except that only the goal-treebranches
representing heuristic transformations are considered rather than all the
branches representing algorithmlike or heuristic transformations.

A. Unmodified SAINT
The SAINT program described in the preceding sections tried to solve

all 86 problems selected by the author and Gerald Shapiro. In this attempt,

J* V^~+l6 dx = 2 + 16)*
le limits and obtains the answer cl/3

I

201SYMBOLIC INTEGRATION PROBLEMS

I

1

I

the computer spent about half of its time in reclaiming abandoned memory
registers for reuse. Approximately half of the remaining time was spent
in pattern recognition, that is, in finding characters and in recognizing when
an integrand is of standard form or amenable to an algorithmlike or
heuristic transformation. As the author expected, SAINT solved all 32 of
his problems. Of the 54 MIT problems, SAINT solved 52 and quickly (in
less than a minute) reported failure for the other 2. Both of the failures
are excluded from the averages in the table below, which summarizes
SAINT's average performance.

SAINT's Average Performance

Unused Heuristic
Minutes Subgoals subgoals Level level

32 author problems 3 . 3
52 MITproblems 2.0

3.5 1.0
2.0 2.9 0.8

All 84 problems 2.4 3.0 0.9

In this paragraph we complement the tabulation of SAINT's average
performance on MIT problems with some examples of SAINT's extreme
behavior. For this purpose, only MIT problems are considered since they
were selected more objectively. SAINT seemed to find f (dx/x) the
easiest problem since it generatedno subgoals at all and took the least time,
namely0.03 minute. SAINT took the most time, 18 minutes, for

whose solution ties for the maximum heuristic level of four. The other
problem whose SAINT solution has a heuristic level of four is

The maximum heuristic level obtained by the unmodified Logic Theorist
is two, which occurred for two of 38 solutions (Newell, Shaw, and Simon,
1957a). SAINT generated the most subgoals (18) and had the maximum
level (8) for (sin x+ cos x) 2 dx. In 37 of the 52 problems, SAINT gen-
erated only subgoals that were needed in the solution chain. In this regard,
SAINTregistered its best performance on one of these 37 problems

I dy dx

for which SAINT generated 16 subgoals, all of which were needed in the
solution chain.

6.4
4.7
5.3

2.0
0.8
1.25

r sec2 t ,
J 1 + sec2 1 - 3 tan t

/(1 - x 2)* dx

202 ARTIFICIAL INTELLIGENCE

A

B. BSAINT, i.e., SAINT Trying Heuristic Goals in Order of Generation

Instead of trying heuristic goals in order of increasing depth, BSAINT
tries heuristic goals merely in the order in which they were generated. In
measures of performance including time and the number of unused sub-
goals, SAINT was better than BSAINT in three of the four problems
which caused a difference in behavior.

Main Conclusions

The conclusions are based on experience, namely, the experiments
described in the preceding sections and the author's experience concerning
the creation, structure, and performance of SAINT. Throughout this
section, a parenthesized mention of an experiment is an appeal for support
of a conclusion to an experimentdescribed in the previous section.

1. A machine can manifest intelligent problem-solving behavior, that
is, behavior which, if performed by people, would be called intelligent
(experimentA).

2. A heuristic program can easily include programs for handling an
AND-OR goal tree (such as found in SAINT), which is often useful in
complex goal-achieving schemes.

3. In SAINT, pattern recognition plays a very important part in three
senses.

a. Pattern recognition consumes much of the program and pro-
gramming effort.

b. Pattern recognition is used frequently and with great variety, for
instance, in determinations involving standard

forms,

algorithmlike
and heuristic transformations, and relative cost estimates.

c. Pattern recognition consumes much of the time in solving integra-
tion problems (experiment A).

4. The tripartite division of methods into standard forms, algorithmlike
transformations, and heuristic transformations is very useful in problem-
solving. Standard forms in SAINT and "substitution" in the Logic Theorist
may be instances of an "immediately achieve" procedure which seems to be
a basic component of a goal-achieving scheme. The input to the procedure
is a goal. The output is "no" (the goal is not yet achieved) or one or more
of the following three items, namely, "yes," how to achieve the goal, or the
achievement of the goal. In each domain, the procedure for immediately
achieving a goal must be supplied anew and, since it is a very frequently
used procedure, should operate very rapidly. The algorithmlike transforma-
tions also seem to be a basic component of a goal-achieving scheme, but
this remains to be seen since they are not present in all schemes, for ex-

f

203SYMBOLIC INTEGRATION PROBLEMS

1

1

ample, the Logic Theorist. The organization of SAINT's heuristic trans-
formations (corresponding to that of the Logic Theorist's methods of
detachment, forward chaining, and backward chaining) seems to be an
often convenient but not a basic component of a goal-achieving scheme.

5. A fourfold increase in SAINT's memory size (now 32,768 registers)
could have been readily converted into a hundredfold increase in speed,
since the reclaiming of abandoned memory registers for reuse, which now
accounts for about half of the running time, would become insignificant
and since a compiled program would run about fifty times faster. Much
computer time and space could be saved if one computer instruction
represented the very frequently used symbol manipulating functions.

6. The present speed of SAINT compares very favorably with the
speed of the average college freshman (experiment A). With a now com-
mercially available large high-speed digital computer, such as the IBM
7030 (STRETCH), a compiled but otherwise unimproved SAINT pro-
gram would run eight hundred times faster, which would far surpass in
speed even the most gifted of mathematicians at this task. At present
commercial rates, an IBM 7090 SAINT solution of an average MIT final-
examination problem costs about fifteen dollars, far more expensive than
a human solution. However, a STRETCH SAINT solution would cost
only about two dollars or, if compiled, only about four cents. This rapidly
decreasing cost trend in computers, not to mention possible improvements
in the SAINT program, will result in solutions which are far cheaper by
machine than by man.

I

section 5

Question-answering
Machines

Question-answering machines are computer programs that can be
interrogated in natural language (with some constraints) for the
answers to questions about a universe of discourse. The problem of
constructing such machines has both theoretical and practical interest.

From the theoretical point of view, one of the most intriguing
pursuits in artificial intelligence research is that of discovering the
information processing structure underlying the act of "comprehend-
ing" or the process of "understanding." Though some will view the
use of these two words with alarm, we use them here invested with
their full human meaning. For this is precisely the goal of the re-
searchers themselves. They are engaged in a quest for an informa-
tion processing theory of an intelligent mechanism capable of "grasp-
ing the meaning" of those strings of symbols which are our natural
language sentences and questions.

As a practical matter, throughout the entire field of computer
applications—in information retrieval applications, in computer-
controlled libraries and classrooms, in military command-control
applications, in the research toward man-machine cooperative prob-
lem-solving, to mention just a few areas—users are feeling acutely
the need to communicate with computers more directly, with greater
fluidity and facility, than has been possible in the past.

The two reports reprinted in this section describe important initial
steps toward these goals. The BASEBALL program of Green, Wolf,
Chomsky, and Laughery is, in sportswriters' parlance, a baseball
buff, answering certain kinds of queries about baseball "facts and

206 ARTIFICIAL INTELLIGENCE

A

figures" from a stylized baseball "yearbook" stored in the computer's
memory. Lindsay's SAD SAM program answers questions about
family kinship relations.

The basic differences in approach between the two efforts are as
follows:

1. In the BASEBALL project, the "fact library" is stored in the
computer memory in advance in a form which makes searching the
library relatively easy. In SAD SAM, the kinship relationships be-
tween members of the particular family under discussion are not
given the program in advance but are input to the program in the
form of English sentences. The program, assimilating and analyzing
these sentences, constructs an internal "map," or "model," of the
familial relationships—an information structure referenced later in
answering questions about the family.

2. In BASEBALL, within certain constraints upon the type of
question that can be asked and the availability of words in the pro-
gram's glossary, full-blown English is the language of discourse. In
SAD SAM a simplified English (the so-called Basic English system,
devised to facilitate English language learning) is the language of
discourse.

Both programs, of course, operate within extremely limited fact
universes. At this exploratory stage of the research, however, dis-
covery and thorough understanding of possible basic mechanisms for
language comprehension would appear to be more important than
premature attempts to deal with wide-ranging universes of discourse.

The BASEBALL research was done at Lincoln Laboratory under
the direction of Bert Green, who is presently Chairman of the Psy-
chology Department at the Carnegie Institute of Technology.

Alice Wolf is presently a member of the research staff of Bolt,
Beranek, and Newman in Cambridge, Massachusetts.

Carol Chomsky is associated with Harvard University.
Kenneth Laughery is a member of the faculty of the University

of Buffalo.
Robert Lindsay is a member of the faculty of the Psychology De-

partment, and a member of the staff of the Computer Center, at the
University of Texas.

I

J

I

:i

BASEBALL: AN AUTOMATIC
QUESTION ANSWERER

by Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, &
Kenneth Laughery

Introduction

Men typically communicate with computers in a variety of artificial,
stylized, unambiguous languages that are better adapted to the machine
than to the man. For convenience and speed, many future computer-
centered systems will require men to communicate with computers in
natural language. The business executive, the military commander, and the
scientist need to ask questions of the computer in ordinary English, and
to have the computer answer the questions directly. Baseball is a first step
toward this goal.

Baseball is a computer program that answers questions posed in ordinary
English about data in its store. The program consists of two parts. The
linguistic part reads the question from a punched card, analyzes it
syntactically, and determines what information is given about the data being
requested. The processor searches through the data for the appropriate
"nformation, processes the results of the search, and prints the answer.

The program is written in IPL-V (Newell, et al., 1960e), an informa-
tion processing language that uses lists, and hierarchies of lists, called list
structures, to represent information. Both the data and the dictionary are
'ist structures, in which items of information are expressed as attribute-
value pairs, e.g., Team = Red Sox.

The program operates in the context of baseball data. At present, the
data are the month, day, place, teams and scores for each game in the
American League for one year. In this limited context, a small vocabulary
"s sufficient, the data are simple, and the subject matter is familiar.

207

208 ARTIFICIAL INTELLIGENCE

AL

Some temporaryrestrictions were placed on the input questions so that
the initial program could be relatively straightforward. Questions are
limited to a single clause; by prohibiting structures with dependent clauses
the syntactic analysis is considerably simplified. Logical connectives, such
as and, or, and not, are prohibited, as are constructions implying relations
like most and highest. Finally, questions involving sequential facts, such as
"Did the Red Sox ever win six games in a row?" are prohibited. These
restrictions are temporaryexpedients that will be removed in later versions
of the program. Moreover, they do not seriously reduce the number of
questions that the program is capable of answering. From simple questions
such as "Who did the Red Sox lose to on July 5?" to complex questions
such as "Did every team play at least once in each park in each month?"
lies a vast number of answerable questions.

Specification List
Fundamental to the operation of the baseball program is the concept of
the specification list, or spec list. This list can be viewed as a canonical
expression for the meaning of the question; it represents the information
contained in the question in theform of attribute-value pairs, e.g., Team =
Red Sox. The spec list is generated from the question by the linguistic part
of the program, and it governs the operation of the processor. For example,
the question "Where did the Red Sox play on July 7?" has the spec list:

Month = July
Day = 7.

Some questions cannot be expressed solely in terms of the main attributes
(Month, Day, Place, Team, Score, and Game Serial Number), but require
some modification of these attributes. For example, on the spec list of
"What teams won 10 games in July?", the attribute Team is modified by
Winning, and Game is modified by Number of, yielding

Team (winning) — "
Game (number of) = 10

Dictionary
The dictionary definitions, which are expressed as attribute-value pairs,
are used by the linguistic part of the program in generating the spec list. A
complete definition for a word or idiom includes a part of speech, for use
in determining phrase structure; a meaning, for use in analyzing content;

an indication of whether the entry is a question word, e.g., who or how
many; and an indication of whether a word occurs as part of any stored

Place = ?
Team = Red Sox

Month = July.

I

BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER 209

J

1

idiom. Separate dictionaries are kept for words and idioms, an idiom being
any contiguous set of words that functions as a unit, having a unique
definition.

The meaning of a word can take one of several forms. It may be a main
or derived attribute with an associated value. For example, the meaning
of the word Team is Team = (blank), the meaning of Red Sox is
Team = Red Sox, and the meaning of who is Team = ?. The meaning
may designate a subroutine, together with a particular value, as in the case
of modifiers such as winning, any, six, or how many. For example,
winning has the meaning Subroutine Al = Winning. The subroutine,
which is executed by the content analysis, attaches the modifier Winning
to the attribute of the appropriate noun. Some words have more than one
meaning; the word Boston may mean either Place = Boston or Team =
Red Sox. The dictionary entry for such words contains, in addition to each
meaning, the designation of a subroutine that selects the appropriate mean-
ing according to the context in which the word is encountered. Finally,
some words such as the, did, play, etc., have no meaning.

Data
The data are organized in a hierarchical structure, like an outline, with
each level containing one or more items of information. Relationships
among items are expressed by their occurrence on the same list, or on
associated lists. The main heading, or highest level of the structure, is the
attribute Month. For each month, the data are further subdivided by place.
Below each place under each month is a list of all games played at that
place during that month. The complete set of items for one game is found
by tracing one path through the hierarchy, i.e. one list at each level. Each
path contains values for each of six attributes,e.g.:

Day = 7
Game Serial No. = 96
(Team = Red Sox, Score = 5)
(Team = Yankees, Score = 3)

The parentheses indicate that each Team must be associated with its own
score, which is doneby placing them together on a sublist.

The processing routines are written to accept any organization of the
data. In fact, they will accept a nonparallel organization in which, for
example, the data might be as above for all games through July 31, and
then organized by place, with month under place, for the rest of the season.
The processing routines will also accept a one-level structure in which
each game is a list of all attribute-value pairs for that game. The possibility

Month = July
Place = Boston

210 ARTIFICIAL INTELLIGENCE

L

of hierarchical organization was included for generality and potential ef-
ficiency. The basic rule is that any one path through the data, including
one list at each level, must contain all of the facts for a single game. Also,

on every such path, each attribute may occur at most once, unless it
occurs on parallel sublists.

Details of the Program

The program is organized into several successive, essentially independent
routines, each operating on the output of its predecessor and producing an
input for the routine that follows. The linguistic routines include question
read-in, dictionary look-up, syntactic analysis, and content analysis. The
processing routines include theprocessor and theresponder.

Linguistic Routines

QUESTION

READ-IN

A question for the program is read into the computer from punched cards.
The question is formed into a sequential list of words.

DICTIONARY LOOK-UP

Each word on the question list is looked up in the word dictionary and its
definition copied. Any undefined words are printed out. (In the

future,

with a direct-entry keyboard, the computer can ask the questioner to

define the unknown words in terms of words that it knows, and so augment
its vocabulary.) The list is scanned for possible idioms; any contiguous
words that form an idiom are replaced by a single entry on the question
list, and an associated definition from the idiom dictionary. At this point,
each entry on the list has associated with it a definition, including a part of
speech, a meaning, and perhaps other indicators.

SYNTAX

The syntactic analysis is based on the parts of speech, which are syntactic
categories assigned to words for use by the syntax routine. There are 14
parts of speech and several ambiguity markers.

First, the question is scanned for ambiguities in part of speech, whicn
are resolved in some cases by looking at the adjoining words, and in other
cases by inspecting the entire question. For example, the word score may
be either a noun or a verb; our rule is that, if there is no other main verb
in the question, then score is a verb, otherwise it is a noun.

Next, the syntactic routine locates and brackets the noun phrases, [Ql
and the prepositional and adverbial phrases, (□)" The verb is left un-

r

BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER 211

{

A.

bracketed. This routine is patterned after the work of Harris and his
associates at the University of Pennsylvania (Harris, 1960). Bracketing
proceeds from the end of the question to the beginning. Noun phrases, for
example, are bracketed in the following manner: certain parts of speech
indicate the end of a noun phrase; within a noun phrase, a part of speech
may indicate that the word is within the phrase, or that the word starts
the phrase, or that the word is not in the phrase, which means that the
previous word started the phrase. Prepositional phrases consist of a prepo-
sition immediately preceding a noun phrase. The entire sequence, preposi-
tion and noun phrase, is enclosed in prepositional brackets. An example
of a bracketed questionis shown below:

[How many games] did [the Yankees] play (in [July])?
When the question has been bracketed, any unbracketed preposition is
attached to the first noun phrase in the sentence, and prepositional brackets
added. For example, "Who did the Red Sox lose to on July 5?" becomes
"(To [who]) did [the Red Sox] lose (on [July 5])?"

Following the phrase analysis, the syntax routine determines whether
the verb is active or passive and locates its subject and object. Specifically,
the verb is passive if and only if the last verb element in the question is a
main verb and the preceding verb element is some form of the verb to be.
For questions with active verbs, if a free noun phrase (one not enclosed in
prepositional brackets) is found between two verb elements, it is marked
Subject, and the first free noun phrase in the question is marked Object.
Otherwise the first free noun phrase is the subject, the next, if any, is the
object. For passive verbs, the first free noun phrase is marked Object (since
it is the object in the active form of the question) and all prepositional
Phrases with the preposition by have the noun phrase within them marked
Subject. If there is more than one, the content analysis later chooses among
them on the basis of meaning.

Finally, the syntactic analysis checks to see if any of the words is marked
as a question word. If not, a signal is set to indicate that the question re-
quires a yes/no answer.

CONTENT ANALYSIS

The content analysis uses the dictionary meanings and the results of the
syntactic analysis to set up a specification list for the processing program.
First any subroutine found in the meaning of any word or idiom in the
question is executed. The subroutines are of two basic types; those that
deal with the meaning of the word itself and those that in some way
change the meaning of another word. The first type chooses the appropriate
meaning for a word with multiple meanings, as, for example, the sub-
routine mentioned above that decides, for names of cities, whether the

212 ARTIFICIAL INTELLIGENCE

J

meaning is Team =At or Place = Ap. The second type alters or modifies
the attribute or value of an appropriate syntactically related word. For
example, one such subroutine puts its value in place of the value of the
main noun in its phrase. Thus Team = (blank) in the phrase each team
becomes Team = each; in the phrase what team, it becomes Team = ?.
Another modifies the attribute of a main noun. Thus Team = (blank) in
the phrase winning team becomes Team(winning) = (blank). In the ques-
tion "Who beat the Yankees on July 4?", this subroutine, found in the
meaning of beat, modifies the attribute of the subject and object, so that
Team = ? and Team = Yankees are rendered Team(wi nnin g) = ? and
Team(Ioain!!) = Yankees. Another subroutine combines these two opera-
tions : it both modifies the attribute and changes the value of the main noun.
Thus, Game = (blank) in the phrase six games becomes Game(number on =
6, and in the phrase how many games becomes Game („Umber on = ?"

After the subroutines have been executed, the question is scanned to
consolidate those attribute-value pairs that must be represented on the
specification list as a single entry. For example, in "Who was the winning

team . . ." Team = ? and Team(wlnnln!!;) = (blank) must be collapsed
into Team(winning) = ?. Next, successive scans will create any sublists
implied by the syntactic structure of the question. Finally, the composite
information for each phrase is entered onto the spec list. Depending on its
complexity, each phrase furnishes one or more entries for the list. The
resulting spec list is printed in outline form, to provide the questioner with
some intermediate feedback.

Processing Routines

PROCESSOR

The specification list indicates to the processor what part of the stored
data is relevant for answering the input question. The processor extracts
the matching information from the data and produces, for the responder,
the answer to the question in the form of a list structure.

The core of the processor is a search routine that attempts to find a
match, on each path of a given data structure, for all the attribute-value
pairs on the spec list; when a match for the whole spec list is found on a
given path, those pairs relevant to the spec list are entered on a found list.
A particular spec list is considered matched when its attribute has been
found on a data path and either the data value is the same as the spec
value, or the spec value is ? or each, in which case any value of the
particular attribute is a match. Matching is not always straightforward.
Derived attributes and some modified attributes are functions of a number
of attributes on a path and must be computed before the values can be
matched. For example, if the spec entry is Home Team = Red Sox, the

I

213BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER

i

■[

V

actual home team for a particular path must be computed from the place
and teams on that path before the spec value Red Sox can be matched
with the computed data value. Sublists also require special handling be-
cause the entries on the sublist must sometimes be considered separately
and sometimes as a unit in various permutations.

The found list produced by the search routine is a hierarchical list struc-
ture containing one main or derived attribute on each level of each path.
Each path on the found list represents the information extracted from one
or more paths of the data. For example, for the question "Where did each
team play in July?", a single path exists, on the found list, for each team
which played in July. On the level below each team, all places in which
that team played in July occur on a list that is the value of the attribute
Place. Each path on the found list may thus represent a condensation of
the information existing on many paths of the search data.

Many input questions contain only one query, as in the question above,
ie., Place = ?. These questions are answered, with no further processing,
by the found list produced by one execution of the search routine. Others
require simple processing on all occurrences of the queried attribute on
the generatedfound list. The question "In how many places did each team
Play in July?" requires a count of the places for each team, after the
search routine has generated the list of places for each team.

Other questions imply more than one search as well as additional
Processing. For a spec attribute with the value every, a comparison with
a list of all possible values for that attribute must be made after the search
routine has generatedlists of found values for that attribute. Then, since
°nly those found list paths for which all possible values of the attribute
exist should remain on the found list as the answer to the question, the
search routine, operating on this found list as the data, is again executed.
It now generates a new found list containing all the data paths for which
aH possible values of the attribute were found. Likewise, questions involv-
lng a specified number, such as 4 teams, imply a search for which teams, a
count of the teams found on each path, and a search of the found list for
Paths containing 4 teams.

In general, a question may contain several implicit or explicit queries.
Since these queries must be answered one at a time, several searches, with
uitermediate processing, are required. The first search operates on the
stored data while successive searches operate on the found list generated
by the preceding search operation. As an example, consider the question
"On how many days in July did eight teams play?" The spec list is

Day(mimi)er 0f) —

/;

Month = July;
Team(number on = 8.

214 ARTIFICIAL INTELLIGENCE

On the first pass, the implicit question which teams is answered. The spec
list for thefirst search is

Day = Each;
Month = July;
Team = ?.

The found data is a list of days in July; for each day there is a list of teams
that played on that date. Following this search, the processor counts the
teams for each day and associates the count with the attribute Team. On
the second search, the spec list is

Teani(number on — 8.

The found data is a list of days in July on which eight teams played. After
this pass, the processor counts the days, adds the count to the found list,
and is finished.

RESPONDER

No attempt has yet been made to respond in grammatical English sentences.
Instead, the final found list is printed in outline form. For questions re-
quiring a yes/no answer, YES is printed along with the found list. If the
search routine found no matching data, NO is printed for yes/no questions,
and NO DATA for all other cases.

Discussion

The differences between Baseball and both automatic language transla-
tion and information retrieval should now be evident. The linguistic part
of the Baseball program has as its main goal the understanding of the
meaning of the question as embodied in the canonical specification list-
Syntax must be considered and ambiguities resolved in order to represent
the meaning adequately. Translation programs have a different goal: trans-
forming the input passage from one natural language to another. Meanings
must be considered and ambiguities resolved to the extent that they affect
the correctness of the final translation. In general, translation programs are
concerned more with syntax and less with meaning than the Baseball
program.

Baseball differs from most retrieval systems in the nature of its data.
Generally the retrieval problem is to locate relevant documents. Each
document has an associated set of index numbers describing its content.
The retrieval system must find the appropriate index numbers for each
input request and then search for all documents bearing those index numb-

Day = ?;
Month = July;

t

BASEBALL: AN AUTOMATIC

QUESTION

ANSWERER 215

i

J

i

ers. The basic problem in such systems is the assignment of index cate-
gories. In Baseball, on the other hand, the attributes of the data are very
well specified. There is no confusion about them. However, Baseball's
derived attributes and modifiers imply a great deal more data processing
than most document retrieval programs. (Baseball does bear a close rela-
tion with the ACSI-MATIC system discussed by Miller et al. at the 1960
Western Joint Computer Conference.)

The concept of the spec list can be used to define the class of questions
that the Baseball program can answer. It can answer all questions whose
spec list consists of attribute-value pairs that the program recognizes. The
attributes may be modified or derived, and the values may be definite or
queries. Any combination of attribute-value pairs constitutes a specifica-
tion list. Many will be nonsense, but all can be answered. The number of
questionsin the class is, of course, infinite, because of the numerical values.
But even if all numbers are restricted to two digits, theprogram can answer
millions of meaningful questions.

The present program, despite its restrictions, is a very useful communica-
tion device. Any complex question that does not meet the restrictions can
always be broken up into several simpler questions. The program usually
rejects questions it cannot handle, in which case the questioner may
rephrase his question. He can also check the printed spec list to see if the
computer is on the right track, in case the linguistic program has erred and
failed to detect its own error. Finally, he can often judge whether the
answer is reasonable.

Next Steps

No important difficulty is expected in augmenting the program to include
logical connectives, negatives, and relation words. The inclusion of
multiple-clause questions also seems fairly straightforward, if the questioner
will mark off for the computer the boundaries of his clauses. The program
can then deal with the subordinate clauses one at a time before it deals
with the main clause, using existing routines. On the other hand, if the
syntax analysis is required to determine the clause boundaries as well as
the phrase structure, a much more sophisticated program would be
required.

The problem of recognizing and resolving semantic ambiguities remains
largely unsolved. Determining what is meant by the question "Did the
Red Sox win most of their games in July?" depends on a much larger
context than the immediate question. The computer might answer all
tfieaningful versions of the question (we know of five), or might ask the
questioner which meaning he intended. In general, the facility for the
computer to query the questioner is likely to be the most powerful im-

<-> V

t.

216 ARTIFICIAL INTELLIGENCE

provement. This would allow the computer to increase its vocabulary, to
resolve ambiguities, and perhaps even to train the questioner in the use of
the program.

Considerable pains were taken to keep the program general. Most of the
program will remain unchanged and intact in a new context, such as voting
records. The processing program will handle data in any sort of hierarchical
form, and is indifferent to the attributes used. The syntax program is based
entirely on parts of speech, which can easily be assigned to a new set of
words for a new context. On the other hand, some of the subroutines con-
tained in the dictionary meanings are certainly specific to baseball; prob-
ably each new context would require certain subroutines specific to it. Also,
each context might introduce a number of modifiers and derived attributes
that would have to be defined in terms of special subroutines for the
processor. Hopefully, all such occasions for change have been isolated in a
small area of special subroutines, so that the main routines can be un-
altered. However, until we have actually switched contexts, we cannot say
definitely that we have been successful in producing a general question-
answering program.

r

j

1

"\

INFERENTIAL MEMORY
AS THE BASIS OF

MACHINES WHICH UNDERSTAND
NATURAL LANGUAGE

Robert K. Lindsay

Participants in the search for intelligent machines frequently disagreeon a basic question of strategy in their quest. On the one hand there are
those who believe that the major obstacles can be overcome by reliance
on the computer's infallible memory, electronic speed, and arithmetic
capabilitiesif these capacities are cleverly employed in sophisticated search-
uig and statistical procedures. On the other hand there are those who
feel that the problems of meaning and intuition must be somehow resolved
before significant progress will be made, and that these problems are not
solely a matter of speed and arithmetic. This issue will only be resolved bydemonstration, and yet it is of some importance to decide how to allocate
°ur efforts. This report takes the position that immediate, practical applica-
tions can derive from the former approach, but the major problems will be
solved only by the latter. To mention a single example, the implementation
°f information retrieval techniques on present-day computers would be alarge step forward, even though the techniques thus far considered have
largely been conceptually trivial. The automation of libraries and scientific
document files could immediately bring about great savings in valuable
human time and effort, plus increased accuracy in literature searching.
Kehl (1961) is now implementing a retrieval system which searches for
certain combinations of key words in a large corpus and yields references to
those documents which contain the proper combinations. Luhn (1958) has
used a straightforward statistical procedure to extract key sentences from
scientific articles, thus yielding useful abstracts of a sort. The use of these
two techniques on a large scale would go a long way toward extracting usfrom the clutches of the information explosion which is so often discussed.

217

218 ARTIFICIAL INTELLIGENCE

A

And yet it is quite clear that these techniques, whose primary advantages
derive from using the great speed of the computer, will not produce intel-
ligent machines, or even produce machines which do simple jobs with the
intelligence displayed by a human clerk. For even an unintelligent human
does more than count frequencies or search for key words. The human
displays intelligent features which are generally summed up by saying that
he understands the meaning of what he hears andreads.

The meaning of meaning and the meaning of understanding have never
been adequately explicated when applied to human thought processes. How
then can we hope to make them precise enough to enable us to build
machines which understand meaning? Before attempting to answer this
question, let us attempt to sharpen our intuitions by considering more
specifically some examples of things which could be done by machines
which understand but which would be beyond the capabilities of machines
without this ability.

One of the major problems of the many encompassedby artificial intel-
ligence is that of the mechanical translation of natural languages. Many
of the early advocates of mechanical translation felt that high-quality trans-
lations could be produced by machines supplied with sufficiently detailed
syntactic rules, a large dictionary, and sufficient speed to examine the
context of ambiguous words for a few words in each direction. No doubt
such machines will be able, when the syntactic rules are discovered, to
produce fairly good translations, and yet it should be clear that such ma-
chines will never produce truly high-quality translations without the aid of
pre-editing and postediting by human translators.

Here is one example of a difficulty. We wish to translate "The boy is in
the house" and "The boy is in Paris" into French. In the first instance, the
preposition "in" is rendered in French as "dans"; in the second sentence,
the same preposition is rendered in French as "a." The human translator
makes his decision by knowing that houses enclose people on all sides,
while cities do not. This situation could, of course, be handled by marking
all nouns with an indicator which tells the machine whether or not the
thing denoted can enclose other things. But the hope that all such idio-
syncrasies can be handled by such multiplication of stored details is futile.
Bar-Hillel (1960) has given an even more perplexing example. We wish
to translate the sentences "The pen is in the box" and "The box is in the
pen" into French. There is no other context, and no other is needed by a

human translator who knows that "pen" in the first sentence must denote
a writing instrument and not a fenced enclosure, while the opposite is true
in the second sentence. He can thus select the proper French equivalent
for each, even though in French a single word does not suffice as it does
in English. Once again we must increase the information stored in our

I

:t

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 219
machine, this time indicating for each noun those things which it can
enclose.

The problem of understanding may be rephrased to state that we mustfind ways of storing large amounts of such detailed knowledge whilekeeping the amountof memory capacity required within realizable limits.
Much of the literature on meaning has not been directly connected with

this notion, but has been concerned with the problem of denotation: to
what things does a symbol refer. Here, however, we are faced with the
problem of what a proposition means. Osgood (1957) and Mowrer (1954)
have attempted to extend notions of association and conditioning to include
associations between groups of words rather than single words.

According to Osgood's theory, a word elicits associated internal re-sponses. These responses can be described by their values along certaindimensions, such as active-inactive, good-bad, strong-weak. The meaning
of a combination of words is an average of the component values for eachof the words taken individually. For example, if "shy" is valued as mildly
inactive, mildly bad, and mildly weak, and if "secretary" is valued as beingvery active, very good, and mildly weak, then "shy secretary" is valued as
mildly active, mildly good, and mildly weak.

According to Mowrer's theory, sentences are temporal sequences of
words and the internal responses to the first words are conditioned, in the
classical sense, to the internal responses to the later words. Thus the
sentence "Tom is a thief" conditions the notion of Tom to the notion of
thief, where we use the loose term "notion" to indicate that it is not the
words themselves, but the internal responses to them which become
associated.

In both of these theories, the measure of meaning of a concatenationof words amounts to some sort of combination of the measures for the
individual words. It appears that a useful theory must somehow make useof more complicated associative connections than those proposed by eitherof these two workers. For one thing, Osgood's scheme depends not at all
on word order, only on which words are used;. Mowrer's scheme depends
only on word order, and not upon any other relations. To Osgood, "Tomhit Joe" would have the same meaning as "Joe hit Tom"; to Mowrer,
"Tom is a thief" would have the same meaning as "Tom hit a thief."

Intuitively, a concept of meaning must include the notion of implication:
what does a proposition imply. This does not mean, that is, imply, logical
implication, but merely implication to the individual. Thus the meaningof a proposition is relative to the audience, and this probably is an un-
avoidable requirement.

Knowing more than one is told is a characteristic of human performance
which is present in most behaviors which are called intelligent. We have

<*

220 ARTIFICIAL INTELLIGENCE

argued that this characteristic is necessary for machines which are to

solve the real problems of information retrieval, language translation, and
problem-solving. And furthermore, we must find efficient ways to store
implications if we are to develop intelligent machines with finite memory
capacities, that is, if we are to develop intelligent machines.

Examples of memory structures with these desired properties im-
mediately come to mind from personal experience. They are often called
mental pictures. Gelernter (19596), for example, has developeda geometry

machine whose basic source of intelligence lies in its ability to reject most

of the formally possible sequences of proof steps because they "cannot
possibly be correct." In effect, the machine constructs a diagram based
upon the premises of the theorem to be proved. (Actually, the machine is
supplied with such a diagram, although the task of constructing one is,
while difficult, not taxing of memory and speed.) The implications of the
premises are explicitly contained in this diagram, as are some nonimplica-
tions, but most nonimplications are not contained. The machine then
merely rejects as possible subgoals (intermediate steps) all things which
are not true in the diagram. For example, the premises "Triangle ABC,"

"AB = BC," "A, D, C collinear," and "AD = DC" are supplied in con-
junction with coordinates for each point, such as A(0,0), 8(5,5), C(10,0)

and D(5,0) (see Fig. 1). The machine will never attempt to prove
"triangle ABC congruent to triangle ABD" because this is not true in the
diagram, as the machine can determine by calculating their respective
perimeters. However, it might try to prove "angle DAB = angle DCB/'
which is implied by the premises. It may also try to prove "AD = DB
which is true in the diagram, but not implied by the premises. By supply-
ing the machine with a more general diagram, such as by moving B to

(5,15) (see Fig. 2), this last cul de sac could be avoided.
Such two-dimensional pictures have the properties we desire: they store

implications and they do so in

Figure 1.

compact fashion. They also have a wide

Figure 2.

r

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 221

t

1

range of application, few of which, aside from Gelernter's work, have been
explored. One further example is provided by Venn diagrams, which are
devices which aid logical reasoning. We may represent the proposition "all
B are A" by two areas, one completely enclosed by the other, with
appropriate labels. If we add a third area, C, according to the same rules
to represent the proposition, "all C are B," the resulting diagram contains
the implication that "all C are A," since area C must lie wholly within
area A. Similar rules can be devised for other propositional forms, as
elsewhere discussed by Lindsay (1961). Actually there are simpler schemes
for such situations since not all of the properties of euclidian two-dimen-
sional space are required, but, since such representations also handle many
other situations, an intelligent machine would achieve some economy by
employing such general-purpose representations wherever usable rather
than devising special schemes for each case.

So far we have discussed only situations where few difficulties arise.
Reasoning does not always obey the rules of logic and geometry, and we
quickly encounter additional difficulties when we attempt to handle even
simple situations. A program has been written to handle a different class
of problems, and the difficulties will become clear as this program is
described.

The program to be described parses sentences written in Basic English
and makes inferences about kinship relations. To do this it constructs two
types of complex structures in the computer memory, one corresponding
to a sentence diagram of the sort produced by high-school students, the
other corresponding to the familiar family tree. These are represented
inside the computer by so-called list structures. A list structure is a form
of associative memory, wherein each symbol is tagged by an indicator
which tells the machine the location of a related symbol. So far this cor-
responds to the associative bonds which are the basic concept of stimulus-
response psychology. However, each symbol may at times refer to a whole
string of other, connected symbols, thus producing a hierarchical organiza-
tion of memory associations. This feature provides much greater flexibility
than either the single associations of stimulus-response psychology or the
mediated associations which have recently been discussed and seem to be a
first step in the direction of generalizing the limited stimulus-response
schema.

The Sentence-parsingProgram

The grammars of certain languages may be described by rules of re-
placement, which, if they satisfy certain conditions of simplicity, are called
phrase structure rules (see Chomsky, 1957). For example, a simple gram-
mar might consist of the followingrules :

\?

222 ARTIFICIAL INTELLIGENCE

13. V ** flying
14. Aux «-» are

These rules may be interpreted as, for example, the twelfth, "When V
is encountered in a string of symbols, it may be replaced by 'are,' " or
"when 'are' is encountered in a string of words it may be replaced by V."
The former interpretation concerns the production of sentences, while the
latter concerns the parsing of sentences. Thus we may produce a sentence
by beginning with the symbol S and successively applying rules. For ex-
ample: S -> NP + VP + NP -> NP + Aux+ V +NP -» They + Aux +
V + NP^ They -f are + V + NP -> They + are + flying + NP ->
They are flyingplanes.

Different sequences of rules produce different sentences. With the rules
given above, certain sentences can be produced which are ungrammatical
within English. For example, we could generate "The man are flying
planes." A proper grammar (set of rules) for English would have to rule
out such possibilities. This is generally accomplished both by definingrules
more narrowly (assuring, for example, that subject agrees with verb) and
by introducing certain metarules which specify which sequences of applica-
tion are legitimate [for two methods of accomplishing this, see Chomsky
(1957) and Pendergraft (1961)].

It is also clear that different sequences of rules may produce the same
sentences. For example: 1 S^NP +V + NP^NP +V+ A + N->
They + V + A + N -> They + are + A + N -* They + are + flying

+ N -> They are flying planes.
Consider now a straightforward parsing technique which might be ap-

plied to the sentence "They are flying planes swiftly," using the rules of
our example. This sentence has a unique parsing which may be discovered
as follows. Find each word or group of words which occurs in the sentence

1 This example is due to Chomsky (1957).

1. S «->NP + Pred
2. S + VP + NP
3. S

«->

NP +V+ NP
4. NP <-»They
5. NP <-> planes
6. NP

<-»

A+N
7. N <-* planes
8. N <-> man
9. A **the

10. A

<-»

flying
11. VP <->Aux +V
12. V <h» are

15. Pred

<-»

VP + NP + Ad
16. Ad <-> swiftly

I

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 223
on the right-hand side of one of the rules, and replace it by the symbol
which appears on the left-hand side of the rule. Apply the same procedure
to the resulting string of symbols. If a symbol or word appears on the
right-hand side of more than one rule, form separate strings for each case.
Continue until the sequence is reduced to the single symbol S, abandoning
paths to which this procedure ceases to apply. Thus we have:

They are flying planes swiftly
1. NP + V + V + N + Ad

can go no farther

can go no farther

can go no farther

can go no farther

can go no farther

can go no farther

can go no farther

can go no farther

successful parsing

Even after a sufficient number of rules and metarules are supplied sr
as to eliminate ungrammatical sequences, there, will remain, for natural
languages, sentences which can be generated by two or more different
production sequences. Conversely, any procedure which parses sentences
should be able to discover all such sequences. The decision as to which
parsing is correct depends upon a context larger than a single sentence
and in many cases will also depend upon the meaning of the sentence,
including a dependence upon what the various words denote.

However, even if we neglect the problem of selecting which legitimate
Parsing is correct in a given instance, the problem of discovering any

2. NP + V + V + NP + Ad

3. NP + V + A + N -f Ad
NP + V + NP+ Ad
S + Ad

4. NP + V + A + NP + Ad

5. NP + Aux + A + N + Ad
NP + Aux+ NP + Ad

6. NP + Aux + A + NP + Ad

7. NP + Aux + V + N + Ad
NP + VP + N + Ad

8. NP + Aux+ V + NP + Ad
NP + VP + NP + Ad

8.1. S + Ad

8.2. NP + Pred
S

*H

224 ARTIFICIAL INTELLIGENCE

L A

legitimate parsing is itself formidable when we deal with the tens of thou-
sands of rules needed to describe a natural language. A complete set of
rules is, in fact, so large that none has yet been devised for any natural
language, although some have been under study for thousands of years.
With even a moderately large number of rules, the parsing procedure de-
scribed above will generate many possible branches, some of which may
continue to be feasible for a long time. In order to discover any parsing in
reasonable time and with reasonable effort, it is useful to employ some sort

of selection procedure.
The procedure employed in the program to be described here is based

upon two assumptions which are psychologically realistic. First, it is as-
sumed that almost all sentences which will be encountered in actual text
may be parsed by a procedure which proceeds from left to right, making
decisions about the disposition of earlier phrases without considering the
entire sentence. This reduces the number of rule combinations which must

be searched. Secondly, it is assumed that a very limited amount of memory
is available to remember intermediate results during the parsing of even
extremely long sentences. This places severe restrictions upon which types

of complexity will be analyzed and which types of syntactic structure will
not be handled.

The final result of applying the parsing program to a sentence is an as-
sociatively organized memory whose structure reflects the interrelations
among words, but does not give complete information as to which rules
should be applied first to produce the sentence. The sentence diagram for
our above example might be drawn as in Fig. 3. Each node in a sentence
diagram corresponds to a substructure which has been constructed during

the scanning of the sentence.
The sentence-parsing program is provided with a string of words as an

input sentence. Each word may be found in a dictionary which indicates

Figure 3.

VP NP Ad

A
Aux V

II I I
-[■ ney are flying planes swiftly

r

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 225

± i

a series of possible parts of speech which that word may serve as, the
series being ordered so as to present the most frequent function first. The
machine proceeds in a left-to-right fashion, assuming temporarily that the
first word serves its most common function. To each part of speech there
corresponds an associative structure which the machine forms. This struc-
ture is then temporarily held in memory and the next word is examined. If
the structure so created requires the services of an additional word type,
the machine continues to search for this type. If the next word serves the
purpose, its structure is incorporated with that of the first word so that
only a single structure name must be kept in rapid access memory, the
remainder of the information being obtainable via the name. If the next
word does not serve the desired purpose, its structure is stored separately,
and the machine continues to look for words which will complete the struc-
tures of each of the words now held in memory. However, the number of
structure names which can be held for rapid access is limited to a small
total so that the machine must eventually begin to combine its sub-
structures or else forget where it is. Frequently, the machine will be forced
to complete a structure even though it has not found what it wants. This
results in changing the part of speech designation for one or more words
so that the entire sequence will now be compatible. The machine thus
proceeds through the sentence, making temporary decisions, storing sub-
structures in its limited rapid access memory, and revising its decisions
only when forced to by lack of rapid access memory space or by complete
incompatibility of substructures.

Loosely, the machine's behavior can be described as follows. The first
word is "the." All right, now I need to find a nounlike word. The second
word is "very," so now I need an adjective or adverb. The third word is
"big," which is the adjective I needed, so combine these two words into the
structure "very big." Now I need a nounlike word. The fourth word is
"man," which is the noun needed. Now all words are combined into the
structure "(the((very) big)) man." But now we have a subject, so look
for a verb. The fifth word is "bit" which can act as the verb, so create the
structure "((the((very)big))man) bit." Now another nounlike word or
structure could serve as object. The sixth word is "the," so save it to mod-
rfy a nounlike word; now we have two things saved, both looking for a
nounlike word. The final word is "dog" which will serve both needed
functions. We now have the complete sentence, whose structure is illus-
trated in Fig. 4.

In one sense this program is nothing but an algorithm which produces
an output for every possible sequence of part-of-speech series inputs. How-
ever, if the program were written so as to merely check the input sequence
and produce the corresponding output, a serious difficulty would arise.
The size of the table required increases exponentially with sentence length,

226 ARTIFICIAL INTELLIGENCE

I

thus an extremely large table for sentences of even moderate length would
be needed. Although the program as it stands is limited in terms of the
complexity of the sentences which it can handle, length alone does not
contribute to complexity. For example, the program can handle a sentence
such as "The big, black, ugly, ferocious, . . . , strong dog bit him," where
the number of adjectives which may be inserted in the string is limited only
by the memory capacity of the computer. This is possible because all of
the adjectives are combined into a single substructure at every step, hence
the rapid access memory is never exceeded. Further, the total memory re-
quirements only increase linearly with sentence length. However, sentences
which require the construction of an excessive number of substructures
will cause the program to fail, even though these sentences are relatively
short. Yngve (1961) has described a similar device for producing sen-
tences, and argues that the limitations on complexity imposed by limits on
rapid access memory capacity explain why certain constructions are not
commonly used in natural English and hence are called ungrammatical.

The part-of-speech routines provide a finite set of processes which can
handle an infinite number of sentences, in principle. They are superior to
the table look-up method for the same reason that a program which com-
putes ex for any value of x is superior to a table of this function and a
look-up program.

Obviously humans must employ some finite set of processes which are
used to parse sentences, and obviously each word acts as a stimulus to
elicit the corresponding processes. These processes, as in this program, are
highly complex, and their decisions are contingent upon which other proc-
esses have been initiated before. It is quite consistent with our knowledge

I

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 227

A.

;!

of human thought processes to assume that the interaction takes place in
the above-described manner, that is, through a small set of rapid access
memory locations. However, the adult human undoubtedly has a larger
set of processes, which effectively categorize words into more narrow cate-
gories than the few part-of-speech designations provided to our program,
and theseprocesses are no doubt much more complex.

Another psychologically tenable feature of this program is its left-to-
right analysis. Although English grammar may conceivably be more readily
analyzed in some other fashion, humans generally proceed from left to
right, with only occasional reversals.

The limits of this program are not very well known. It will accept no
words not included in Basic English, a system of grammar and a vocabu-
lary of about 1700 English words which was defined by Ogden (1933).
(Basic English is simplified English in the sense that anything which is
good Basic is good English, but not vice versa.) The program will not
accept certain punctuation marks, such as colons, and it does not distin-
guish between others, such as exclamation points and periods. Also,
phrases and clauses in appositionmust be indicated by dashes rather than
commas. However, the program is not limited to single-clause sentences,
nor must the input be a complete sentence. Thus, the program can handle
many inputs which appear in actual writing but not in books on grammar.
The program always makes a decision, and the result is always a complete
structure containing all of the input.

The end result of the application of the program to a sentence is a struc-
ture which relates all the words of a sentence. This could be replaced
logically by a set of descriptions listing all of these relations, but such a
set would be far more elaborate and costly to memory. The syntactic
meaning of the sentence is just this structure, wherein relations among
words are implicit in its organization.

The Semantic-analysisProgram

After the diagram of a sentence is constructed, the program attempts to
deal with the meaning of some of the words. First, a list of all nouns is
constructed. This list includes not only words which were used as subjects
or objects, but also names used as possessive adjectives, such as "Bill's."

At this point, words cease to be considered solely by their syntactic-
category membership. The sentence diagram is used as an information
store which relates words. Subject-object combinations whose main verb
is some form of "to be" are discovered. When such a combination is
found, the words are marked "equivalent" by a cross-referencing scheme
which indicates that both subject and object refer to the same thing or
Person. The modifiers of all equivalent nouns are then grouped together.

<<

228 ARTIFICIAL INTELLIGENCE

Next, a search is made for the eight words which Basic English provides
to discuss kinship relations: "father," "mother," "brother," "sister," "off-
spring," "brother-in-law," "sister-in-law," and "married." If any of these
relation words occurred in the sentence, their modifiers are examined to
discover proper names which appeared as possessive adjectives or objects
of a preposition, as would be the case if the original sentence contained
phrases of the form "Jane's brother" or "the father of John." Each such
proper name is paired with all others associated with the same occurrence
of the relation word. By proceeding through the entire collection of words
in this fashion, a list of elementaryrelations is formed. The items on this
list are word triplets, two proper nouns, and a relation word which
connects them.

Now the family tree is constructed. The computer memory is organized
in an associative fashion again, with one computer storage location linked
to others. The structure is isomorphic to diagrams such as given in the
example below. Each "marriage" is represented by an association between
the husband and wife, plus the name of a similar family unit for the parents
of the husband, another for the parents of the wife, and the name of a list
of offspring of this marriage. If the names of one of the partners, one of
their parents, or some of their offspring are not given, places are reserved
for these names should they occur in the future. The resulting tree is the
same no matter whether the information was explicitly given in the text
or merely implied.

By way of illustration, Fig. 5 depicts the memory structure for a simple
family tree. The tree is composed of two basic family units, one formed by

the marriage of A and B, and the other formed by the marriage of C and
D. One of the offspring, E, of the first marriage is married to one of the
offspring, F, of the second. It is evident that many relations are described
by the tree given. However, it is important to note that the associations
are one-way associations. This fact necessitates the addition of the name
of the parent family unit at the end of each offspring unit. Thus, given A
we may determine that E is one of his offspring by moving only in the
direction of the arrows. Given E we may again trace the connection to A
by moving only in the direction of the arrows, but this is true only because
the family unit associated with E also contains the name of A's family unit.
It follows that, given the fact that F (already located in the tree) and G (a

name not previously encountered) are siblings, it is not sufficient to add G
to the list of A-B offspring (dotted lines) but we must also copy the name
of F's parental family unit into the newly constructed family unit of G
(dashed lines).

The family tree, or trees, so constructed, are not erased after a single
sentence is processed, but continue to grow as additional information is

given throughout the passage.

f

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 229

A.

The complexities and many small difficulties which are encountered ineven this simple type of relation are indicative of the problem involved inthe construction of semantic structures. More instructive, however, arethe conceptual problems which arise in attempting to generalize this pro-gram to less strictly structured situations. Let us consider two of the mostimportant problems.
It often happens, even when dealing with simple kinship relations, that

the order of presentationof the input information has a crucial effect uponthe efficiency of memory allocation. For example, if we are first told thatX has offspring A, B, C, and D, we must construct an elaborate organiza-tion to handle this information, locations such as for the spouse of X being
left blank. If we are then told that V has offspring E, F, G, and H, we
must construct another such structure, unrelated to the first. Finally, wemay learn that B and H are brothers. This permits (neglecting such com-
plications as multiple marriages) a collapsing of the two structures into a
single organization which much more compactly represents the information

Family Unit 1

Husband —

►

A
Wife

►

B
Offspring
Husband's-*- Unknown
parents
Wife's ►Unknown
parents

Family Unit 3
[-►Husband —- E

Offspring—

►

Unknown
Husband's-*- Family Unit 1
parents

Wife's

►

Family Unit 2parents

Family Unit 4
[■►Husband —-G

Wife's "- Unknown
parents

Wife

►

Unknown
Offspring—

►

Unknown
Husband's ►Family Unit ?parents

Wife's ►Unknown
parents

Figure 5

Wife -F

230 ARTIFICIAL INTELLIGENCE

implied. If we had been fortunate enough to have first learned of B's re-
lation to H (or of X's relation to V), we would have made much more
efficient use of our memory capacity. In the program, the extra structures
are "erased," that is, the memory used for them is returned to a common
stockpile for use anywhere else it is needed. This is quite handily done
with the easily altered computer memory, but a memory which is hard to
erase, as the human memory presumably is, could be affected in important
ways by such unhappy input sequences.

Nonetheless, an intelligent machine should have the property of being
intelligent no matter what the order of its inputs. One aspect of the "aha"
phenomenon is just that many formerly unrelated items of information are
suddenly brought together by a single additional item, so that many im-
plications suddenly leap out. Educators are beset by the problem of de-
termining optimal orders of presentation of material, but, fortunately for
the student, the human mind is capable of seeing connections under non-
optimal conditions.

An even more baffling problem is that of handling what has been called
connotative meaning (Lindsay, 1961). Probably more often than not, a
set of propositions which make some definite implications contains several
subsets which alter the probabilities of other propositions without making

any of them definite. Thus the statement that "George voted for Eisen-
hower and is opposed to medical care for the aged" makes it more likely
that George is opposed to the United Nations, though only slightly so.
It is quite clear that human cognitive organizations frequently take cogni-
zance of these altered probabilities, perhaps to a greater extent than is

reasonable. But how can such implicit connotations be intelligently and
efficiently handled?

Let us consider a more concrete example arising in the context of the
kinship-relation program. Consider the following sentence: "Joey was
playing with his brother Bobby in their Aunt Jane's yard when their
mother called them home." Certain definite information is given by this
sentence, such as the fact that Joey and Bobby are brothers. Also, it is

clear that Jane is either the sister or the sister-in-law of the children s
mother, but it is not known definitely which is the case. If previous in-
formation has related, say, Joey to many others and Jane to many others,
but has not related Joey's relations to Jane's relations, then the given sen-
tence may imply a large number of things and remove the possibilities ot

a large number of other things. Still other possibilities depend upon know-
ing the exact relation between Joey's mother and Jane. The problem is to

capture in the family-treestructure all of the definite implications, to elin»-
nate all of the things definitely ruled out, indicate the altered probabilities
of other relations, and still not make any definite assertions about the rela-
tion between Joey's mother and Jane.

r

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 231

.1

A.

The structure thus far described is unable to handle even this simple
case, since the associations are either there or they are not, and only one
connection is permissible. One solution to this problem is to construct
several family-tree structures, one for each possibility. This corresponds,
for example, to the situation in which a student will draw diagrams of an
acute triangle, a right triangle, and an obtuse triangle corresponding to the
possible cases for which he wishes toprove a theorem. This solution, how-
ever, will work well only when the number of alternatives is small and
when the structures are themselves simple. In more complex situations this
procedure is too taxing of memory capacity. It is desirable to include the
uncertainty within a single structure.

In order to do this, we must allow multiple connections. Thus, in place
of every association in our original format we must substitute a list of all
the possibilities, and the process which retrieves information must recog-
nize that only one of these can be correct. When nothing at all has been
implied, the lists of possibilities will contain an "all" symbol indicating that
all things are possible; when something definite is implied later, this "all"
symbol is replaced by the proper connection; when several things have
been implied, the universal symbol is replaced by a list of the remaining
Possibilities. We may also need to record a list of connections which are
definitely impossible. When nothing has been implied, this list will contain
a "none" symbol indicating that no things are impossible.

It is to be noted that a probabilistic connection of the sort frequently
hypothesized by psychologists is not appropriate here. That is, we do not
Want a connection such that a given stimulus will sometimes evoke one
association, sometimes another on a probability basis. In the above exam-
Pie, the reader knows definitely that either Jane is the sister of Joey's
mother or is the sister of Joey's father, but not both; no reader would
conclude half the time that Jane is the sister of Joey's mother and half the
time that she is the sister of Joey's father, altering his decision from time
to time.

But we are still faced with two problems. First, it is impossible, or atleast impractical, to retain an extremely large number of possibilities;
second, it is not clear how we should indicate that some possibilities aremore probable than others. The first problem is perhaps solved by humans
by not remembering all possibilities; thus humans are unable to rememberaU possible implications when the set of such possibilities is large. This
will no doubt remain a problem for machines as well. We might solve the
second problem by ordering the list of probabilities, placing the most likely
alternatives first; or perhaps we might decide to associate probabilitieswith each alternative. In any event, the probabilities so established will
determine the weight which is assigned to implications, but will not deter-
mine the implications which will hold to the exclusion of others. Finally,

**

232 ARTIFICIAL INTELLIGENCE

we can imagine a situation in which the list of possibilities is truncated due
to the limited computing capabilities of man or machine, and where subse-
quently all of the possibilities which remain are eliminated by further in-
formation. In this case, the machine, after all, will have to indicate that
something is wrong and review previous inputs, this time reselecting possi-
bilities in the light of knowledge of information to follow.

To complete our example, we may present the modified storage format
(Fig. 6) which could be used to solve our sample problem.

Finally, we note that we have solved the problem of connotative mean-
ing while retaining our basic device of storing definite implications im-
plicitly, but we have resorted to storing possible implications explicitly.
Techniques for avoiding this listing of possibilities would prove extremely
valuable, since as we have seen, requirements on memory capacity increase
rapidly when storage is explicit.

Family Unit 1

parents

Figure 6.

Joey, Bobby, perhaps
others not known yet

Husband's—►Family Unit 1
parents
Wife's ► Family Unit 2
parents

All possible except

Jone,A,B,C,O,E,F

Joey, Bobby
Jane

All possible except
Jane, A,B,

C,

D, £, F
Joey, Bobby
All possible except
Unit 4
Either Unitl orZ

Husband —"-£"
Wife

►

F
Offspring—»Jo

I

MACHINES WHICH UNDERSTAND NATURAL LANGUAGE 233

Summary

It has been argued that the problem of meaning is of major importance
m the study of the nature of intelligence, and that a useful definition of
meaning must include not only denotation but connotation and implica-tion as- well. To handle these important questions it is necessary to study
cognitive organizations which are more complex than those upon which
most psychological theories are based. A central question is the storage oflarge numbers of interrelated propositions in a manner which efficiently
uses memory capacity. Illustration of these points was given by reference
to a computer program which stores syntactic relations and extracts and
stores semantic implications of a very limited character. The illustrations
put into concrete terms some of the problems which must be resolved be-
fore machines of formidable intelligence can be constructed.

TT X

' I

I

section 6

Pattern Recognition

Pattern-recognition research is one of the most difficult areas of
artificial intelligence activity to characterize succintly. In its infancy
it was concerned with optical character recognition and later, voice
recognition. Selfridge has labeled this kind of pattern-recognition
work as "eyes and ears for computers." More recently the "pattern-
recognition" label has been applied, with much justification, to stud-
ies of hypothesis formation by machine, discrimination learning in
random nets, perceptual learning in human beings and schemes for
inductive inference automata in general. There is a close relation-
ship between the work on pattern recognition and studies of cog-
nitive behavior. It is quite appropriate, therefore, that this material
should be placed at the junction of the two major sections of this
volume.

Much pattern recognition research has been concerned with pro-
gramming a computer to recognize that the same name should be
given to different manifestations of an object, for example, that short
A's, tall A's, fat A's, and skinny A's are all As. This behavior might
be described as elementaryperceptual generalization.

The problem becomes one of being able to represent the essence
of A-ness in a computer program. For some researchers the com-
puter is a vehicle for testing out their hypotheses about A-ness (per-
ceptual performance). The second example in the Selfridge-Neisser
report is a case in point. For others, the computer is a vehicle for
generating hypotheses about A-ness (perceptual learning). The Uhr-
Vpssjer piece is an example of this approach.

<i

236 ARTIFICIAL INTELLIGENCE

The work in pattern recognition differs from the work in computer
models of verbal learning, hypothesis behavior, and particularly con-
cept formation only in the relatively greater emphasis on complex
"central" cognitive processes in the latter work. However the im-
portance of the basic pattern-recognition activity in problem-solving
by human beings or computers is well recognized. The principal func-
tion of pattern recognition may be characterized as reduction of
complex environments. Neither the human being nor the computer
can afford to deal with each event as a special case. Suppose, for
example, that a performance system has stored some useful "A in-
formation." This information about A may be independent of the
size or shape of A. If tall A, short A, skinny A, and fat A can all be
recognized as A, the stored information can be made available
about any particular occurrence of an A. A small set of information
structures and processes can be made powerful if there is available
a device for recognizing when and where this set is applicable or
relevant.

Even if we classify the reports of Feigenbaum, Hunt and Hov-
land, and Feldman as reports on pattern recognition, we still have
collected in this volume only a very small sample of the available
work on the subject. This inadequacy is remedied somewhat by the
short review in the Uhr-Vossler study and by the discussion in
Minsky's review. We regret that space limitations forced the omis-
sion of the pioneering work of Selfridge (1955). His report was an
early landmark in pattern recognition in particular and artificial in-
telligence in general. The work of Kochen (1961a, 1961ft) is also
of great interest and closely related to work in concept formation.
We have also omitted reports on pattern recognition in randomly
connected nets. We hope that the Bibliography will provide some
help to the reader who wants to investigate these and others works on
patternrecognition.

Oliver Selfridge is on the staff of the Lincoln Laboratory, Massa-
chusetts Institute of Technology, and Ulric Neisser is a member of
the faculty of the Psychology Department, Brandeis University.

Leonard Uhr is on the staff of the Mental Health Research Insti-
tute, University of Michigan, and Charles Vossler was a member of
the Artificial Intelligence Research Staff of the System Development
Corporation, Santa Monica, when this research was done. Vossler
is now at Cornell Aeronautical Laboratory, Buffalo, NewYork.

f

PATTERN RECOGNITION
BY MACHINE

Oliver G. Selfridge & Ulric Neisser

Can a machine think? The answer to this old chestnut is certainly "yes":
Computers have been made to play chess and checkers, to prove theo-
rems, to solve intricate problems of strategy. Yet the intelligence implied
by such activities has an elusive, unnatural quality. It is not based on any
orderly development of cognitive skills. In particular, the machines are not
well equipped to select from their environment the things, or the relations,
they are going to think about.

In this they are sharply distinguished from intelligent living organisms.
Every child learns to analyze speech into meaningful patterns long before
he can prove any propositions. Computers can find proofs, but they cannot
understand the simplest spoken instructions. Even the earliest computers
could do arithmetic superbly, but only very recently have they begun to
read the written digits that a child recognizes before he learns to add them.
Understanding speech and reading print are examples of a basic intellec-
tual skill that can variously be called cognition, abstraction or perception;
perhaps the best general termfor it is patternrecognition.

Except for their inability to recognize patterns, machines (or, more
accurately, the programs that tell machines what to do) have now met
most of the classic criteria of intelligence that skeptics have proposed.
They can outperform their designers: The checker-playing program de-
vised by Arthur L. Samuel of International Business Machines Corpora-
tion (1959a) usually beats him. They are original: The "Logic Theorist,"
a creation of a group from the Carnegie Institute of Technology and the
RAND Corporation [Newell, Simon, and Shaw (1956a, 19576)] has
found proofs for many of the theorems in Principia Mathematica, the

237

<d

iI

238 ARTIFICIAL INTELLIGENCE

monumental work in mathematical logic by A. N. Whitehead and Bertram!
Russell (1940). At least one proof is more elegant than the Whitehead-
Russell version. .

Sensible as they are, the machines are not perceptive. The information
they receive must be fed to them one "bit" (a contraction of "binary

digit," denoting a unit of information) at a time, up to perhaps millions
of bits. Computers do not organize or classify the material in any very

subtle or generally applicable way. They perform only highly specialized
operations on carefully prepared inputs.

In contrast, a man is continuously exposed to a welter of data from his
senses, and abstracts from it the patterns relevant to his activity at the
moment. His ability to solve problems, prove theorems and generally run
his life depends on this type of perception. We suspect that until programs
to perceive patterns can be developed, achievements in mechanical
problem-solving will remain isolated technical triumphs.

Developing pattern-recognition programs has proved rather difficult. One
reason for the difficulty lies in the nature of the task. A man who abstracts
a pattern from a complex of stimuli has essentially classified the possible
inputs. But very often the basis of classification is unknown, even to him-
self; it is too complex to be specified explicitly. Asked to define a pattern,
the man does so by example; as a logician might say, ostensively. This
letter is A, that person is mother, these speech sounds are a request to

pass the salt. The important patterns are defined by experience. Every

human being acquires his pattern classes by adapting to a social or en-
vironmental consensus—in short, by learning.

In company with workers at various institutions our group at the Lincoln
Laboratory of the Massachusetts Institute of Technology has been working

on mechanical recognition of patterns. Thus far only a few simple cases
have been tackled. We shall discuss two examples. The first one is

MAUDE (for Morse Automatic Decoder), a program for translating, or

rather transliterating, hand-sent Morse code. This program was developed
at the Lincoln Laboratory by a group of workers under the direction ot

Bernard Gold.
If telegraphers sent ideal Morse, recognition would be easy. The keyings,

or "marks," for dashes would be exactly three times as long as the marks
for dots; spaces separating the marks within a letter or other character
(mark spaces) would be as long as dots; spaces between characters
(character spaces), three times as long; spaces separating words (word

spaces), seven times as long. Unfortunately human operators do not
transmit these ideal intervals. A machine that processed a signal on the
assumption that they do would perform very poorly indeed. In an actual
message the distinction between dots and dashes is far from clear. There
is a great deal of variation among the dots and dashes, and also among

f

239PATTERN RECOGNITION BY MACHINE

the three kinds of space. In fact, when a long message sent by a single
operator is analyzed, it frequently turns out that some dots are longer than
some dashes, and that some mark spaces are longer than some character
spaces. (See Fig. 1.)

With a little practice in receiving code, the average person has no
trouble with these irregularities. The patterns of the letters are defined for
him in terms of the continuing consensus of experience, and he adapts to
them as he listens. Soon he does not hear dots and dashes at all, but
perceives the characters as wholes. Exactly how he does so is still obscure,
and the mechanism probably varies widely from one operator to another.
In any event transliteration is impossible if each mark and space is con-
sidered individually. MAUDE therefore uses contextual information, but
far less than is available to a trained operator. The machine program
knows all the standard Morse characters and a few compound ones, but no
syllables or words. A trained operator, on the other hand, hears the
characters themselves embedded in a meaningful context.

Word spaces

Dashes and letter spaces

Dots ond mark spaces

Duration
Figure 1. Variability of Morse code sent by a human operator is illustrated in these
curves. Upper graph shows range of durations for dots (solid curve) and dashes
(dotted curve) in a message. Lower graph gives the same information for spaces be-
tween marks within a character (solid curve), spaces between characters (dotted
curve) and between words (dashed curve). Ideal durations are shown by brackets
at top and vertical broken lines.

t*

240 ARTIFICIAL INTELLIGENCE

L

Empirically it is easier to distinguish between the two kinds of mark
than among the three kinds of space. The main problem for any mechani-
cal Morse translator is to segment the message into its characters by
identifying the character spaces. MAUDE begins by assuming that the
longest of each six consecutive spaces is a character space (since no Morse
character is more than six marks long), and the shortest is a mark space.
It is important to note that although the former rule follows logically from
the structure of the ideal code, and that the latter seems quite plausible,
their effectiveness can be demonstrated only by experiment. In fact the
rules fail less than once in 10,000 times.

The decoding process is as follows. (See Fig. 2.) The marks and spaces,
received by the machine in the form of electrical pulses, are converted into
a sequence of numbers measuring their duration. (For technical reasons
these numbers are then converted into their logarithms.) The sequence of
durations representing spaces is processed first. The machine examines
each group of six (spaces one through six, two through seven, three through
eight and so on), recording in each the longest and shortest durations.
When this process is complete, about 75 per cent of the character spaces
and about 50 per cent of the mark spaces will have been identified.

To classify the remaining spaces a threshold is computed. It is set at the
most plausible dividing line between the range of durations in which mark
spaces have been found and the range of the identified character spaces.
Every unclassified number larger than the threshold is then identified as a
character space; every one smaller than the threshold, as a mark space.

Now, by a similar process, the numbers representing marks are identified
as dots and dashes. Combining the classified marks and spaces gives a
string of tentative segments, separated by character spaces. These are in-
spected and compared to a set of proper Morse characters stored in the
machine. (There are about 50 of these, out of the total of 127 possible
sequences of six or fewer marks.) Experience has shown that when one of
the tentative segments is not acceptable, it is most likely that one of the
supposed mark spaces within the segment should be a character space in-
stead. The program reclassifies the longest space in the segment as a
character space and examines the two new characters thus formed. The
procedure continues until every segment is an acceptable character, where-
upon the message is printed out.

In the course of transmitting a long message, operators usually change
speed from time to time. MAUDE adapts to these changes. The computed
thresholds are local, moving averages that shift with the general lengthen-
ing or shortening of marks and spaces. Thus a mark of a certain duration
could be classified as a dot in one part of the message and a dash in
another.

MAUDE's error rate is only slightly higher than that of a skilled human

' 1

PATTERN RECOGNITION BY MACHINE 241

i

Figure 2. "MAUDE" program described in text, translates Morse code. Marks identi-fied as dots are shown in light color; marks identified as dashes in dark color. Un-
identified marks are in black. Character spaces are denoted by

C;

mark spaces, by
M. A circle around a number indicates that it is the smallest in a group; a rectangle
Weans it is the largest. Analysis of spaces and marks proceeds by an examination of
successive groups of six throughout the message. The table shows only the first three
such groups in each case.

■^

242 ARTIFICIAL INTELLIGENCE

L

operator. Thus it is at least possible for a machine to recognize patterns
even where the basis of classification is variable and not fully specified in
advance. Moreover, the program illustrates an important general point. Its
success depends on the rules by which the continuous message is divided
into appropriate segments. Segmentation seems likely to be a primary
problem in all mechanical pattern recognition, particularly in the recogni-
tion of speech, since the natural pauses in spoken language do not generally
come between words. MAUDE handles the segmentation problems in
terms of context, and this will often be appropriate. In other respects
MAUDE does not provide an adequate basis for generalizing about pattern
recognition. The patterns of Morse code are too easy, and the processing is
rather specialized.

Our second example deals with a more challenging problem: the recogni-
tion of hand-printed letters of the alphabet. The characters that people
print in the ordinary course of filling out forms and questionnaires are
surprisingly varied. Gaps abound wherecontinuous lines might be expected;
curves and sharp angles appear interchangeably; there is almost every
imaginable distortion of slant, shape and size. Even human readers cannot
always identify such characters; their error rate is about 3 per cent on
randomly selected letters and numbers, seen out of context.

The first step in designing a mechanical reader is to provide it with a
means of assimilating the visual data. By nature computers consider in-
formation in strings of bits: sequences of zeros and ones recorded in on-off
devices. The simplest way to encode a character into such a sequence is to

convert it into a sort of halftone by splitting it into a mesh or matrix of
squares as fine as may be necessary. Each square is then either black or
white—a binary situation that the machine is designed to handle. Making

such halftones presents no problem. For example, an image of the letter
could be projected on a bank of photocells, with the output of each cell
controlling a binary device in the computer. In the experiments to be
described here the appropriate digital information from the matrix was
recorded on punch cards and was fed into the computer in this form.

Once this sequence of bits has been put in, how shall the program
proceed to identify it? Perhaps the most obvious approach is a simple
matching scheme, which would evaluate the similarity of the unknown to a
series of ideal templates of all the letters, previously stored in digital form
in the machine. The sequence of zeros and ones representing the unknown
letter would be compared to each template sequence, and the number of
matching digits recorded in each case. The highest number of matches
would identify the letter.

In its primitive form the scheme would clearly fail. Even if the unknown
were identical to the template, slight changes in position, orientation or

size could destroy the match completely. (See Fig. 3a.) This difficulty has

I

PATTERN RECOGNITION BY MACHINE 243

i

long been recognized, and in some character-recognition programs it has
been met by inserting a level of information-processing ahead of the tem-
plate-matching procedure. The sample is shifted, rotated and magnified or
reduced in order to put it into a standard, or at least a more tractable, form.

Although obviously an improvement over raw matching, such a pro-
cedure is still inadequate. What it does is tocompare shapes rather success-
fully. But letters are a good deal more than mere shapes. Even when a
sample has been converted to standard size, position and orientation, it may
match a wrong template more closely than it matches the right one. (See
Fig. 3b.)

Nevertheless the scheme illustrates what we believe to be an important
general principle. The critical change was from a program with a single
level of operation to a program with two distinctly different levels. The
first level shifts, and the second one matches. Such a hierarchical structure
is forced on the recognition system by the nature of the entities to be
recognized. The letter A is defined by the set of configurations that people
call A, and their selections can be described—or imitated—only by a multi-
level program.

A/?
(a)

Figure 3. (a) Template matching cannot succeed when the unknown letter (color)
has the wrong size, orientation, or position. The program must begin by adjusting
sample to standard form, (b) Incorrect match may result even when sample
(gray) has been converted to standard form. Here R matches A template more
closely than do samples of the. correct letter.

244 ARTIFICIAL INTELLIGENCE

I

i

i

i

i

We have said that letter patterns cannot be described merely as shapes.
It appears that they can be specified only in terms of a preponderance of
certain features. Thus A tends to be thinner at the top than at the bottom;
it is roughly concave at the bottom; it usually has two main strokes more
vertical than horizontal, one more horizontal than vertical, and so on. All
these features taken together characterize A rather more closely than they
characterize any other letter. Singly none of them is sufficient. For example,
W is also roughly concave at the bottom, and H has a pattern of horizontal
and vertical strokes similar to that described for A. Each letter has its own
set of probable features, and a successful character recognizer will deter-
mine which set is thebest fit to an unknown sample.

So far nothing has been said about how the features are to be deter-
mined and how the program will use them. The template-matching scheme
represents one approach. Its "features," in a sense, are the individual cells
of the matrix representing the unknown sample, and its procedure is to
match them with corresponding cells in the template. Both features and
procedures are determined by the designer. We have seen that this scheme
will not succeed. In fact, any system must fail if it tries to specify every
detail of a procedure for identifying patterns that are themselves defined
only ostensively. A pattern-recognition system must learn. But how much?

At one extreme there have been attempts to make it learn, or generate,
everything: the features, the processing, the decision procedure. The initial
state of such a system is called a "random net." A large number of on-off
computer elements are multiply interconnected in a random way. Each is
thus fed by several others. The thresholds of the elements (the number of
signals that must be received before the element fires) are then adjusted
on the basis of performance. In other words, the system learns by rein-
forcing some pathways through the net and weakening others.

How far a random net can evolve is controversial. Probably a net can
come to act as though it used templates. However, none has yet been shown
capable of generating features more sophisticated than those based, like
templates, on single matrix cells. Indeed, we do not believe that this is
possible.

At present the only way the machine can get an adequate set of features
is from a human programmer. The effectiveness of any particular set can be
demonstrated only by experiment. In general there is probably safety in
numbers. The designer will do well to include all the features he can think
of that might plausibly be useful.

A program that does not develop its own features may nevertheless be
capable of modifying some subsequent level of the decision procedure, as
we shall see. First however, let us consider that procedure itself. There are
two fundamentally different possibilities : sequential and parallel process-
ing. In sequential processing the features are inspected in a predetermined

I

PATTERN RECOGNITION BY MACHINE 245

A

order, the outcome of each test determining the next step. Each letter is
represented by a unique sequence of binary decisions. To take a simple
example, a program to distinguish the letters A, H, V and V might decide
among them on the basis of the presence or absence of three features: a
concavity at the top, a crossbar and a vertical line. The sequential process
would ask first: "Is there a concavity at the top?" If the answer is no, the
sample is A. If the answer is yes, the program asks: "Is there a crossbar?"
If yes, the letter is H; if no, then: "Is there a vertical line?" If yes, the letter
is V; if no, V. (See Fig. 4.)

In parallel processing all the questions would be asked at once, and all
the answers presented simultaneously to the decision maker. (See Fig. 5.)
Different combinations identify the different letters. One might think of the
various features as being inspected by little demons, all of whom then shout
the answers in concert to a decision-making demon. From this conceit
comes the name "Pandemonium" for parallel processing.

Of the two systems the sequential type is the more natural for a ma-
chine. Computer programs are sequences of instructions, in which choices
or alternatives are usually introduced as "conditional transfers": Follow
one set of instructions if a certain number is negative (say) and another
set of instructions if it is not. Programs of this kind can be highly efficient,
especially in cases where any given decision is almost certain to be right.
But in "noisy" situations sequential programs require elaborate checking
and backtracking procedures to compensate for erroneous decisions.

Figure 4. Sequential-processing program for distinguishing four letters, A, H, V and
V, employs three test features: presence or absence of a concavity above, a crossbar,
and a vertical line. The tests are applied in order, with each outcome determining
the next step.

<-1

L

246 ARTIFICIAL INTELLIGENCE

Parallel processing, on the other hand, need make no special allowance
for error and uncertainty.

Furthermore, some features are simply not subject to a reasonable
dichotomy. An A very surely has a crossbar, an O very surely has not. But
what about B? The most we can say is that it has more of a crossbar than
O, and less than A. A Pandemonium program can handle the situation by
having the demons shout more or less loudly. In other words, the informa-
tion flowing through the system need not be binary; it can represent the
quantitative preponderance of the various features.

Still another advantage of parallel processing lies in the possibility of
making small changes in a network for experimental purposes. In typical
sequential programs the only possible changes involve replacing a zero
with a one, or vice versa. In parallel ones, on the other hand, the weight
given to crossbarness in deciding if the unknown is actually B may be
changed by as small an amount as desired. Experimental changes of this
kind need not be made by the programmer alone. A program can be de-
signed to alter internal weights as a result of experience and to profit from
its mistakes. Such learning is much easier to incorporate into a Pande-
monium than into a sequential system, where a change at any point has
grave consequences for largeparts of the system.

Parallel processing seems to be the human way of handling pattern

Figure 5. Parallel-processing program uses the same test features as the sequential
program in Fig. 4, but applies all tests simultaneously and makes decision on the
basis of the combined outcomes. The input is a sample of one of the letters A, H,
V and Y.

t

r

PATTERN RECOGNITION BY MACHINE 247

A

Figure 6. Hand-printed letter A is processed for recognition by a computer. Original
sample is placed on grid and converted to a cellular pattern by completely filling
in all squares through which lines pass (top left). The computer then cleans up the
sample, filling in gaps (top right) and eliminating isolated cells (botton left). The
program tests the pattern for a variety of features. The test illustrated here (bottom
right) is for the maximum number of intersections of the sample with all horizontal
lines across the grid.

recognition as well. Speech can be understood if all acoustic frequencies
above 2000 cycles per second are eliminated, but it can also be under-
stood if those below 2000 are eliminated instead. Depth perception is
excellent if both eyes are open and the head is held still; it is also excellent
if one eye is open and the head is allowed to move.

A Pandemonium system that learns from experience has been tested by
Worthie Doyle of the Lincoln Laboratory. At present it is programmed to
identify 10 hand-printed characters, and has been tested on samples of
A, E, I, L, M, N, O, R, S and T. The program has six levels: (1) input,

to O R S TType of test and designation A E I L M N

.250 .347 .097 .056 .097Horizontal and vertical HOMSXC
cross-sections VEMSXC

.083 .070

.073 .339 .040 .008 .194 .258 .089
HORUNS .500 .500

1.000VERTJNS
Strokes HORSTR

VERSTR
Edge lengths andratios SEDGE

WEDGE
NEDGE
EEDGE
NO:SOU
EA:WES

.150Profiles SCUCAV
WESCAV
NORCAV
EASCAV
SOTJBOT
WESBOT
NORBOT
EASBOT

.047 .094

.133 .177

.155 .005

.268 .106

.030 .030

.290 .145

.326 .020 .102 .266 .020 .245 .020

.250 .008

.161 .076

.119 .190

.147 .058

Internalstructure SBOTSG
WBOTSG
NBOTSG
EBOTSG
SOUBEN
WESBEN
NORBEN
EASBEN

Figure 7. Recognition program for hand-printed letters applies the 28 feature tests listed by code name at left. Names represent such
features as maximum intersectionwith horizontal line (HOMSXC), concavity facing south (SOUCAV), and so on. Figures in right-

hand section are relative probabilities of all letters for each test outcome. The program decides on the letter with the largest total of all
probabilities. In the exampleshown here the decision is for theletter A, with a probability total of 4.579.

WESBEN 10 .198 .143 .011 .022 .121 .132 .011 .099 .022 .241

NORBEN 10 .169 .180 .135 .079 .146 .247 .045
EASBEN 10 .211 .012 .012 .118 .176 .106 .176 .188

Total score 4-579 2.648 1.084 1.358 3.490 3.622 1.945 2.851 2.606 3.823

182
178

.006

.007
.125 .125 .125

.170
.146
.207

.016

.229
.\J*Jt

.207
267
083
259
232
513
055

.007

.071

.024

.400

.024

.153

.161

.014

.024

.024

.309

.158

.035

.106

.214

.205

.018

.115

.012

.106

.286

.077

.036

.007

.071

.107

.165

.047

.059

.128

.163

.318

.189

.266

.389
.012

.077

.018

023
100
115

061

.012

.092

.095

.068

.OUU

.023

.004

.105

.159

. \JV\J

.035

.130

.167

.035

.133

.170

.008

.354

.059

.108

.010

.220

.042

.412
.116
.050
.008
.364
.042

.259

.137

.165

.515

.125

090
111
098
Oil
012

.016

.099

.102

.103

.022

.135

.118

.125

.108

.013

.103

.333

.121

.079

.176

.141

.121

.018

.121

.167

.132

.106

.219

.063

.089

.062
.011

.203

.081

.040

.071

.099

.146

.176

.039

.045

.159

.076

.022

.247

.157

.159

.061

.500

.241

.045

.188

r

PATTERN RECOGNITION BY MACHINE 249

I

!

(2) cleanup, (3) inspection of features, (4) comparison with learned-
feature distribution, (5) computation of probabilities and (6) decision.
The input is a 1024-cell matrix, 32 on a side. At the second level the
sample character is smoothed by filling in isolated gaps and eliminating
isolated patches. (See Fig. 6.)

Recognition is based on such features as the relative length of different
edges and the maximum number of intersections of the sample with a
horizontal line. (The computer "draws" the lines by inspecting every
horizontal row in the matrix, and recognizes "intersections" as sequences
of ones separated by sequences of zeros.) No single feature is essential to
recognition, and various numbers of them have been tried. The particular
program shown here uses 28. (See Fig. 7.)

Every letter fed into the machine is tested for each of the features.
During the learning phase a number of samples of each of the 10 letters is
presented and identified. For every feature the program compiles a table
or "census." It tests each sample and enters the outcome under the appro-
priate letter. When the learning period is finished, the table shows how
many times each outcome occurred for each of the 10 letters. Figure
8, which refers to maximum intersections with a horizontal line, rep-
resents the experience gained from a total of 330 training samples. It
shows, for example, that the outcome (three intersections) occurred 72
times distributed among six A's, five E's, 18 M's, 25 N's, seven O's, four
R's, seven T's and no other letters. The other possible outcomes are
similarly recorded.

Next the 28 censuses are converted to tables of estimated probabilities,

Figure 8. "CENSUS" represents information learned by letter-recognition program
during training period. This table summarizes the outcomes of the test for maxi-
mum number of intersections with a horizontal line, applied to a total of 330
'dentified samples in the learning process.

« y x

250 ARTIFICIAL INTELLIGENCE

L

by dividing each entry by the appropriate total. Thus the outcome—three
intersections—comes from an A with a probability of .083 (6/72); an E,
with a probability of .070 (5/72), and so on.

Now the system is ready to consider an unknown sample. It carries out
the 28 tests and "looks up" each outcome in the corresponding feature
census, entering the estimated probabilities in a table. Then the total proba-
bilities are computed for each letter. The final decision is made by choos-
ing the letter with the highest probability.

This program makes only about 10 per cent fewer correct identifications
than human readers make—a respectable performance, to be sure. At the
same time, the things it cannot do point to the difficulties that still lie
ahead. We would emphasize three general problems: segmentation, hier-
archical learning and feature generation.

Characters must be fed in one at a time. The program is unable to
segment continuous written material. The problem will doubtless be rela-
tively easy to solve for text consisting of separate printed characters, but
will be more formidable in the case of cursive script.

The program learns on one level only. The relation between feature
presence and character probability is determined by experience; every-
thing else is fixed by the designer. It would certainly be desirable for a
character recognizer to use experience for more general improvements: to
change its cleanup procedures, alter the way probabilities are combined
and refine its decision process. Eventually we look to recognition of words;
at this point the program will have to learn a vocabulary so that it can use
context in identifying dubious letters. At the moment, however, neither we
nor any other designers have any experience with the interaction of several
levels of learning.

The most important learning process of all is still untouched: No current
program can generate test features of its own. The effectiveness of all of
them is forever restricted by the ingenuity or arbitrariness of their pro-
grammers. We can barely guess how this restriction might be overcome.
Until it is, "artificial intelligence" will remain tainted with artifice.

I

A PATTERN- RECOGNITION
PROGRAM THAT GENERATES,
EVALUATES, AND ADJUSTS
ITS OWN OPERATORS

Leonard Uhr& Charles Vossler

Background Review

The typical pattern-recognition program is either elaborately prepro-
grammed to process specific arrays of input patterns, or else it has been
designed as a tabula rasa, with certain abilities to adjust its values, or
"learn." The first type often cannot identify large classes of patterns that
appear only trivially different to the human eye, but that would com-
pletely escape the machine's logic (Bailey and Norrie, 1957; Greanias
et al., 1957). The best examples of this type are probably capable of
being extended to process new classes of patterns (Grimsdale et al.,
1959a; Sherman, 1959). But each such extension would seem to be

an ad hoc complication where it should be a simplification, and to
represent an additional burden of time and energy on both programmer
and computer.

The latter type of self-adjusting program does not, at least as yet, appear
to possess methods for accumulating experience that are sufficiently
powerful to succeed in interesting cases. The random machines show
relatively poor identification ability (Rosenblatt, 1958, 1960a). (One ex-
ception to this statement appears to be Roberts' modification of Rosen-
blatt's Perceptron (Roberts, 1960). But this modification appears to make
the Perceptron an essentially nonrandom computer.) The most successful
of this type of computer, to date, simply accumulates information or proba-
bilities about discrete cells in the input matrix (Baran and Estrin, 1960;
Highleyman and Kamentsky, 1960). But this is an unusually weak type
of learning (if it should be characterized by that vague epithet at all), and

251

252 ARTIFICIAL INTELLIGENCE

i

this type of program is bound to fail as soon as, and to the extent that,
patterns are allowed to vary.

Several programs compromise by making use of some of the self-
adapting and separate operator processing features of the latter type of
program, but with powerful built-in operations of the sort used by the
first type (Doyle, 1960; Unger, 1959). They appear to have gained in
flexibility in writing and modifying programs; but they have not, as yet,
given (published) results that indicate that they are any more powerful
than the weaker sort of program (e.g., Baran and Estrin) that uses indi-
vidual cells in the matrix in ways equivalent to their use of "demons" and
"operators." A final example of this mixed type of program is the ran-
domly coupled "n-tuple" operator used by Bledsoe and Browning (1959;
1961a). In this program, random choice of pairs, quintuples and other
tuples of cells in the input matrix is used to compose operators, in an
attempt to get around the problems of preanalyzing and preprogramming.
This method appears to be guaranteed to have at least as greatpower as the
single cell probability method (Uhr, 1961ft). But it has not as yet demon-
strated this power. And it would, like most of the other programs discussed
(or known to the authors) fall down when asked to process patterns which
differed very greatly from those with which it had originally "gained ex-
perience" by extracting information (Uhr, 1960).

Summary of Program Operation

In summary, the original running pattern recognition program works
as follows: Unknown patterns are presented to the computer in discrete
form, as a 20 X 20 matrix of zeros and ones. The program generates and
composes operators by one of several random methods, and uses this set
of operators to transform the unknown input matrix into a list of charac-
teristics. Or, alternately, the programmer can specify a set of pregenerated
operatorsin which he is interested.

These characteristics are then compared with lists of characteristics in
memory, one for each type of pattern previously processed. As a result of
similarity tests, the name of the list most similar to the list of characteristics
just computed is chosen as the name of the input pattern. The character-
istics are then examined by the program and, depending on whether they
individually contributed to success or failure in identifying the input, ampli-
fiers for each of these characteristics are then turned up or down. This
adjustment of amplifiers leads eventually to discarding operators which
produce poor characteristics, as indicated by low amplifier settings, and to
theirreplacement by newly generatedoperators.

One mode of operation of the present program is to begin with no
operators at all. In this case operators are initially generated by the pro-

I

A PATTERN-RECOGNITION PROGRAM 253
gram at a fixed rate until some maximum number of operators is reached.
The continual replacement of poor operators by new ones then tends to
produce an optimum set of operators for processing the given array of
inputs.

Details of Program Operation

The program can be run in a number of ways, and we will present results
for some of these. The details of the operation of the program follow.

1. An unknown pattern to be identified is digitized into a 20 X 20 0-1
input matrix (Fig. 1).

2. A rectangular mask is drawn around the input (its sides defined by
the leftmost, rightmost, bottommost, and topmost filled cells) (Fig. 2).

3. The input pattern is transformed into four 3-bit characteristics by
each of a set of 5 X 5 matrix operators,each cell of which may be visual-
ized as containing either a 0, 1, or blank. These small matrices which
measure local characteristics of the pattern are translated, one at a time,
across and then down that part of the matrix which lies within the mask.
The operator is considered to match the input matrix whenever the o's
and l's in the operator correspond to identical values in the pattern, and
for each match the location of the center cell of the 5 X 5 matrix operator
is temporarily recorded (Fig. 3). This information is then summarized
and scaled from 0 to 7 to form four 3-bit characteristics for the operator.
These represent (1) the number of matches, (2) the average horizontal
position of the matches within the rectangular mask, (3) the average

Unknown pattern Internal representation

Figure 1. An unknown pattern is input as a 20 X 20 matrix with the cells coveredby the pattern represented by "l's" and the other cells by

"Q's,"

<*

254 ARTIFICIAL INTELLIGENCE

I

vertical position of the matches, and (4) the average value of the square
of the radial distance from the centerof the mask.

A variable number of operators can be used in any machine run. This
can mean either a number preset for that specific run, or a number that
begins at zero and expands, under one of the rules described below, up to
the maximum. The string of 25 numbers which defines a 5 X 5 matrix
operator can be generatedin any of the following ways (Fig. 4) :

a. A preprogrammed string can be fed in by the experimenter.
b. A random string can be generated; this string can be restricted as

to the number of "ones" it will contain, and as to whether these
"ones" must be connected in the 5 X 5 matrix. (We have not
actually tested this method as yet.)

c. A random string can be "extracted" from the present input matrix
and modified by the following procedure (which in effect is imitat-
ing a certain part of the matrix). The process of inserting blanks

Figure 2. A rectangular mask is drawn
around the unknown pattern. Each of
the 5X5 matrix "operators" is then
translated over the pattern.

Figure 3. The operator at the lower left
in the figure is shown in the two posi-

tions where it matches the input matrix.
An operator gives a positive output each
time its "l's" cover "l's" and its "O's
cover "O's" in the unknown pattern.

r

A PATTERN-RECOGNITION PROGRAM 255
in the extracted operator allows for minor distortions in the local
characteristics which the operatormatches.
(1) A5X 5 matrix is extracted from a random position in the

input matrix.
(2) All "zero" cells connected to "one" cells are then replaced

by blanks.
(3) Each of the remaining cells, both "zeros" and "ones," is

thenreplaced by a blank with a probability of %.
(4) Tests are made to ensure that the operator does not have

"ones" in the same cells as any other currently used operator
or any operator in a list of those recently rejected by the
program. If the operator is similar to one of these in this

Figure 4. Operators are generated within the 5 X 5 matrix by either: (a) extraction
from the input pattern (random placement of a 5 X 5 matrix, elimination of "O's"
connected to "l's" and elimination of each of the remaining cells with a prob-
ability of %) or (b) by random designation of cells as either "0" or "1" (choose
a "1," then place a "0" two cells to its right). In 1) from 3 to 7 "l's" are chosen
completely at random, while in 2) the choice is limited to connected cells.

«*_>:. ~

256 ARTIFICIAL INTELLIGENCE

L

respect a new operator is generated by starting over at
step 1 (Fig. 5).

4. A second type of operator is also used. This is a combinatorial
operator which specifies one of 16 possible logical or arithmetic opera-
tions and two previously calculated characteristics which are to be com-
bined to produce a third characteristic. These operators are generated by
the program by randomly choosing one of the possible operations and the
two characteristics which are to be combined. This random generation
process is improved by generating a set of ten operators, and then pretest-
ing these using the last two examples of each pattern which have been
saved in memory for this purpose. This pretesting is designed to choose
an operator from the set which produces characteristics that tend to be
invariant over examples of the same pattern yet vary between different
patterns.

Since these operators may act upon characteristics produced by previous
operators of the same type, functions of considerable complexity may be
built up.

5. The two types of operators just described produce a list of charac-
teristics by which the program attempts to recognize the unknown input

I|| | 1 10 1 lil |o] hi II 1

"

I_J_ J - o_ _t 0 _J
J£ £ £ J
__!__£_ £ £ L_
Mill 1010101010 l Mill'"

lb)

Figure 5. (a) Some typical examples of preprogrammed operators are shown.
(b) Six of the operators generated by the program, during a run that reached 94
per cent success on 7 sets of 5 patterns, are shown.

f

A PATTERN-RECOGNITION PROGRAM 257
pattern (Fig. 6). At any time the program has stored in memory a similar
list of characteristics for each type of pattern which the program has
previously encountered. Corresponding to each list of characteristics in
memory is a list of 3-bit amplifiers, which gives the current weighting for
each characteristic as a number from 0 to 7.

The recognition process proceeds by taking the difference between each
of the characteristics for the input pattern and those in the recognition list
of the first pattern. These differences are then weighted by the correspond-
ing pattern amplifiers, and then by general amplifiers which represent the
average of the pattern amplifiers across all patterns, producing a weighted
average difference between the input list and the list in memory. This
average difference is multiplied by a final "average difference" amplifier to
obtain a "difference score" for the list in memory. When a difference score
has been computed for each list in memory, the name of the list with the
smallest score is printed as the name of the input pattern (Fig. 7).

6. After each pattern is recognized the program modifies pattern
amplifiers in those patterns which have difference scores less than or only
slightly above the difference score for the correct pattern (Fig. 8). This
means that the program will tend to concentrate on the difficult discrimina-
tion problems, since amplifiers are adjusted only in those patterns which
appear similar to the correct pattern in terms of the difference scores and
therefore make identification of the input difficult. The correct pattern is
compared with each of the similar patterns in turn. Each characteristic in
the memory lists for a pair of patterns is examined individually, and a
determination is made as to whether the correct pattern would have been
chosen if the choice had been made on the basis of this characteristic
alone. If this one characteristic would have identified the correct pattern,
then the corresponding amplifier is turned up by one. If it would have
identified the wrong pattern then the amplifier is turned down by one. If
no information is given by the characteristic, for example, if it is the same

Figure 6. Operator outputs are listed for the unknown pattern in the same format
as in lists stored in memory.

1*

L

258 ARTIFICIAL INTELLIGENCE

for both patterns, then the amplifier is turned down with a probability of
ya. If the pattern compared with the correct pattern had the higher differ-
ence score then the amplifiers are adjusted only in that pattern. Other-
wise, amplifiers are adjusted in both patterns. This means that if several
patterns obtained lower scores than the correct pattern then the amplifiers
in the correct pattern will be drastically changed, since they will change
when compared with each of these patterns.

The list of characteristics in memory for the pattern just processed is
then modified. The first time a pattern is encountered its list of computed
characteristics is simply stored in memory along with its name. On the
second encounter of a pattern each of the characteristics in memory is
replaced by the new characteristic with a probability of %" For the third
and following encounters each characteristic is replaced by the new value
with a probability of V 4. Since about % of the characteristics will be
changing each time, after several examples of a pattern have been pro-
cessed, the list of characteristics in memory will tend to be more similar
to the characteristics of the last patterns processed than to those processed

PATTERN A
Characteristics (A)
Input (?)
Difference |A-?|
Pattern amplifiers
General amplifiers
Diff. X amplifiers

61

3 4 1 4 ... 3
2 2 2 2 ... 4
1212 . . . 1
3 1 2 0 ... 3
3 1 1 0 ... 3
9 2 2 0 ... 9

Diff. score

63

PATTERN B
Characteristics (B)
Input (?)
Difference |B-?|
Pattern amplifiers
General amplifiers
Diff. X amplifiers

2 3 2 3 ... 5
2 2 2 2 ... 4
0101 . . . 1
3 2 3 2 ... 2
3 1 1 0 ... 3
0 2 0 0 ... 6

Figure 7. Differences are obtained between the characteristics for the input pat-

tern and each list of characteristics in memory. These differences are then weighted
by the product of the "general amplifiers" and "pattern amplifiers," giving a
weighted average difference for each list in memory. When multiplied by corre-
sponding "average difference amplifiers," the weighted average differences give

"difference scores" for each pattern in memory. The name of the pattern with the

smallest "difference score" is chosen as the nameof the input.

3
2
1
2
3
6

Weighted av. diff. Ay. diff. omplifier

11=1.04

2
2
0
4
3
0

Weighted ay. diff. Ay. diff. amplifier

£ = 0.25 60

'I

259A PATTERN-RECOGNITION PROGRAM

i

;|

earlier. However, to the extent that the learning process is able toproduce
operators giving invariant characteristics for a single pattern, the list of
characteristics will be representative of all the examples processed. The
reason for not simply using the average value for each characteristic is
that this would require saving in memory more than the 3 bits otherwise
needed for each characteristic, as well as saving an indication of the num-
ber of times each characteristic had been calculated for each pattern.

An alternate scheme which we tried involved saving the highest and
lowest values obtained by each characteristic, and averaging these to obtain
a mean value with which to compare the input. This worked quite well in
all our test runs, which used a few samples of each pattern. But there is the
possibility that with large numbers of examples of a pattern, all the charac-
teristics will eventually have very large ranges; that is, the lower bounds
will tend to be 0 and the upper bounds will tend to be 7.

7. The average difference amplifiers which are used in the final step of
the recognition process provide only coarse adjustments. These amplifiers
are initially set to some fixed value, e.g., 60, and are then adjusted for the
same pairs of patterns as the pattern amplifiers. The amplifier for the cor-
rect pattern is turned down by N if there are N incorrect patterns, and the
amplifierfor each of the similar patterns is turned up by one.

8. The general characteristic amplifiers are now computed by averaging
the pattern amplifiers across all patterns. These indicate the general value
of each characteristic in the recognition process and form the basis for the
construction of success counts which control the replacement of operators.
Since the combinatorial operators combine characteristics to produce other
characteristics, the success count should reflect both the value of a charac-

Amplifiers : 1 2 2 1 .. . 1
Adjusted : +1 -1 -1 -1 ... +1
New total : 2 1 1 0 ... 2

Figure 8. The pattern amplifiers for certain lists are adjusted to increase weightings
°f individual characteristics that gave differences in the right direction, and to
decrease weightings that gave differences in the wrong direction.

Difference :
Amplifiers :
Adjusted

New total :

1
4

+1
+1
6

4
3
0

-1
2

2
2

+ 1
-1
2

!p:\n
-i ... -1
-1 ... +i

1 . . . i

Ist WRONG LIST
Difference : 2 4 5

7
2 .. . 2 'Amplifiers :

Adjusted :
New total :

2
+1

3

3
0
3

I
+ 1

2

4 ... 3
-1 ... -1
3.,. 2

2d WRONG LIST
Difference : 3 1 1

+/
2... 5/

17

L

260 ARTIFICIAL INTELLIGENCE

teristic in the recognition process and the importance of this characteristic
in aiding thecreation of other, possibly important characteristics.

9. This success count is formed by first storing the value of the general
characteristic amplifier corresponding to each characteristic in a table for
success counts. Then starting with the last combinatorial operator and
working back through the list of these operators, y2 the value of the success
count for the characteristic corresponding to the operator is added to the
success counts of the two characteristics which the operator combines.
Finally, two times the general characteristic amplifier setting is added to
each success count.

10. Whenever a new operator is generated, the characteristics produced
by the operator are computed for each of the possible patterns using the
last example of each pattern, which htfs been saved in the computer
memory. These newly calculated characteristics are then inserted into the
list of characteristics for their respective patterns. At the same time the
pattern amplifier settings for each of these new characteristics are set to 1
so that the characteristic will have very little weight in computing a dif-
ference score until it has been turned up as a function of proved ability at
differentiation. Since the general amplifier for a characteristic is simply the
average of the pattern amplifiers, it will also be 1 for the new characteristic.
The success count of a new characteristic which is not combined to produce
other characteristics is then 3 and this value will tend to increase if the
operator proves to be valuable. On the other hand if a success count drops
below 3 (or in the case of a matrix operator, if the average value of the
success counts of its four characteristics drops below 3) the operator is
rejected and a new operator is generatedto take its place.

The pattern amplifiers play a crucial part both by aiding directly in the
recognition process and by providing the information which ultimately

determines the generation of new operators to replace poor ones. Since
the adjustment of these amplifiers is made selectively, based on their indi-
vidual success or failure in distinguishing pairs of patterns where confusion
is likely, the operators rejected by theprogram will tend to be those which
are not useful in making the more difficult discrimination. Also, because
amplifiers are usually changed more drastically when the computer makes
an incorrect guess, the 5 X 5 matrix operators will have a higher proba-
bility of being extracted from unrecognized patterns. Although the rules
governing the learning process seem rather arbitrary in many cases, and it
is difficult to describe their effects quantitatively, qualitative effects, such as
this ability to concentrate on difficult problems, are fairly easy to show.
The description of the program's operation shows that the emphasis is not
so much on the design of a specific problem-solving code as it is on the
design of a program which, at least in part, will construct such a problem-
solving code as aresult of experience.

r

261A PATTERN-RECOGNITION PROGRAM

i

It is interesting to note that the memory of the program exists in at least
three different places: (1) in the lists of characteristics in memory, (2)
in the settings of the various amplifiers, and (3) in the set of operators in
use by the program. While the lists of characteristics bear some direct
relationship to the individual patterns processed by the program, the values
of the amplifiers and the set of operators in use by the program depend
in a more complex way on the whole set of patterns processed by the
program, and on the program's success or failure in recognizing these
patterns. The learning in the first case, which involves simply storing
characteristics in memory, is merely "memorization" or "learning by rote."
In the second case, the learning is more subtle for it involves the program's
own analysis of its ability to deal with its environment, and its attempt to
improve this ability.

Test Results of OriginalProgram

The original program was written for the IBM 709 and required about
2000 machine instructions. The time required to process a single character
was about 25 seconds when 5 different patterns were used and 40 seconds
when each character had to be compared with ten possible patterns in
memory. While such times are not excessive, they are large enough to
make it impractical to run extremely large test cases.

In several early runs which we made, 48 preprogrammed matrix opera-
tors were used. These were designed to measure such things as straight
and curved lines, the ends of vertical and horizontal strokes, and various
other features. The program was tested using seven different sets of the
five hand-printed characters A, B, C, D, and E. These involved a fair
amount of distortion, and variation in size, but were not rotated to any
great extent.

The program's performance on the last three or four sets in a run
varied from about 70% to 80% depending on various changes which
were made to the rules governing the learning process.

One run was made using the individual cells of the input matrix as
first level operators, building up higher-level combinatorial operators on
these. This gave little better than 30% success. Finally, this version of the
program was tested without any preprogrammed operators, the program
achieved 97% on known and 70% on unknown examples of a ten-letter
alphabet. It also showed ability to recognize simple drawings of objects.

Test Results of Revised Program

The original program was modified, chiefly to increase its running speed,
and secondarily to simplify some of its logic. In order to make use of
logical machine instructions on the 709, all characteristics and their ampli-

«*

262 ARTIFICIAL INTELLIGENCE

L

0 12 3 4 5 6
Passes through entire set

(a)

100

90

80

70

| 60
o

" 50
c

i;4O

a.
30

20

10

0

r
/

/

/A
i I Vw/ y \ b
//

,\Vi

\// /\// N

V 1of i

Standard

<! ' Hand printedletters
/ (10 letters -4sets)

/ Pictures
/ Known 10patterns-4 sets
' Unknown -1 set

t

Arabic handwriting

' Known 10patterns-4sets
° Unknown -1 set

7
Posses through entire set

lb)

100

80

70

t 60
o
o
~ 50c
o
fc 40

30

20

10

0
0 1 2 3 4 5 6

Passes through entire set Passes through entire set
(c) Id)

Figure 9. (a) Results of the computer simulation program. Hand-printed alphabetic
patterns. Per cent correct on several sets of a 26-pattern, a 10-pattern, and a '-
pattern array. The program was tested on both known and unknown sets of
patterns, (b) Results with two additional 10-pattern arrays: (1) line drawings of
pictures (different examples of each of 5 faces and 5 objects), (2) arabic hand-
writing (written by the same person). The program was tested on both known

) I I I 1 I I , I 1 U I 1 6 1 1

' v

7
01234567 01234 5 6'

I

A PATTERN-RECOGNITION PROGRAM 263

tiers were reduced to 1-bit values. The revised program stores nine one-
bit values for each operator—whether it hit at least once in each of nine
parts of the matrix. Operators are weighted either 1 (to be used) or 0 (not
to be used), referring to the characteristics they give for each pattern
stored in memory. Operators are eliminated when they have given wrong
outputs on the last n example for which the program as a whole has been
wrong. The "general amplifiers" have been eliminated. These changes
effected an increase of speed by a factor of about 40. Thus this program
takes about 1 second per example for a 10-pattern alphabet on the 709,
and less than .2 second on the 7090. This program is probably weaker
than the original program, since it has virtually no range within which to
search for a good set of weightings for its operators. But its increased
speed led to its use for the bulk of our tests on this version of the program.

The speeded up program has been tested on several different types of
input patterns, as shown in Fig. 9. In most cases, results were quite similar
on both "known" examples (that is, examples the program had previously
processed and hence had learned from) and "unknown" examples (that is,
different from the ones used in learning, and also produced by different
people). Figure 9a shows results for several different sizes of pattern
arrays, all of hand-printed capital letters, printed by different people.
These results show relatively little decrease in the program's abilities as
the array size is increased, at least up to the 26-letter alphabet. Thus, on
the sixth pass through the 26-letter alphabet the program was 100%
correct on known patterns and 96% correct on unknown patterns.

Figure 9b presents results for two 10-pattern arrays. These were: (1)
line drawings of cartoon faces and simple objects (such as shoes and
pliers), each copied from a different picture, as found in cartoon strips
and mail-order catalogs (Fig. 10 presents some examples of the cartoons),
and (2) handwritten arabic letters, written by the same person. The pro-
gram achieved 95% success on known and 70% success on unknown
pictures, and 60% success on known and 55% success on unknown
arabic letters (segmented handwriting) in the fifth pass. Figure 9c presents
results from two 5-pattern arrays: (1) digitized and degraded sound
spectrograms of speech (the numbers "zero," "one," "two," "three," and
"four," as spoken by different speakers) (Uhr and Vossler, 1961d), and
(2) segmented lower-case handwriting, written by different people. The

and unknown sets of patterns, (c) Results with two additional 5-pattern arrays-
(i) spoken numerals (spoken by different people), (ii) segmented handwriting
(written by different people). The program was tested on both known and unknown
sets of patterns, (d) Results from a comparison experiment. Per cent errors for
the program and mean per cent errors for human subjects (from 6 to 10 subjects
Per point) on one hard and one easy set of "meaningless" patterns. Both sets
contained five variant examplesof each of five patterns.

264 ARTIFICIAL INTELLIGENCE

program achieved 100% success on both known and unknown spoken
numerals by the fourth pass, and 100% success on known handwriting by
the third pass. It achieved 60% success on the unknown handwriting, but
it is likely that it would have improved further on these inputs if it had
been given more opportunity to learn (once it achieves 100% success on
known patterns it does not benefit appreciably from subsequent learning
experiences).

Finally, the program's performance was compared with the performance
of human subjects on sets of "meaningless" patterns. This sort of pattern
minimizes the effects of the human being's lifetime of experience and
resulting associative context. Figure 9d presents results from two such
experiments, in both of which the program performed appreciably better
than did any of the human subjects. Three additional experiments pre-
viously reported in the psychological literature were replicated. In all cases
the program performed at a higher level than did the human subjects
(Uhr, Vossler, and Uleman, 1962)

Figure 10. Two examples of each of two cartoon faces as presented to the simula-
tion program (digitized by hand into a 20 X 20 matrix, after optical projection
from the newspaper original).

I

A PATTERN-RECOGNITION PROGRAM 265 I

I

This program was also tested for its ability to handle continuous pat-
terns such as handwritten words and spoken sentences. Simple additional
subroutines were written to allow it to input matrices any number of col-
umns long, to make very primitive tentative segmentations (in every nth
column, n usually around 7, and in columns with fewer than two filled
cells), and to decide among the various alternatives at the various different
tentative segmentation points. The program reached 100% correct per-
formance when asked to segment and recognize the words, or alternativelythe phonemes, in the simple sentence "Did Dad say before," spoken by
different people.

On the handwritten sequences "pattern one," "pattern two," "pattern
three" (written by different people), the program reached about 60%
success in recognizing the letters. These tests do not in any adequate way
sample the range of problems to be encountered with such stimuli. But
they give some indication that the program is capable of at least beginning
to handle continuous inputs. And it should be relatively easy to improve
upon this performance by adding more sophisticated segmenting methods
and a straightforward method (such as the use of letter «-tuple frequencies
in the language) for making use of contextual information.

Discussion

When this program is given a neurophysiological interpretation, or a
neural, net analog, it can be seen to embody relatively weak, plausible,
and "natural-looking" assumptions. The 5X5 matrix operator is equiva-
lent to a 5 X 5 net of input retinal cones or photocells converging on a
single output, with "ones" denoting excitatory and "zeros" denoting inhibi-
tory connections, and the threshold for firing the output unit set at the sum
of the "ones." Each translation step of the operator matrix over the larger
matrix gives a sequential simulation of the parallel placement of many of
these simple neural net operators throughout the matrix. Each different
operator, then, is the equivalent of an additional connection pattern be-
tween input cones, firing onto a new output unit that computes the output
for that operation. This is all quite plausible for the retina as known ana-
tomically, with a single matrix of cones in parallel that feed into several
layers of neurons. Evidence for excitatory and inhibitory connections is
also strong (Hartline, 1938). And there is even beginning to be evidence
of several types of simple net operators that exist in parallel iterated form
throughout the retinal matrix [four of these as determined by Lettvin,
Maturana, McCulloch, and Pitts in the frog (1959); and probably even
more as determined by Hubel and Wiesel in the cat (1959)].

It would seem, however, that the known physiological constraints and
the plausible geometric constraints on operators would suggest fewer than

**." ~

266 ARTIFICIAL INTELLIGENCE

the 40-odd operators that we have used [or than the 30-odd used by Doyle
(1960) or the 75 used by Bledsoe and Browning (1959) ignoring the
fact that they cannot be so easily interpreted neurophysiologically]. For
example, straight-line and sharp-curve operators would seem to be more
plausible in terms of the ease of connection and the importance of the
information to which they respond. A possible operator that might over-
come this problem, with which we are now working, is a simple differenc-
ing operator that will, by means of several additional layers of operations,
first delineate contour and then compute successively higher order differ-
ences, and hence straightness, slope and curvature, for the unknown pat-
tern. This operator appears to be equivalent to a simple net of excitatory
and inhibitory elements (Uhr and Vossler, 1961a).

This, then, suggests that the mapping part of the program would be
effected by two layers of parallel basic units in a neuron netlike arrange-
ment. The matching part might similarly be performed by storing the
previously mapped lists in a parallel memory and sweeping the input list,
now mapped into the same standard format, through these lists. Finally,
the amplifiers can be interpreted as threshold values as to when the differ-
ences thus computed lead to an output. The specific pattern characteristic
amplifier would be an additional single unit layer lying right behind the
memory list; the interpretation of the general amplifiers might be made in
terms of chemical gradients,but is more obscure.

Thus a suitable parallel computer would perform all of the operationsof this program in from three to ten serial steps. This is a somewhat greaterdepth than those programs, such as Selfridge's (1959) and Rosenblatt's
(1958), that attempt to remain true to this aspect of the visual nervous
system. But it is well within the limits, and actually closer to the specifica-
tions, of that system. It also takes into consideration the very precise (and
amazing) point-to-point and nearness relations that are seen in the visual
system, both between several spots on the retina or any particular neural
layer, and from retina to cortex (Sperry, 1951). It also is using operatorsthat seem more plausible in terms of neural interconnections—again, in
the living system, heavily biased toward nearness.

The size of the over-all input matrix has also been chosen with the re-
quirements of pattern perception in mind. Good psychophysical data show
clearly that when patterns of the complexity of alphanumeric letters are
presented to the human eye, recognition is just as sure and quick no matter
how small the retinal cone mosaic, until the pattern subtends a mosaic of
about the 20 X 20 size, at which time recognition begins to fall off, in
both speed and accuracy, until a 10 X 10 mosaic is reached, at whichpoint the pattern cannot be resolved at all. This further suggests something
about the size of the basic operator, when we consider that most letters
are composed of loops and strokes that are on the order of % or % of the

I

A PATTERN-RECOGNITION PROGRAM 267

A.

whole For our present purposes, the advantage of the 5 X 5 operatorwasnot only its plausibility but also the fact that it cuts down to a workablesize the space within which to generate random operators of the sort weare using when we permute through all possible combinations of thematrix. Again, with the constraint that these random operators be con-el? 11, TmeS 3 m°re P°Werful geometry- and topology-sensitive op-erator, and also a simulation of a more plausible neural net.Finally, psychophysical evidence also strongly suggests that the resolvingpower of the human perceptual mechanism is on the order of only two ornree bits worth of differentiation as to dimensions of pattern character-iq^T .T?88 SUCh 3S length' slope' and curvature (Alluisi, 1957; Millermallow' 1959
v,

)- ThiS 3gain' SUggCStSa5X 5 matrix as a "*""matrix that is capable of making these resolutions
ci,n

he,,!Pc?fiCatlonS f°r and meth°ds Used by livinS svste". and espe-cially the human visual system, suggest certain design possibilities for apattern-recognition computer; but they certainly do not suggest the onlyPossibilities. Nor should they be slavishly imitated. They should, however,ceJfT 111? SCTSIy' f°r thC living Pattern recognizers are the only suc-cessful systems that we know of today. Nor does it seem that the sort ofuse we have been making of these human specifications will impose anytundamental hm.tation on a program such as this, one that generates andadjusts its own operators. We have, in fact, already found the programmaking a different, and, apparently, more powerful, choice of operatorshan eh suggested to us by the psychophysiological data and CQn
_

lectures we have just described. The program's "learning" methods cannow depend both on built-in connections (maturation) and on the inputsthat need to be learned. The program will develop differently as a functionot Afferent input sets. It appears to be capable of extracting and success-uily using information from these sets. This would seem to be as com-pletely adaptive-being adaptive to inputs-as a computer or organismcan be expected to be.
This sort of design would seem to have some applicability to a variety°t more intelligent" machines. The program replaces the programmer-analyst by a programmed operator that first generatesoperators that makeelective enough use of the unknown input space, and then makes use ofeedback as to the success of these new operators in mapping unknownnputs in order to increase their effectiveness. Thus neither programmernor program needs to know anything specific about the problem ahead of'me. The program performs, as part of its natural routine, the data col-lection, analysis, and inference that is typically left to the programmer,

an i
W°,U,tbe a

foo,ish

waste of time for a problem that had already beenna yzed. But pattern recognition, and many other problems of machineintelligence, have not been sufficiently analyzed. The different pattern-

-pi

268 ARTIFICIAL INTELLIGENCE

recognition programs are, themselves, attempts to make this analysis. As
long as pattern recognition remains in the experimental stage (as it must
do until it is effectively solved), a program of this sort would seem to be
the most convenient and flexible format for running what is, in effect, a
continuing series of experiments upon whose results continuing modifica-
tions of theories are made. This becomes an extremely interesting process
for the biologist or psychologist, especially to the extent that the program
can be interpreted either physiologically or functionally, or at the least
does not violate any known data. For the experimentation and concomitant
theory building and modification being undertaken today is rapidly build-
ing what appears to us to be the first relatively firm and meaningful theo-
retical structure—for pattern, or form, perception—for the science of
"higher mental processes."

Self-generation of operators, by the various methods employed in this
program, may also suggest approaches toward solving a wide variety of
pattern-recognition and pattern-extraction problems. Thus there is some
hope that relatively powerful operators are being extracted and generated
as a result of experience with and feedback from the program's quasi-
experimental analysis on the body of data that is available to it—its inputs
and the consequences of its actions. Further, the level of power of these
operators, and the serial ordering of operators can also be placed under
similar control. Thus operators need not be overly simple or random to
be machine-chosen; nor preprogrammed to be powerful. Rather, they can
arise from the problem, and thus be sensitive to the problem, and to
changes in the problem.

I i

is

part 2

Simulation of
Cognitive Processes

The research reported in Part 2 is concerned with the constructionttr2P

"
m°u

e,S

°f thC information Processes underlying humanthought. While the major aim of the research reported in Part 1 isthe programming of computers to perform intellectual tasks, thework reported here is concerned with the programming of computersto perform intellectual tasks in the same way that persons performthese tasks. An example may be helpful in clarifying the distinctionbetween artificial intelligence research and simulation of cognitiveprocesses research. An artificial intelligence researcher interested inprogramming a computer to play chess would be happy only if hisprogram played good chess, preferably better chess than the besthuman player. However, the researcher interested in simulating thechess-playing behavior of a given individual would be unhappy ifhis program played chess better (or worse) than that individual forthis researcher wants his program to make the same moves as thehuman player, regardless of whether these moves are good, bad orindifferent.

Why Program Computers To Do Tasks the Way People DoThem?

Researchers program computers to behave like people to furthertheir understanding of, i.e., their ability to predict, certain phenom-ena of human behavior. The computer program is a model whichrepresents the researcher's hypotheses about the information prec-

y>..

270 SIMULATION OF COGNITIVE PROCESSES

esses underlying the behavior. The program is run on a computer to
generate the predictions of the model. These predictions are com-
pared with actual human behavior. There are usually some discrep-
ancies between prediction and behavior, and the model is revised
to reduce these discrepancies. Then the entire process is repeated.
Eventually the researcher hopes to obtain a model which will be a
good predictor of the relevant behavior. As he continues to test his
model and to improve it, the researcher gains confidence in the belief
that this model represents the processes underlying the behavioral
phenomena he is studying.

This overview of the procedure of researchers using computer
models to study human thought processes indicates that these work-
ers use the same procedure that all scientists use. The only difference
involves the representation of the model as a computer program and
the use of the computer to determine the predictions of the model.

What Are the Advantages of Representing Models of
Human Thought as ComputerPrograms?

The researcher may represent a model of human behavior in any
of a number of different ways. Perhaps the most common representa-
tion is natural language, i.e., the language in which we usually com-
municate, be it English, French, German, Russian, or Sanskrit. If
we were to specify a model of a chess player in natural language, the
description of the model might begin as follows :

Before making a move, the player checks to see if his king or
queen is in danger.

A model of a chess player might also be represented in the language
of mathematics.

A third possibility is the representation of the model as a program
for a digital computer.

The selection of a medium for model construction depends on the
characteristics of the medium, the characteristics of the model, and
the resources of the model builder. Natural language is an extremely
flexible medium, and perhaps any conceivable model can be repre-
sented in natural language. Moreover models represented in natural
language are generally easy to communicate to others. However,
these statements about ease of representation and communication
must be qualified for extremely complex models. Perhaps the most
serious failing of natural language as a medium for model construc-
tion is the difficulty of rigorously determining the predictions of a
model expressed in this medium. This is true because, in expressing

I

271SIMULATION OF COGNITIVE PROCESSES

1

ourselves in natural language, we use ambiguous words; e.g., in the
example of a statement in a natural language description of a model
used on page 270, what does "checks" mean? What does "danger"
mean?

Many of the models expressed in conventional mathematics can be
analyzed in a rigorous fashion. If the mathematics is known to the
model builder or can be discovered by him, he will be able to deter-
mine the implications of his model. If the mathematical techniques
for solving certain equation systems are not known or available to
the model builder, he is in no better a position than if he had only
a natural language model. The effect of this last condition is to
constrain the model builder to consider only that class of models for
which he knows solutions are available. Unfortunately this constraint
may have a spurious effect on the model builder; e.g., he may over-
simplify a complex situation. In general, many of the mathematical
models of human behavior are elegant and simple. Sometimes, the
constraints of the mathematical medium force unfortunate compro-
mises upon the model and reduce its ability to predict.

The most recently developed medium for model construction is the
digital computer program. The computer program has several im-
portant advantages as a medium for model construction. One of these
is the wide range of models that can be represented as computer
programs. Effective constraints on the size and complexity of the
models which can be represented are so few and slight that they can
be disregarded in most cases. The only real constraint on the model
builder is that his statements be unambiguous and complete. For
example, before the statement about the chess model given on page
270 could be programmed, the meaning of the words "checks" and
"danger" would have to be specified. This constraint should be con-
sidered a blessing rather than a limitation, for it forces a refreshing
rigor on builders of models of human thought processes. Despite the
freedom given to the model builder in constructing computer models,
he retains the ability to make a rigorous determination of the impli-
cations of the model. For the computer can execute the program and
determine the behavior of the program in particular situations.

The construction of computer models has been facilitated by the
development of computer languages that relieve the programmer
from the burdens of the microprogramming associated with machine
languages. The development of powerful algebraic languages like
FORTRAN and the various dialects of ALGOL are one class of
these higher-order computer languages. A second class of languages
are the list processing languages—IPL, FLPL, LISP, and COMIT—
which have been developed for work in artificial intelligence and

~ p

272 SIMULATION OF COGNITIVE PROCESSES

simulation of cognitive processes. These list processing languages
provide dynamic storage allocation and many other features which
simplify the programming task.

What Is the Information Processing Level of Explanation?

In constructing the models described in the reports in Part 2, the
researchers had to make several choices. One is the behavior which
they want to predict. All the reports are focused on human thought
processes. A second choice is the medium for model construction.
All the models described in this part are represented as computer
programs. A third choice that must be made is the level of explana-
tion of the model. In all the reports, the researchers chose an infor-
mation processing level of explanation.

A particular phenomenon may be explainedat any one of several
different levels. In the present context, this statement means that
human thought processes can be explained in terms of electrical and
chemical processes which take place in the brain, in terms of the
organization of the neurons of the brain, or in terms of information
processes. At first glance, explanations at each of these levels may
appear to be quite different, for we have not yet been able to de-
velop an integrated theory of thinking which will simultaneously
account for all that takes place in the way of electrical, chemical,
organizational, and informational processes. Hopefully one day all
these levels of explanation will be integrated, and the relationships
between them will be established. Until that day, perhaps the wisest
course is for investigators to continue to work in parallel, taking
time out occasionally to compare notes, for there is not one best level
of explanation. One can evaluate the models proposed at any level
only by their ability to predict behavior. Models at any of these levels
of explanation of human thought can be formulated as computer
programs, and computers have been used to study neurons, neural
organization, and information processes (see the Bibliography).

The reports in Part 2 explain human thinking processes at an in-
formation processing or symbol manipulation level. The basic prem-
ise of this approach is that complex thinking processes are built
up of elementary symbol manipulation processes. A fundamental set
of these elementary processes might be the following: read a symbol,
write a symbol, copy a symbol, erase a symbol, and compare two
symbols. Another basic facility that is required is the ability to take
different courses of action depending on the outcome of the compare
operation. If two symbols are compared and found to be identical,
the information processing system will take one course of action, /'.«"»

I

SIMULATION OF COGNITIVE PROCESSES 273
execute one set of elementary processes. If the symbols are different,
the system will executeanother set of processes.

The goal of the researcher is to find an ordered sequence of these
basic processes which when provided with suitable information will
produce behavior indistinguishable from the behavior produced by
human beings when they are provided with comparable information.
The "ordered sequence of these basic processes" is the "model" that
we have referred to previously. Thus an information processing
model of a chess player would consist of a sequence of these basic
processes. We could provide this model with suitable initial informa-
tion, e.g., a chess problem, and with the aid of a computer determine
the predictions of the model.

How are InformationProcessing Models of Human Thought
Determined?

While there is no prescribed procedure for creating information
processing models of thought, nevertheless the researchers whose
work is reported in Part 2 all had to do certain things in the process
of obtaining their models. We now list the major steps involved in
the creation of such a model.

The researcher begins with an interest in a certain area of human
behavior, e.g., problem-solving, game playing, learning. He then
usually focuses on behavior in a specific task, e.g., solving logic prob-
lems, playing chess, learning nonsense syllables. The particular task
may be selected because the researcher is interested in the task for
its own sake or because he has some idea about how people behave
in that particular task. In order to construct a preliminary model of
behavior in the task, the researcher needs an idea or ideas about
behavior in the task. The idea may come from observing behavior,
from asking people what they are doing while performing the task,
or from cogitating on what type of devicewould be required to per-
form the task. The next step is to construct a model, i.e., write a
program for a computer, embodying this idea. In the course of this
activity, the researcher realizes the inadequacy of his original idea(s).
He discovers that he needs more information. To get this information
he may have to reanalyze old data or run new experiments. Thus
the researcher encounters one of the advantages of computer models—the requirement for completeness and precision. After many
changes and revisions of the initial program, the model is finally
completed.

The researcher then provides the model with the same task given
to human subjects, i.e., a chess problem, a logic problem, a list of

a w

274 SIMULATION

OF

COGNITIVE PROCESSES

nonsense syllables. The program is then run with this information.
In effect, the model may be considered as an artificial subject partici-
pating in a replication of the experiment that was performed with
human beings. The behavior of the program, e.g., the chess moves,
the steps in the solution of the logic problem, the responses in the
learning task, is then compared with the behavior of the subject.
Where possible, the processes which led to the overt behavior are
also compared.

How Are Computer Models of Human Thought Processes
Tested?

The actual comparison or test procedure depends on whether the
model represents a particular individual or a generalized or idealized
individual (see the article by Feigenbaum, pp. 299-300). The verbal
learning model of Feigenbaum, the concept learning model of Hunt
and Hovland, and the social behavior model of the Gullahorns are
models of generalized or idealized individuals. The relevant compari-
sons here, and the comparisons that these authors make, are between
the behavior of their models and the behavior of typical individuals.

The models of Newell and Simon, Clarkson, and Feldman are
models of specific individuals. The relevant comparisons here are
between the detailed choices of the individual subject and the detailed
choices of the model. These comparisons involve many problems.
None of these problems is new or unique to computer models, but
they are highlighted by the types of comparisons made with these
models of individual behavior. One of these problems is parameter
estimation. Another problem involves the relationship between suc-
cessive predictions of the model. The prediction of the model at
time t depends on the behavior of the model at f — \, t — 2, f — 3>
and/or other decisions of the model. If the model makes a decision
different from that of the subject at one point in time, the discrepancy
may lead to further discrepancies or spurious agreements. Thus, if
the model of a chess player makes a first move different from that of
the player, we would hardly expect the second moves to agree. To
eliminate this difficulty, some investigators (see the article by Feld-
man) have selected the strategy of "setting the model back on the
track" after each decision. In the chess example, this would mean
that after the model makes its first move, the move is compared with
the first move of the human player. If the moves are the same, the
opponent's move is made; and the model proceeds to its second move.
If the first move of the model and the first move of the player differ,
the discrepancy is noted; and the model's move is replaced by the

I

SIMULATION OF COGNITIVE PROCESSES 275
subject's move before the play continues. This setting-back-on-the-
track strategy attempts to eliminate the dependencies involved andmakes each decision of the model as independent as possible of the
previous decisions of the model. Such a procedure allows a better
evaluation of the performance of the model than a comparison pro-
cedure which permits errors to beget errors (or spurious correctdecisions). Unfortunately it is not always possible to implement a
set-back-on-the-track procedure, either because the intermediate in-
formation is not available (as it is in chess or the binary choice ex-
periment) or because it is difficult to set the model back on the track,as, for example, in GPS.

What Are Some of the UnsolvedProblems of Simulation ofCognitiveProcesses Research?

The problems of simulation of cognitive processes research are of
two types. The substantive problems are those areas of human cogni-tion about which we know very little. The problems listed above of
learning heuristics, of inductive inference, and of using natural lan-
guage are three good examples of areas in which our knowledge of
human thought processes is pitifully small. These are areas which
will attract much interest in the near future.

The procedural or methodological problems of the simulation of
cognitive processes technique represent a second class of problems.
Three of these problems are readily apparent:

1. Testing models and estimating parameters. Models are seldom
entirely wrong, and researchers seldom reject models completely. The
more common procedure is to try to identify the sources of error in
the model and correct the model (Grant, 1962). Since computer
models are so large and complex, techniques for identifying sources
of error are extremely important. The efficient utilization of the
available information on human thought processes is very important.

2. Experimentation. Much of the simulation of cognitive processes
work has been identified with the use of a protocol obtained by asking
the subject to think aloud. Work needs to be done on this and other
ways for obtaining information about thought processes (Blum,
1961). Some work has been done and more needs to be done on the
determination of the effects of having the subject think aloud (Colby,
1960; Gagne, 1962). Ingenious procedures must be developed to

make explicit the thought processes of the subject. One such pro-
cedure is the use of artificial languages for problem statements
(Wickelgren and Cohen, 1962). Much additional work is needed in
all these areas.

w

276 SIMULATION OF COGNITIVE PROCESSES

3. Program organization and representation. We have repeatedly
stated that the expression of models as computer programs allows
considerable flexibility in statement. This assertion is true. However,
as models and programs increase in size and complexity, the organiza-
tion of these programs creates serious problems. Higher-order pro-
gramming languages and list-processing languages in particular solve
some of these problems, but many problems remain (Newell, 1962).

How Will the Computer Affect the Study of Cognitive
Processes?

The effects of the modern digital computer on the study of human
thought processes will be twofold. On the one hand the researchers
in artificial intelligence want to understand how human beings per-
form all sorts of intelligent tasks. Thus computers will be contributing
to the demand for more knowledge of human thought processes. On
the other hand, the computer has become the basis of a powerful
method for studying human thought processes, and so the computer
will contribute to the supply of understanding of human cognitive
processes. The supply of knowledge about human thought will never
catch up with the demand. But the forecast for progress in research
in human cognitiveprocesses is most encouraging.

"

t

!
section 1

Problem-solving

The study of human problem-solving behavior has had a fascination
for many persons since the time of the Greeks. With the advent of the
modern digital computer and the ability to represent complex prob-
lem-solving models as computer programs and to study these models
by executing the programs, the study of problem-solving behavior
has received new impetus.

The authors of the following report and their colleague, J. C. Shaw,
are three of the pioneers in the use of computer models of human
problem-solving behavior. The psychological significance of their
work on the General Problem Solving program (GPS) derives from
their success in creating a model whose behavior in solving logic
problems is strikingly similar to human behavior on these same prob-
lems. In the report reprinted here, the behavior of a variant of GPS
on a problem is compared with the behavior of a human subject on
the same problem. In other reports, (he behavior of other variants
of GPS has been compared with the behavior of other subjects, with
equally goodresults.

While each person behaves somewhat differently,practically all the
individuals that have been tested by Newell and Simon and their
associates in the logic task display a common set of basic processes
involving the use of means-ends type of analysis. Although other in-
vestigators (notably Duncker, 1945) have reported the use of means-
ends analysis by subjects solving problems, Newell, Shaw, and Simon
have rigorously specified means-ends analysis and implemented this
problem-solving scheme on a computer. With their computer model,

V p

278 SIMULATION OF COGNITIVE PROCESSES

they have been able to perform a wide variety of experimentation
with the scheme.

In addition to the means-ends technique, some subjects make use
of another powerful method, which has been called "planning." A
subject using a planning method abstracts or simplifies a complex
problem. He then solves the simpler problem and uses the informa-
tion obtained in the solution of the simpler problem in the solution
of the original complex problem. This technique has also been in-
cluded in GPS and is more fully described in another report (Newell,
Shaw, and Simon, 1959a).

GPS is more than a model of human behavior in logic problems.
A deliberate effort has been made in GPS to partition the "general"
part of the program—mostly concerned with mean-ends analysis—
from the problem-specific part of the program—generally referred to
as the "task environment." With the general part of GPS and appro-
priate task environments, computers can be programmed to solve
trigonometric identities (Newell, Shaw, and Simon, 1959a), balance
assembly lines (Tonge, 1960, 1961a), and compile computer pro-
grams (Simon, 1961c).

r

GPS, A PROGRAM THAT
SIMULATES HUMAN THOUGHT

Allen Newell &H. A. Simon

This article is concerned with the psychology of human thinking. It sets
forth a theory to explain how some humans try to solve some simple
formal problems. The research from which the theory emerged is intimately
related to the field of information processing and the construction of intel-
ligent automata, and the theory is expressed in the form of a computer
program. The rapid technical advances in the art of programming digital
computers to do sophisticated tasks have made such a theory feasible.

It is often argued that a careful line must be drawn between theattempt
to accomplish with machines the same tasks that humans perform, and
the attempt to simulate the processes humans actually use to accomplish
these tasks. The program discussed in the report, GPS (General Problem
Solver), maximally confuses the two approaches—with-mutual"!benefit.
GPS has previously been described as an attempt to build a problem-
solving program (Newell, Shaw, and Simon, 1959a, 1960a), and in our
own research it remains a major vehicle for exploring the area of artificial
intelligence. Simultaneously, variants of GPS provide simulations of human
behavior (Newell and Simon, 1961a). It is this latter aspect—the use of
GPS as a theory of human problem-solving—that we want to focus on
exclusively here, with special attention to the relation between the theory
and the data.

As a context for the discussion that is to follow, let us make some brief
comments on some history of psychology. At the beginning of this century
the prevailing thesis in psychology was Associationism. It was an atomistic
doctrine, which postulated a theory of hard little elements, either sensa-
tions or ideas, that became hooked or associated togetherwithout modifica-

279

V.X

280

SIMULATION

OF COGNITIVE PROCESSES

tion. It was a mechanistic doctrine, with simple fixed laws of contiguity in
time and space to account for the formation of new associations. Those
were its assumptions. Behavior proceeded by the stream of associations:
Each association produced its successors, and acquired new attachments
with the sensations arrivingfrom theenvironment.

In the first decade of the century a reaction developed to this doctrine
through the work of the Wurzburg school. Rejecting the notion of a
completely self-determining stream of associations, it introduced the task
(Aufgabe) as a necessary factor in describing the process of thinking. The
task gave direction to thought. A noteworthy innovation of the Wurzburg
school was the use of systematic introspection to shed light on the thinking
process and the contents of consciousness. The result was a blend of
mechanics and phenomenalism, which gave rise in turn to two divergent
antitheses, Behaviorism and the Gestalt movement.

The behavioristic reaction insisted that introspection was a highly un-
stable, subjective procedure, whose futility was amply demonstrated in the
controversy on imageless thought. Behaviorism reformulated the task of
psychology as one of explaining the response of organisms as a function
of the stimuli impinging upon them and measuring both objectively. How-
ever, Behaviorism accepted, and indeed reinforced, the mechanistic as-
sumption that the connections between stimulus and response were
formed and maintained as simple, determinate functions of the en-
vironment.

The Gestalt reaction took an opposite turn. It rejected the mechanistic
nature of the associationist doctrine but maintained the value of phe-
nomenal observation. In many ways it continued the Wurzburg school's
insistence that thinking was more than association—thinking has direction
given to it by the task or by the set of the subject. Gestalt psychology
elaborated this doctrine in genuinely new ways in terms of holistic prin-
ciples of organization.

Today psychology lives in a state of relatively stable tension between
the poles of Behaviorism and Gestaltpsychology. All of us have internalized
the major lessons of both: We treat skeptically the subjective elements in
our experiments and agree that all notions must eventually be made opera-
tional by means of behavioral measures. We also recognize that a human
being is a tremendously complex, organized system, and that the simple
schemes of modern behavioristic psychology seem hardly to reflect this
at all.

An Experimental Situation

In this context, then, consider the following situation. A human subject,
a student in engineering in an American college, sits in front of a black-
board on which are written the following expressions:

' I

OPS,

A PROGRAM THAT SIMULATES HUMAN THOUGHT

(RD~P)'(~RDQ) I ~ (~ Q " P)

281

This is a problem in elementary symbolic logic, but the student does notknow it. He does know that he has twelve rules for manipulating expres-sions containing letters connected by "dots" ("), "wedges" (V), "horse-
shoes" (D), and "tildes" (~), which stand respectively for "and," "or,""implies," and "not." These rules, given in Fig. 1, show that expressions
of certain forms (at the tails of the arrows) can be transformed into ex-
pressions of somewhat different form (at the heads of the arrows).
(Double arrows indicate transformations can take place in either direc-

Objects are formed by building up expressions from letters(P,

Q,

R, . . .) andconnectives " (dot), V (wedge), => (horseshoe), and -(tilde). Examples areP,

~Q,

P V

Q,

~ (R z> S) " ~ P; —Pis equivalent to P throughout.
Twelve rules exist for transforming expressions (where A, B, and C may beany expressions or subexpressions):

Rl. A " B->B " A RB. A " B—*A Applies to main
A " B—>B expression only.

R9. A-»A»X Applies to main
expression only.

RIO. AI A

m

B A and Bare two
Bj main expressions .

R 11. A)
B A and A ■=> B are two

A a Bj main expressions.
Rl2. A3BKA AzaßandßoC

B => C j are two main ex-
pressions.

Example, showing subject's entire course of solution on problem:
1. (R3 ~P)"(~ R z) Q) | ~(~Q" P)

Rule 6 applied to left and right of 1.
Rule 6 applied to left of 1.
Rule 8 applied to 1.
Rule 6 applied to 4.
Rule 8 applied to 1.
Rule 6 applied to 6.
Rule 10 applied to 5. and 7.
Rule 2 applied to 4.
Rule 2 applied to 6.
Rule 12 applied to 6. and 9.
Rule 6 applied to 11.
Rule 5 applied to 12
Rule 1 applied to 13.

QED.

Figure 1. The task of symbolic logic.

A V B—>B V A
R2. A=> B—>~ B => ~ A

R3. A " A«—>A
A V A<—>A

R4. A " (B " C)<—>(A " B) " C
A V (B V C) <->(A V B) V C

R5. A V B<—->~(~A- ~B)

R6. A o B<—> ~ A V B
R7. A"(B V C) <—+ (A " B)V(A "C)

A V(B " C) <—» (A VB) " (A V C)

2. (~RV ~P)- (R VQ)
3. (~RV ~P)- (~R 3Q)
4. R3 ~P
5. ~R V ~ P
6. ~Rz> Q
7. RVQ
8. (~RV ~P)-(RVQ)
9. P 3 ~ R

10. ~Qz>R
11. P n

Q

12. ~P V

Q

13. ~(P . ~Q)
14. ~(~Q-P)

n *?_~

282 SIMULATION OF COGNITIVE PROCESSES

Well, looking at the left hand side of the equation, first we want to eliminate
one of the sides by using rule 8. It appears too complicated to work with first.
Now - no, - no, I can't do thatbecause I will be eliminating either the Q or
the P in thattotal expression. I won't do thatat first. Now I'm looking for a
way to get rid of the horseshoe inside the two brackets that appear on the left
and right sides of the equation. And I don'tsee it. Yeh, if you apply rule 6 to
both sides of the equation, from there I'm going to see if I can apply rule 7.

Experimenter writes: 2. (-RV-P)-(RVQ)

I can almost apply rule 7, but one R needs a tilde. So I'll have to look for
anotherrule. I'm going to see if I can change that R to a tilde R. As a
matter of

fact,

I should have used rule 6 on only the left hand side of the
equation. So use rule 6, but only on the left hand side.

Now I'll apply rule 7 as it is expressed. Both - excuse me, excuse me, it
can't be done because of the horseshoe. So - now I'm looking - scanning the
rules here for a second, and seeing if I can change the R to a ~R in the second
equation,but I don'tsee any way of doing it. (Sigh.) I'm just sort of lost for a
second.

Figure 2. Subject's protocol on first part of problem.

tion.) The subject has practiced applying the rules, but he has previously
done only one other problem like this. The experimenter has instructed
him that his problem is to obtain the expression in the upper right corner
from the expression in the upper left corner using the twelve rules. At any
time the subject can request the experimenter to apply one of the rules
to an expression that is already on the blackboard. If the transformation
is legal, the experimenter writes down the new expression in the left-hand
column, with the name of the rule in the right-hand column beside it. The
subject's actual course of solution is shown beneath the rules in Fig. 1.

The subject was also asked to talk aloud as he worked; his comments
were recorded and then transcribed into a "protocol,"—i.e., a verbatim
record of all that he or the experimenter said during the experiment. The
initial section of this subject's protocol is reproduced in Fig. 2.

The Problem of Explanation

It is now proposed that the protocol of Fig. 2 constitutes data about
human behavior that are to be explained by a psychological theory. But
what are we to make of this? Are we back to the introspections of the
Wurzburgers? And how are we to extract information from the behavior
of a single subject when we have not defined the operational measures we
wish to consider?

There is little difficulty in viewing this situation through behavioristic
eyes. The verbal utterances of the subject are as much behavior as would

Experimenter writes: 3. (~RV~P)'(~R=>Q)

I

GPS,

A PROGRAM THAT SIMULATES HUMAN THOUGHT 283
bs his arm movements or galvanic skin responses. The subject was not
introspecting; he was simply emitting a continuous stream of verbal be-
havior while solving the problem. Our task is to find a model of the human
problem-solver that explains the salient features of this stream of behavior.
This stream contains not only the subject's extemporaneous comments,
but also his commands to the experimenter, which determine whether he
solves the problem or not.

Although this way of viewing the behavior answers the questions stated
above, it raises some of its own. How is one to deal with such variable
behavior? Isn't language behavior considered among the most complex
human behavior? How does one make reliable inferences from a single
sample of data on a single subject?

The answers to these questions rest upon the recent, striking ad-
vances that have been made in computers, computer programming
and artificial intelligence. We have learned that a computer is a general
manipulator of symbols—not just a manipulator of numbers. Basically, a
computer is a transformer of patterns. By suitable devices, most notably
its addressing logic, these patterns can be given all the essential charac-
teristics of linguistic symbols. They can be copied and formed into expres-
sions. We have known this abstractly since Turing's work in the mid-
thirties, but it is only recently that computers have become powerful
enough to let us actually explore the capabilities of complex symbol
manipulating systems.

For our purpose here, the most important branch of these explorations
is the attempt to construct programs that solve tasks requiring intelligence.
Considerable success has already been attained (Gelernter, 19596; Kilburn
et al., 1959; Minsky, 1961a; Newell, Shaw, and Simon, 1957a, 19586;
Samuel, 1959a; Tonge, 1960). These accomplishments form a body of
ideas and techniques that allow a new approach to the building of psycho-
logical theories. (Much of the work on artificial intelligence, especially
our own, has been partly motivated by concern for psychology; hence,
the resulting rapprochement is not entirely coincidental.)

We may then conceive of an intelligent program that manipulates sym-
bols in the same way that our subject does—by taking as inputs the sym-
bolic logic expressions, and producing as ouputs a sequence of rule appli-
cations that coincides with the subject's. If we observed this program in
operation, it would be considering various rules and evaluating various
expressions, the same sorts of things we see expressed in the protocol of
the subject. If the fit of such a program were close enough to the overt
behavior of our human subject—i.e., to the protocol—then it would con-
stitute a good theory of the subject's problem-solving.

Conceptually the matter is perfectly straightforward. A program pre-
scribes in abstract terms (expressed in some programming language) how

284 SIMULATION OF COGNITIVE PROCESSES

a set of symbols in a memory is to be transformed through time. It is
completely analogous to a set of difference equations that prescribes the
transformation of a set of numbers through time. Given enough informa-
tion about an individual, a program could be written that would describe
the symbolic behavior of that individual. Each individual would be de-
scribed by a different program, and those aspects of human problem-
solving that are not idiosyncratic would emerge as the common structure
and contentof the programs of many individuals.

But is it possible to write programs that do the kinds of manipulation
that humans do? Given a specific protocol, such as the one of Fig. 2, is it
possible to induct the program of the subject? How well does a program
fit the data? The remainder of the report will be devoted to answering
some of these questions by means of the single example already presented.
We will consider only how GPS behaves on the first part of the problem,
and we will compare it in detail with the subject's behavior as revealed
in the protocol. This will shed considerable light on how far we can con-
sider programs as theoriesof human problem-solving.

The GPS Program

We will only briefly recapitulate the GPS program, since our descrip-
tion will add little to what has already been published (Newell, Shaw, and
Simon, 1959a, 1960a). GPS deals with a task environment consisting of
objects which can be transformed by various operators; it detects differ-
ences between objects; and it organizes the information about the task
environment into goals. Each goal is a collection of information that de-
fines what constitutes goal attainment, makes available the various kinds
of information relevant to attaining the goal, and relates the information
to other goals. There are three types of goals:

Transform object A into object B,
Reduce differenceD between objectA and object B,
Apply operator Q to object A.

For the task of symbolic logic, the objects are logic expressions; the op-
erators are the twelve rules (actually the specific variants of them); and
the differences are expressions like "change connective" or "add a term."
Thus the objects and operators are given by the task; whereas the differ-
ences are something GPS brings to the problem. They represent the ways
of relatingoperators to their respective effects upon objects.

Basically, the GPS program is a way of achieving a goal by setting up
subgoals whose attainment leads to the attainment of the initial goal. GPS
has various schemes, called methods, for doing this. Three crucial meth-
ods are presented in Fig 3. one method associated with each goal type-

x means somevariant of the rule is relevant. GPS will pick the appropriate variant.
Figure 3. Methods for GPS.

» I

GPS,

A PROGRAM THAT SIMULATES HUMAN THOUGHT 285
Thus, to transform an object A into an object B, the objects are first
matched—put into correspondence and compared element by element.
If the match reveals a difference, D, between the two objects, then a sub-
goal is set up to reduce this difference. If this subgoal is attained, a new
object, A', is produced which (hopefully) no longer has the difference
D when compared with object B. Then a new subgoal is created to trans-
form A' into B. If the transformation succeeds, the entire goal has been
attained in two steps: from A to A' and from A' toB.

If the goal is to reduce the difference between two objects, the first stepis to find an operator that is relevant to this difference. Relevance here

Gool : Transform object A into object B
Mot,Cohf^oß _2_* SubQoal: _A^ Subgool:
difference D Reduce D Transform A' into B

success
Success

fail

none Ifail
FailSuccess Fail

Goal: Reduce difference D between object A and object B
Search for operator Q Q Test if feasible

yes

relevant to reducing D *" (preliminary)
Inone

Fail
no

Gool: Apply operator Qto object A

Success

For thelogic task ofthe text :
Feasibility test (preliminary) :

Is the mean connective the same ? (e.g., A-B — B fails against PvQ)
Is the operator too big ? (e.g., (Avß)-(AvC) — Av(B-C) foils against P-Q)
Is the operator too easy ? (e.g., A-—A-A applies to anything)
Are the side conditions satisfied ? (e.g., R8 applies only to main expressions)

Table of connections R1 R2 R3 R4 R5 R6 R7 R8 R9RIORIIRI2
Add terms
Delete terms
Change connective
Change sign
Change lower sign
Change grouping
Change position

Subgoal : a/Apply Q to A "-Success
producing A'

[fail

X

~ p

286 SIMULATION OF COGNITIVE PROCESSES

means that the operator affects objects with respect to the difference.
Operationally,relevance can be determined by applying the matching proc-
ess already used to the input and output forms of the operators, due
account being taken of variables. The results can be summarized in a
table of connections, as shown in Fig. 3, which lists for each difference
the operators that are relevant to it. This table also lists the differences
that GPS recognizes. [This set is somewhat different from the one given
in Newell, Shaw, and Simon (1959a); it corresponds to the program we
will deal with in this report.] If a relevant operator, Q, is found, it is sub-
jectedto a preliminary test of feasibility, one version of which is given in
Fig. 3. If the operator passes this test, a subgoal is set up to apply the
operator to the object. If the operator is successfully applied, a new object,
A', is produced which is a modification of the original one in the direction
of reducing the difference. (Of course, other modifications may also have
occurred which nullify the usefulness of the new object.)

If the goal is to apply an operator, the first step is to see if the conditions
of the operator are satisfied. The preliminary test above by no means guar-
antees this. If the conditions are satisfied, then the output, A, can be gen-
erated. If the conditions are not satisfied, then some difference, D, has
been detected and a subgoal is created to reduce this difference, just as
with the transform goal. Similarly, if a modified object, A', is obtained, a
new subgoal is formed to try to apply the operator to this new object.

These methods form a recursive system that generates a tree of sub-
goals in attempting to attain a given goal. For every new difficulty that is
encountered a new subgoal is created to overcome this difficulty. GPS has
a number of tests it applies to keep the expansion of this goal tree from
proceeding in unprofitable directions. The most important of these is a
test which is applied to new subgoals for reducing differences. GPS con-
tains an ordering of the differences, so that some differences are considered
easier than others. This ordering is given by the table of connections in
Fig. 3, which lists the most difficult differences first. GPS will not try a
subgoal if it is harder than one of its supergoals. It will also not try a
goal if it follows an easier goal. That is, GPS insists on working on the
hard differences first and expects to find easier ones as it goes along. The
other tests that GPS applies involve external limits (e.g., a limit on the
total depth of a goal tree it will tolerate) and whether new objects or
goals are identical to ones already generated.

GPS on the Problem

The description we have just given is adequate to verify the reasonable-
ness, although not the detail, of a trace of GPS's behavior on a specific
problem. (In particular we have not described how the two-line rules, RIO

I I

GPS,

A PROGRAM THAT SIMULATES HUMAN THOUGHT 287
through Rl2, are handled, since they do not enter into the protocol we
are examining.) In Fig. 4, we give the trace on the initial part of problem
DI. Indentation is used to indicate the relation of a subgoal to a goal.
Although the methods are not shown, they can clearly be inferred from the
goals that occur.

The initial problem is to transform LI into LO. Matching LI to LO
reveals that there are R's in LI and no R's in LO. This difference leads to
the formulation of a reduce goal, which for readability has been given
its functional name, Delete. The attempt to reach this goal leads to a
search for rules which finds rule 8. Since there are two forms of rule 8,
both of which are admissible, GPS chooses the first. (Variants of rules are
not indicated, but can be inferred easily from the trace.) Since rule 8 is

GOAL 1

TRANSFORM

LI

INTO LOGOAL

2 DELETE R

FROM

LI

GOAL

3 APPLY R8

TO

LI

GOAL 4 TRANSFORM L 2

INTO LOGOAL

5 ADD Q

TO

L 2

REJECTGOAL

2

GOAL

6 APPLY R8

TO

LI

PRODUCES

L 3~RoQ

GOAL

7

TRANSFORM

L 3

INTO LOGOAL

8 ADD P

TO

L 3

REJECT

GOAL 2

GOAL

9 APPLY R7

TO

LI
GOAL 10

CHANGE CONNECTIVE

TOVIN LEFT LI

GOAL

11 APPLY R6

TO

LEFT LI

PRODUCES

L 4(~R V ~P) " (~R=>Q)

GOAL

12 APPLY R7

TO

L4

GOAL

13

CHANGE CONNECTIVE TO

V IN RIGHT L4
GOAL 14 APPLY R6

TO RIGHT

L 4

PRODUCES

L 5(~R V ~P) " (R V Q)

GOAL

15 APPLY R7

TO-

L5

GOAL

16

CHANGE SIGN OF

LEFT

RIGHT

L5

GOAL

17 APPLY R6

TO RIGHT

L 5

PRODUCES

L 6<~R V ~P)-(~ R =>Q)

GOAL 18 APPLY R7

TO

L 6

GOAL

19 CHANGE

CONNECTIVE

TO V
IN RIGHT L6

REJECT

GOAL 16
NOTHING

MORE

GOAL 13

NOTHING MOREGOAL

10

NOTHING MORE

Figure 4. Trace of GPS on first part of problem.

LO

~(~Q-P)
LI (R=>~P)-(~R=>Q)

PRODUCES

L 2R=>~P

288 SIMULATION OF COGNITIVE PROCESSES

applicable, a new object, L2, is produced. Following the method for trans-
form goals, at the next step a new goal has been generated: to transform
L2into LO. This in turn leads to another reduce goal: to restore a Q to
L2. But this goal is rejected by the evaluation, since adding a term is more
difficult than deleting a term. GPS then returns to goal 2 and seeks an-
other rule which will delete terms. This time it finds the other form of
rule 8 and goes through a similar excursion, ending with the rejection of
goal 8.

Returning again to goal 2 to find another rule for deleting terms, GPS
obtains rule 7. It selects the variant (A V B) " (A V C) ->" A V (B " C),
since only this one both decreases terms and has a dot as its main con-
nective. Rule 7 is not immediately applicable; GPS first discovers that
there is a difference of connective in the left subexpression, and then that
there is one in the right subexpression. In both cases it finds and applies
rule 6 to change the connective from horseshoe to wedge, obtaining suc-
cessively L4and L5. But the new expression reveals a difference in sign,
which leads again to rule 6—that is, to the same rule as before, but per-
ceived as accomplishing a different function. Rule 6 produces L6, which
happens to be identical with L4although GPS does not notice the identity
here. This leads, in goal 19, to the difference in connective being rede-
tected; whereupon the goal is finally rejected as representing no progress
over goal 13. Further attempts to find alternative ways to change signs or
connectives fail to yield anything. This ends the episode.

Comparison of the GPS Trace with the Protocol

We now have a highly detailed trace of what GPS did. What can we
find in the subject's protocol that either confirms or refutes the assertion
that this program is a detailed model of the symbol manipulations the
subject is carrying out? What sort of correspondence can we expect? The
program does not provide us with an English language output that can be
put into one-one correspondence with the words of the subject. We have
not even given GPS a goal to "do the task and talk at the same time,"
which would be a necessary reformulation if we were to attempt a cor-
respondence in such detail. On the other hand, the trace, backed up by
our knowledge of how it was generated, does provide a complete record
of all the task content that was considered by GPS, and the order in
which it was taken up. Hence, we should expect to find every feature of
the protocol that concerns the task mirrored in an essential way in the
program trace. The converse is not true, since many things concerning
the task surely occurred without the subject's commenting on them (or
even being aware of them) . Thus, our test of correspondence is one-sided
but exacting.

r

GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT 289
Let us start with the first sentence of the subject's protocol (Fig. 2) :

Well, looking at the left-hand side of the equation, first we want to
eliminate one of the sides by usingrule 8.

We see here a desire to decrease LI or eliminate something from it, and
the selection of rule 8 as the means to do this. This stands in direct
correspondence with goals 1, 2, and 3 of the trace.

Let us skip to the third and fourth sentences:

Now—no,—no, I can't do that because I will be eliminatingeither the
Q or theP in that total expression. I won't do that at first.

We see here a direct expression of the covert application of rule 8, the
subsequent comparison of the resulting expression with LO, and the re-
jection of this course of action because it deletes a letter that is required
in the final expression. It would be hard to find a set of words that ex-
pressed these ideas more clearly. Conversely, if the mechanism of the
program (or something essentially similar to it) were not operating, it
would be hard to explain why the subject uttered the remarks that he did.

One discrepancy is quite clear. The subject handled both forms of rule
8 together, at least as far as his comment is concerned. GPS, on the other
hand, took a separate cycle of consideration for each form. Possibly the
subject followed the program covertly and simply reported the two results
together. However, we would feel that the fit was better if GPS had pro-
ceeded something as follows :

GOAL 2 DELETE- R

FROM

LI

GOAL

3 APPLY R8

TO

LI

GOAL

4

TRANSFORM

L 2

INTO

LO

We will consider further evidence on this point later.
Let us return to the second sentence, which we skipped over:

It appears too complicated to work with first.

Nothing in the program is in simple correspondence with this statement,
though it is easy to imagine some possible explanations. For example,
this could merely be an expression of the matching—of the fact that LI
is such a big expression that the subject cannot absorb all its detail. There
is not enough data locally to determine what part of the trace should
correspond to this statement, so the sentence must stand as an unexplained
element of the subject's behavior.

PRODUCES

L2R=-P

OR

~R =Q

GOAL

5 ADD 0

TO

R=>~P

OR

ADD P

TO

~R=Q

REJECT

T*?

290 SIMULATION OF COGNITIVE PROCESSES

Now let us consider the nextfew sentences of the protocol:

Now I'm looking for a way to get rid of the horseshoe inside the two
brackets that appear on the left and right side of the equation. And 1
don't see it. Yeh, if you apply rule 6 to both sides of the equation,from
thereI'm going to see if I can applyrule 7.

This is in direct correspondence with goals 9 through 14 of the trace.
The comment at the end makes it clear that applying rule 7 is the main
concern and that changing connectives is required in order to accomplish
this. Further, the protocol shows clearly that rule 6 was selected as the
means. All three rule selections provide some confirmation that a prelimi-
nary test for feasibility was made by the subject—as by GPS—in the
reduce goal method. If there was not selection on the main connective,
why wasn't rule 5 selected instead of rule 6? Or why wasn't the
(A ■ B) V (A " C) -* A ■ (B V C) form of rule 7 selected?

However, there is a discrepancy between trace and protocol, for the
subject handles both applications of rule 6 simultaneously, (and appar-
ently was also handling the two differences simultaneously); whereas
GPS handles them sequentially. This is similar to the discrepancy noted
earlier in handling rule 8. Since we now have two examples of parallel
processing, it is likely that there is a real difference on this score. Again,
we would feel better if GPS proceeded somewhat as follows:

GOAL

9 APPLY R7

TO

LI

GOAL

10 CHANGE

CONNECTIVE

TOVIN LEFT LI AND

RIGHT

LI

GOAL

11 APPLY R6

TO

LEFT LI AND

RIGHT

LI

PRODUCES

L 5<~R V ~P) " (R VQ)

A common feature of both these discrepancies is that forming the com-
pound expressions does not complicate the methods in any essential way.
Thus, in the case involving rule 8, the two results stem from the same
input form, and require only the single match. In the case involving rule
7, a single search was made for a rule and the rule applied to both parts
simultaneously, justas if only a single unit was involved.

There are two aspects in which the protocol provides information that
the program is not equipped to explain. First, the subject handled the
application of rule 8 covertly but commanded the experimenter to make
the applications of rule 6 on the board. The version of GPS used here
did not make any distinction between internal and external actions. To
this extent it fails to be an adequate model. The overt-covert distinction
has consequences that run throughout a problem, since expressions on the
blackboard have very different memory characteristics from expressions
generated only in the head. Second, this version of GPS does not simu-
late the search process sufficiently well to provide a correspondent to
"And I don't see it. Yeh, . . .". This requires providing a facsimile of

I
r

GPS,

A PROGRAM THAT SIMULATES HUMAN THOUGHT 291

i

!

the rule sheet, and distinguishing search on the sheet from searches in
the memory.

The nextfew sentences read:
/ can almost applyrule 7, but one R needs a tilde. So I'll have to look
for another rule. I'm going to see if I can change that R to a tilde R.

Again the trace and the protocol agree on the difference that is seen.
They also agree that this difference was not attended to earlier, even
though it was present. Some fine structure of the data also agrees with
the trace. The right-hand R is taken as having the difference (R to ~ R)
rather than the left-hand one, although either is possible. This preference
arises in the program (and presumably in the subject) from the language
habit of working from left to right. It is not without consequences, how-
ever, since it determines whether the subject goes to work on the left sideor the right side of the expression; hence, it can affect the entire course of
events for quite a while. Similarly, in the rule 8 episode the subject appar-
ently worked from left to right and from top to bottom in order to arrive
at "Q or P" rather than "P or Q." This may seem like concern with ex-
cessively detailed features of the protocol, yet those details support the
contention that what is going on inside the human system is quite akin to
the symbol manipulations going on inside GPS.

The nextportion of the protocol is :
As a matter of fact, I should have used rule 6 on only the left-hand
side of the equation.So use 6, but only on the left-hand side.

Here we have a strong departure from the GPS trace, although, curiously
enough, the trace and the protocol end up at the same spot,(~RV~P)-(~RDQ). Both the subject and GPS found rule 6 asthe appropriate one to change signs. At this point GPS simply applied the
rule to the current expression; whereas the subject went back and cor-
rected the previous application. Nothing exists in the program that cor-
responds to this. The most direct explanation is that the application of
rule 6 in the inverse direction is perceived by the subject as undoing the
previous application of rule 6. After following out this line of reasoning,he then takes the simpler (and less foolish-appearing) alternative, whichis to correct the original action.

The final segment of the protocol reads :
Now I'll apply rule 7 as it is expressed. Both—excuse me, excuse me,
it can't be done because of the horseshoe. So—now I'm looking
scanning the rules here for a second, and seeing if I can change the
R to ~R in the second equation, but I don't see any way of doing it.
(Sigh). I'm justsort of lost for a second.

Tr7.

292 SIMULATION OF COGNITIVE PROCESSES

The trace and the protocol are again in good agreement. This is one of
the few self-correcting errors we have encountered. The protocol records
the futile search for additional operators to affect the differences of sign
and connective, always with negative results. The final comment of mild
despair can be interpreted as reflecting the impact of several successive
failures.

Summary of the Fit of the Trace to the Protocol

Let us take stock of the agreements and disagreements between the
trace and the protocol. The program provides a complete explanation of
the subject's task behavior with five exceptions of varying degrees of
seriousness.

There are two aspects in which GPS is unprepared to simulate the sub-
ject's behavior: in distinguishing between the internal and external worlds,
and in an adequate representation of the spaces in which the search for
rules takes place. Both of these are generalized deficiencies that can be
remedied. It will remain to be seen how well GPS can then explain data
about these aspects of behavior.

The subject handles certain sets of items in parallel by using compound
expressions; whereas GPS handles all items one at a time. In the example
examined here, no striking differences in problem solving occur as a result,

but larger discrepancies could arise under other conditions. It is fairly
clear how GPS could be extended to incorporate this feature.

There are two cases in which nothing corresponds in the program to

some clear task-oriented behavior in the protocol. One of these, the early
comment about "complication," seems to be mostly a case of insufficient
information. The program is making numerous comparisons and evalua-
tions which could give rise to comments of the type in question. Thus this
error does not seem too serious. The other case, involving the "should
have . . ." passage, does seem serious. It clearly implies a mechanism
(maybe a whole set of them) that is not in GPS. Adding the mechanism
required to handle this one passage could significantly increase the total
capabilities of the program. For example, there might be no reasonable
way to accomplish this except to provide GPS with a little continuous
hindsight about its past actions.

An additional general caution must be suggested. The quantity of data
is not large considering the size and complexity of the program. This
implies that there are many degrees of freedom available to fit the pro-
gram to the data. More important, we have no good way to assess how
many relevant degrees of freedom a program possesses, and thus to know
how easy it is to fit alternative programs. All we do know is that numer-
ous minor modifications could certainly be made, but that no one has

■*

r

I

GPS,

A PROGRAM THAT SIMULATES HUMAN THOUGHT 293
proposed any major alternative theories that provide anything like a
comparably detailed explanation of human problem-solving data.

It would help if we knew something of how idiosyncratic the programwas. We have discussed it here only in relation to one sample of data forone subject. We know enough about subjects on logic problems to assertthat the same mechanisms show up repeatedly, but we cannot discussthese data here in detail. In addition, several recent investigations more
generally support the concept of information processing theories of humanthinking (Bruner et al., 1956; Feigenbaum, 1961a; Feldman, 1961a;Hovland and Hunt, 1960; Miller et al., 1960).

Conclusion

We have been concerned in this report with showing that the techniquesthat have emerged for constructing sophisticated problem-solving pro-grams also provide us with new, strong tools for constructing theories ofhuman thinking. They allow us to merge the rigor and objectivity asso-
ciated with Behaviorism with the wealth of data and complex behavior
associated with the Gestalt movement. To this end their key feature is notthat they provide a general framework for understanding problem-solving
behavior (although they do that, too), but that they finally reveal with
great clarity that the free behavior of a reasonably intelligent human canbe understood as the product of a complex but finite and determinate setof laws. Although we know this only for small fragments of behavior, thedepth of theexplanation is striking.

V

I

section 2

Verbal Learning
and Concept Learning

One of the principal topics in the study of human thinking has been
learning—the process by which behavior is modified over time. Human
learning has been studied in an experimental situation in which the
subject is presented with a pair of items, one of which is called a
stimulus and the other a response. After seeing a list of such pairs,
the subject is presented with only the stimulus member of a pair and
asked to reply with the response member of the pair. After his reply,
the correct response is indicated. A large number of variations of this
basic experiment have been explored in an effort to study the learn-
ing process.

In a popular verbal learning experiment, both the stimulus and the
response are unique, three-letter nonsense syllables. To study learn-
ing in this experiment, investigators have varied the number of non-
sense syllables to be learned, the degree of similarity between the
syllables, the number and order of lists learned in a given experiment,
the speed of presentation of the material, and other aspects of the
experimental situation. The experimenters have been interested in
the effect of these variations on the length of time and the number
of repetitions required to learn a list, the number of errors made, and
the ability to retain the list. In his model of verbal learning behavior,
Feigenbaum offers a model of the information processing activity
underlying human discrimination and association learning. His model
accounts for many of the phenomena observed in these experiments.
The basic processes of the model create a network of tests, or dis-

T?

296 SIMULATION OF COGNITIVE PROCESSES

criminators, which distinguish items from each other. Other processes
store associative cues which link stimuli with responses.

In a typical concept learning experiment, the subject is also pre-
sented with a series of stimuli and a series of associated responses.
The stimuli may be geometric figures, nonsense syllables, numbers,
etc. There are usually only two responses, e.g., "yes" or "no," and
these responses are associated with certain characteristics of the stim-
uli. While the principal task in the standard verbal learning experi-
ment is to distinguish each stimulus so that the appropriate response
may be associated with it, the principal task in the concept learning
experiment is to find what each class of stimuli has in common with
the other classes. To test his understanding of the concept, the sub-
ject may be asked to state the concept and/or produce the appro-
priate response to some additional stimuli. As in the verbal learning
experiments, a large number of variations of this basic concept
learning experimenthavebeen conducted.

In the second article in this section, Hunt and Hovland present
an information processing model which is consistent with many of the
phenomena observed in these experiments.

Learning is of interest not only to psychologists studying human
behavior but also to artificial intelligence researchers interested in
improving the performance of computer programs. The interested
reader is referred to the discussion of Minsky (pages 425 to 435), to
Samuel's description of his work on learning with his checkers
program (pages 71 to 105), and to the report of Newell, Shaw, and
Simon on the Logic Theorist (pages 109 to 133). Feigenbaum and
Simon (19616) have discussed some of the implications for artificial
intelligence of the verbal learning model described in this section.
Hunt (1962) has constructed some other models of concept forma-
tion which are relevant to artificial intelligence.

Edward Feigenbaum is a member of the faculty of the School of
Business Administration, University of California at Berkeley.

E. B. Hunt is a lecturer in psychology, University of Sydney,
Sydney, Australia.

The late C. I. Hovland was Sterling Professor of Psychology at
Yale University.

r i

THE SIMULATION OF
VERBAL LEARNING BEHAVIOR

Edward A . Feigenbaum

The purpose of this report is to describe in detail an information
Processing model of elementary human symbolic learning processes. This
model is realized by a computer program called the Elementary Per-
ceiver and Memorizer (EPAM).

The EPAM program is the precise statement of an information proc-
essing theory of verbal learning that provides an alternative to other verbal
learning theories which have been proposed.1 It is the result of an attempt
to state quite precisely a parsimonious and plausible mechanism suf-
ficient to account for the rote learning of nonsense syllables. The critical
evaluation of EPAM must ultimately depend not upon the interest which
it may have as a learning machine, but upon its ability to explain and
Predict thephenomena of verbal learning.

I should like to preface my discussion of the simulation of verbal
learning with some brief remarks about the class of information processing
models of which EPAM is a member.

a. These are models of mental processes, not brain hardware. They
are psychological models of mental function. No physiological or neuro-
logical assumptions are made, nor is any attempt made to explain infor-
mation processes in terms ofmore elementary neural processes.

b. These models conceive of the brain as an information processor
with sense organs as input channels, effector organs as output devices,
and with internal programs for testing, comparing, analyzing, rearranging,
and storing information.

1 Examples of quantitative (or quasi-quantitative) theories of verbal learning are
those of Hull et al. (1940),

Gibson,

(1940), and Atkinson (1954).

297

■*'

298 SIMULATION OF COGNITIVE PROCESSES

c. The central processing mechanism is assumed to be serial; i.e., cap-
able of doing only one (or a very few) things at a time.

d. These models use as a basic unit the information symbol; i.e., a
pattern of bits which is assumed to be the brain's internal representation
of environmental data.

c. These models are essentially deterministic, not probabilistic. Random
variables play no fundamental role in them.

The Basic Experiment

Early in the history of psychology, the psychologist invented an experi-
ment to simplify the study of human verbal learning. This "simple" ex-
periment is the rote memorization of nonsense syllables in associate pairs
or serial lists.

The items to be memorized are generally three-letter words having con-
sonant letters on each end and a vowel in the middle. Nonsense syllables are
chosen in such a way that the three-letter combinations have no ordinary
English meaning. For example, CAT is not a nonsense syllable, but XUM
is.2

In one basic variation, the rote memory experiment is performed as
follows :

a. A set of nonsense syllables is chosen and the syllables are paired,
making, let us say, 12 pairs.

b. A subject is seated in front of a viewing apparatus and the syllables
are shown to him, one pair at a time.

c. First, the left-hand member of the pair (stimulus item) is shown.
The subject tries to say the second member of the pair (response item).

d. After a short interval, the response item is exposed so that both
stimulus andresponse items are simultaneously in view.

c. After a few seconds, the cycle repeats itself with a new pair of
syllables. This continues until all pairs have been presented (a trial).

f. Trials are repeated, usually until the subject is able to give the cor-
rect response to each stimulus. There is a relatively short time interval
between trials.

g. For successive trials the syllables are reordered randomly. This
style of carrying out the experiment is called paired-associates presen-
tation.

The other basic variant of the experiment is called serial-anticipation
presentation. The nonsense syllables (say, 10 or 12 items) are arranged

2 People will defy an experimenter's most rigorous attempt to keep the nonsense
syllables association-free. Lists of nonsense syllables have been prepared, ordering
syllables on the basis of their so-called "association value," in order to permit the
experimenter to control "meaningfulness."

I

SIMULATION OF VERBAL LEARNING BEHAVIOR 299
in a serial list, the order of which is not changed on successive trials.
When he is shown the nth syllable, the subject is to respond with the
(n-f- l)st syllable. A few seconds later, the (ra + l)st syllable is shown
and the subject is to respond with the (n + 2)d syllable, and so on. The
experiment terminates when the subject is able to correctly anticipate all of
the syllables.

Numerous variations on this experimental theme have been performed. 3

The phenomena of rote learning are well studied, stable, and reproducible.
For example, in the typical behavioral output of a subject, one finds:

a. Failures to respond to a stimulus are more numerous than overt
errors.

b. Overt errors are generally attributable to confusion by the subject
between similar stimuli or similar responses.

c. Associations which are given correctly over a number of trials some-
times are then forgotten, only to reappear and later disappear again.
This phenomenonhas been called oscillation. 4

d. If a list x of syllables or syllable pairs is learned to the criterion;
then a list y is similarly learned; and finally retention of list x is tested;
the subject's ability to give the correct xresponses is degraded by the inter-
polated learning. The degradation is called retroactive inhibition. The overt
errors made in the retest trial are generally intrusions from the list y. The
phenomenon disappears rapidly. Usually after the first retest trial, list
xhas been relearned back to criterion.

c. As one makes the stimulus syllables more and more similar, learning
takes more trials.

The Information ProcessingModel

This section describes theprocesses and structures of EPAM.
EPAM is not a model for a particular subject. In this respect it is tobe

contrasted with the binary choice models

,of

particular subjects which
Feldman describes (1961a). The fact is that individual differences play
only a small part in the results of the basic experiment described above.

It is asserted that there are certain elementary information processes
which an individual must perform if he is to discriminate, memorize and
associate verbal items, and that these information processes participate
in all the cognitive activity of all individuals., 6

It is clear that EPAM does not yet embody a complete set of such
'For an extended treatment of this subject, see Hovland, Human Learning and

Retention in Stevens (1951).
"By Hull (1935). Actually he called it "oscillation at the threshold of recall,"

reflecting his theoreticalpoint of view.
'Some information processing models are conceived as models of the mental

~..F ..

>s

300 SIMULATION OF COGNITIVE PROCESSES

Raw stimulus

Response output

Figure 1. EPAM perform-
ance process for producing
the response associated
with a stimulus.

processes. It is equally clear that the processes
EPAM has now are essential and basic.

OVERVIEW: PERFORMANCE AND LEARNING

Conceptually, EPAM can be broken down into
two subsystems, a performance system and a
learning system. In the performance mode,
EPAM produces responses to stimulus items. In
the learning mode, EPAM learns to discriminate
and associate items.

The performance system is the simpler of the
two. It is sketched in Fig. 1. When a stimulus
is noticed, a perceptual process encodes it,
producing an internal representation (an input
code). A discriminator sorts the input code in
a discrimination net (a tree of tests and
branches) to find a stored image of the stimulus.
A response cue associated with the image is
found, and fed to the discriminator. The dis-
criminator sorts the cue in the net and finds the
response image, the stored form of the response.
The response image is then decoded by a re-
sponse generator letter by letter in another dis-
crimination net into a form suitable for output.
The response is then produced as output.

The processes of the learning system are
more complex. The discrimination learning process builds discriminations
by growing the net of tests and branches. The association process builds
associations between images by storing response cues with stimulus images.
Theseprocesses will be describedfully in duecourse.

function of particular subjects; e.g., Feldman's Binary Choice Model (1959). Others
treat the general subject as EPAM does. Still others are mixed in conception, assert-
ing that certain of the processes of the model are common for all subjects while
other processes may vary from subject to subject; e.g., the General Problem Solver
of Newell,

Shaw,

and Simon (1959a). Alternatively, information processing models
may also be categorized according to how much of the processing is "hard core'
(i.e., necessary and invariant) as opposed to "strategic" (i.e., the result of strategy
choice by control processes). I suggest the obvious: that models of strategies for in-
formation processing will tend to be models of particular subjects. As exemplars,
Lindsay's Reading Machine (1960), a "hard-core" model, treats the general subject;
Wickelgren's model of the conservative focusing strategy in concept attainment
(Wickelgren, 1962; Bruner,

Goodnow,

and Austin, 1956), a pure strategy model, can
predict only thebehaviorof particular subjects.

t

301SIMULATION OF VERBAL LEARNING BEHAVIOR

The succeeding sections on the information processing model give a
detailed description of the processes and structures of both systems.

INPUT TO EPAM: INTERNAL REPRESENTATIONS OF EXTERNAL DATA

The following are the assumptions about the symbolic input process when
a nonsense syllable is presented to the learner. A perceptual system receives
the raw external information and codes it into internal symbols. These in-
ternal symbols contain descriptive information about features of external
stimuli. For unfamiliar 3-letter nonsense symbols, it is assumed that the
coding is done in terms of the individual letters, for these letters are
familiar and are well-learned units for the adult subject.6 The end re-
sult of the perception process is an internal representation of the non-
sense syllable—a list of internal symbols (i.e., a list of lists of bits) con-
taining descriptive information about the letters of the nonsense syllable.
Using Minsky's terminology (1961a), this is the "character" of the non-
sense syllable.

I have not actually programmed this perception process. For purposes
of this simulation, I have assigned coded representations for the various
letters of the alphabet based on 15 different geometrical features of
letters. For purposes of exploring and testing the model, at present all that
is really needed of the inputcodes is:

a. that the dimensions of a letter code be related in some reasonable
way to features of real letters.

b. that the letter codes be highly redundant, that is, include many more
dimensions than is necessary to discriminate the letters of the alphabet.

To summarize, the internal representation of a nonsense syllable is a list
of lists of bits, each sublist of bits being a highly redundant code for a
letter of the syllable.

Given a sequence of such inputs, the essence of the learner's problem is
twofold: first, to discriminate each code from the others already learned,
so that differential response can be made; second, to associate information
about a "response" syllable with the information about a "stimulus" syl-
lable so that the response can be retrieved if the stimulus is presented.

DISCRIMINATING AND MEMORIZING: GROWING TREES OF IMAGES

I shall deal with structure first and reserve my discussion of process for a
moment.
Discrimination Net. The primary information structure in EPAM is the

'The basic perception mechanism I have in mind is much the same as that of
Selfridge (1955) and Dinneen (1955), whose computer programscanned letters and
Perceived simple topological features of these letters.

77

302 SIMULATION OF COGNITIVE PROCESSES

discrimination net. It embodies in its structure at any moment all of the
discrimination learning that has taken place up to a given time. As an
information structure it is no more than a familiar friend: a sorting tree
or decoding network. Figure 2 shows a small net. At the terminals of the
net are lists called image lists, in which symbolic information can be stored.
At the nodes of the net are stored programs, called tests, which examine
characteristics of an input code and signal branch left or branch right. On
each image list will be found a list of symbols called the image. An image
is a partial or total copy of an input code. I shall use these names in the
following description of net processes.
Net Interpreter. The discrimination net is examined and altered by a num-
ber of processes, most important of which is the net interpreter. The net
interpreter sorts an input code in the net and produces the image list as-
sociated with that input code. This retrieval process is the essence of a
purely associative memory: the stimulus information itself leads to the
retrieval of the information associated with that stimulus. The net inter-
preter is a very simple process. It finds the test in the topmost node
of the tree and executes this program. The resulting signal tells it to
branch left or branch right to find the succeeding test. It executes this,
tests its branches again, and repeats the cycle until a terminal is found.
The name of the image list is produced, and the process terminates. This
is the discriminator of the performance system which sorts items in a static
net.
Discrimination Learning. The discrimination learning process of the learn-

(Jj - Discriminating test at a node
T~] = Image at a terminal

| I,C | = Image and cue. at a terminal
| | = Empty terminal

Figure 2. A Typical EPAM discrim-
ination net.

ing system grows the net. Initially we
give the learning system no discrimina-
tion net but only a set of simple proc-
esses for growing nets and storing new
images at the terminals.

To understand how the discrimina-
tion and memorization processes work,
let us examine in detail a concrete ex-
ample from the learning of nonsense
syllables. Suppose that the first stimulus-
response associate pair on a list has
been learned. (Ignore for the moment
the question of how the association link
is actually formed.) Suppose that the
first syllable pair was DAX-JIR. The
discrimination net at this point has the
simple two-branch structure shown in
Fig. 3. Because the syllables differ in
their first letter, Test 1 will probably be

r

303

SIMULATION OF

VERBAL LEARNING BEHAVIOR

a test of some characteristic on which the letters stimulus Response
D and J differ. No more tests are necessary at DAK /" *\ JIR...... Testl)thispoint. X_X

Notice that the image of JIR which is stored Z_. ,-SZ
is a full image. Full response images must be I 1 I
stored—to provide the information for produc- Figure 3. Discrimination
ing the response; but only partial stimulus net after the learning of
images need be stored—to provide the informa- the first two items- Cues

tion for recognizing the stimulus. How much are not shown Condition:... . . , n° redundant tests added,
stimulus image information is required the Test tis a flrst.letter test.
learning system determines for itself as it grows
its discrimination net, and makes errors which it diagnoses as inadequate
discrimination.

To pursue our simple example, suppose that the next syllable pair
to be learned is PIB-JUK. There are no storage terminals in the net, as it
stands, for the two new items. In other words, the net does not have the
discriminative capability to contain more than two items. The input code
for PIB is sorted by the net interpreter. Assume that Test 1 sorts it down
the plus branch of Fig. 3. As there are differences between the incumbent
image (with first letter D) and the new code (with first letter P) an
attempt to store an image of PIB at this terminal would destroy the in-
formation previously stored there.

Clearly what is needed is the ability to discriminate further. A match for
differences between the incumbent image and the challenging code is per-
formed. When a difference is found, a new test is created to discriminate
upon this difference. The new test is placed in the net at the point of failure
to discriminate, an image of the new item is created, and both images—in-
cumbent and new—are stored in terminals along their appropriate branches
of the new test, and the conflict is resolved. 7 The net as it now stands is
shown in Fig. 4. Test 2 is seen to discriminate on some difference between
the letters P and D.

The input code for JUK is now sorted by the net interpreter. Since Test
' With the processes just described, the discrimination net would be grown each

time a new item was to be added to the memory. But from an informationalprocess-
ing standpoint, the matching and net-growing processes are the most time-consuming
'n the system. In general, with little additional

effort,

more than one difference can
be detected, and more than one discriminating test can be added to the net. Each
redundant test placed in the net gives one "empty" image list. At some future time,
'f an item is sorted to this empty image list, an image can be storedwithout growing
the net. There is a happy medium between small nets which must be grown all the
time and large nets replete with redundant tests and a wasteful surplus of empty
image lists. Experimentation with this "structural parameter" has been done and it
has been found that for this study one or two redundant tests per growth represents
Ac happy medium. However, I would not care to speak of the generality of this
Particular result.

Ty

304 SIMULATION Of COGNITIVE PROCESSES

Figure 4. Discrimination net of Fig. 3
after the learning of stimulus item, PIB
Test 2 is a first-letter test.

3 Figure 5. Discrimination net of Fig. 4
after the learning of the response item,
JUK. Test 3 is a third-letter test.

1 cannot detect the difference between the input codes for JUK and JIR
(under our previous assumption), JUK is sorted to the terminal con-
taining the image of JIR. The match for differences takes place. Of course,
there are no first-letter differences. But there are differences between the
incumbent image and the new code in the second and third letters.
Noticing Order. In which letter should the matching process next scan
for differences? In a serial machine like EPAM, this scanning must take
place in some order. This order need not be arbitrarily determined and
fixed. It can be made variable and adaptive. To this end EPAM has a
noticing order for letters of syllables, which prescribes at any moment a
letter-scanning sequence for the matching process. Because it is observed
that subjects generally consider end letters before middle letters, the
noticing order is initialized as follows: first letter, third letter, second letter.
When a particular letter being scanned yields a difference, this letter
is promoted up one position on the noticing order. Hence, letter positions
relatively rich in differences quickly get priority in the scanning. In our
example, because no first-letter differences were found between the image
of JIR and code for JUK, the third letters are scanned and a difference is
found (between Rand X). A test is created to capitalize on this third-
letter difference and the net is grown as before. The result is shown in Fig.
5. The noticing order is updated; third letter, promoted up one, is at the
head.

Learning of subsequent items proceeds in the same way, and we shall
not pursue the examplefurther.

ASSOCIATING IMAGES: RETRIEVAL USING CUES

The discrimination net and its interpreter associate codes of external
objects with internal image lists and images. But the basic rote learning
experiment requires that stimulus information somehow lead to response
information and a response. The discrimination net concept can be used
for the association of internal images with each other (i.e., response with
stimulus) with very little addition to the basic mechanism.

I

305SIMULATION OF VERBAL LEARNING BEHAVIOR I

An association between a stimulus image and a response image is ac-
complished by storing with the stimulus image some of the coded informa-
tion about the response. This information is called the cue. A cue is of
the same form as an input code, but generally contains far less information
than an input code. A cue to an associated image can be stored in the
discrimination net by the net interpreter to retrieve the associated image.
If, for example, in the net of Fig. 3 we had stored with the stimulus image
the letter J as a cue to the response JIR, then sorting this cue would have
correctly retrieved the response image. An EPAM internal association is
built by storing with the stimulus image information sufficient to re-

trieve the response image from the net at the moment of association.
The association process determines how much information is sufficient

by trial and error. The noticing order for letters is consulted, and the
first-priority letter is added to the cue. The cue is then sorted by the net
interpreter and a response image is produced. It might be the wrong re-
sponse image; for if a test seeks information which the cue does not con-
tain, the interpreter branches left or right randomly (with equal proba-
bilities) at this test.8 During association, the selection of the wrong re-
sponse is immediately detectable (by a matching process) because the
response input code is available. The next-priority letter is added to the
cue and the process repeats until the correct response image is retrieved.
The association is then considered complete.

Note two important possibilities. First, by the process just described, a
cue which is really not adequate to guarantee retrieval of the response
image may by happenstance give the correct response image selection
during association. This "luck" usually gives rise to response errors at a
later time.

Second, suppose that the association building process does its job
thoroughly. The cue which it builds is sufficient to retrieve the response
image at one particular time, the time at which the two items were as-
sociated. If, at some future time, the net is grown to encompass new
images being added to the memory, then a cue which previously was suf-
ficient to correctly retrieve a response image may no longer be sufficient
to retrieve that response image. In EPAM, association links are "dated,"
and ever vulnerable to interruption by further learning. Responses may be
"unlearned" or "forgotten" temporarily, not because the response informa-
tion has been destroyed in the memory, but because the information has
been temporarily lost in a growing network. If an association failure of
this type can be detected through feedback from the environmental or ex-

8 This is the only use of a random variable in EPAM. We do not like it. We use
it only because we have not yet discovered a plausible and satisfying adaptive mecha-
nism for making the decision. The random mechanism does, however, give better
results than the go-one-way-all-the-timemechanism which has alsobeen used.

<t*

306 SIMULATION OF COGNITIVE PROCESSES

perimental situation, then the trouble is easily remedied by adding ad-
ditional response information to the cue. If not, then the response may be
more or less permanently lost in the net. The significanceof this phenom-
enon will perhaps be more easily appreciated in the discussion of results
of theEPAM simulation.

RESPONDING: INTERNAL AND EXTERNAL

A conceptual distinction is made between the process by which EPAM se-
lects an internal response image and the process by which it converts this
image into an output to the environment.
Response Retrieval. A stimulus item is presented. This stimulus input code
is sorted in the discrimination net to retrieve the image list, in which the
cue is found. The cue is sorted in the net to retrieve another image list
containing the proposed response image. If there is no cue, or if on either
sorting pass an empty image list is selected, no response is made.
Response Generation. For purposes of response generation, there is a fixed
discrimination net (decoding net), assumed already learned, which trans-
forms letter codes of internal images into output form. The response image
is decoded letter by letter by the net interpreter in the decoding net for
letters.

THE ORGANIZATION OF THE LEARNING TASK

The learning of nonsense symbols by the processes heretofore described
takes time. EPAM is a serial machine. Therefore, the individual items
must be dealt with in some sequence. This sequence is not arbitrarily
prescribed. It is the result of higher order executive processes whose func-
tion is to control EPAM's focus of attention. These macroprocesses,
as they are called, will not be described or discussed here. A full exposition
of them is available in a paper by Feigenbaum and Simon (1962).

Stating the Model Precisely: Computer Program for EPAM

The EPAM model has been realized as a program in Information Proc-
essing Language V (Newell et al., 1961e) and is currently being run both
on the Berkeley 7090 and the RAND 7090. Descriptive information on the
computer realization, and also the complete IPL-V program and data
structures for EPAM (as it stood in October, 1959) are given in an earlier
work by the author (1959).

IPL-V, a list processing language, was well suited as a language for the
EPAM model for thesekey reasons :

a. The IPL-V basic processes deal explicitly and directly with list
structures. The various information structures in EPAM (e.g., discrimina-

1

'

SIMULATION OF VERBAL LEARNING BEHAVIOR 307
tion net, image list) are handled most easily as list structures. Indeed, the
discrimination is, virtually by definition, a list structure of a simple type.

b. It is useful in some places, and necessary in others, to store with
some symbols information descriptive of these symbols. IPL-V's descrip-
tion list and description list processes are a good answer to this need.

c. The facility with which hierarchies of subroutine control can be
written in IPL-V makes easy and uncomplicated the programming of the
kind of complex control sequence which EPAM uses.

Empirical Explorations with EPAM

The procedure for exploring the behavior of EPAM is straightforward.
We have written an "Experimenter" program and we give to this program
the particular conditions of that experiment as input at the beginning of an
experiment. The Experimenter routine then puts EPAM qua subject
through its paces in that particular experiment. The complete record of
stimuli presented and responses made is printed out, as is the final net. Any
other information about the processing or the state of the EPAM memory
can also be printed out.

A number of simulations of thebasic paired-associate and serial-anticipa-
tion experiments have been run. Simulations of other classical experiments
in the rote learning of nonsense syllables have also been run. The complete
results of these simulation experiments and a comparison between EPAM's
behavior and the reported behavior of human subjects will be the subject
of a later report. However, some brief examples here will give an indica-
tion of results expectedand met.

A. STIMULUS AND RESPONSE GENERALIZATION

These are psychological terms used to describe the following phenomenon.
If X and X' are similar stimuli, and V is the correct response to the
presentation of X; then if V is given in response to the presentation of X',
this is called stimulus generalization. Likewise, if V and V' are similar
responses, and V' is given in response to the presentation of X, this is
called response generalization. Generalization is common to the behavior
of all subjects, and is found in the behavior of EPAM. It is a consequence
of the responding process and the structure of the discrimination net. For
those "stimuli" are similar in the EPAM memory whose input codes are
sorted to the same terminal; and one "response" is similar to another if
the one is stored in the same local area of the net as the other (and hence
response error may occur when response cue information is insufficient).

B. OSCILLATION AND RETROACTIVE INHIBITION

We have described these phenomena in an earlier section.
Oscillation and retroactive inhibition appear in EPAM's behavior as

■■*

308 SIMULATION OF COGNITIVE PROCESSES

consequences of simple mechanisms for discrimination, discrimination
learning, and association. They were in no sense "designed into" the be-
havior. The appearance of rather complex phenomena such as these gives
one a little more confidence in the credibility of the basic assumptions of
the model.

These two phenomena are discussed together here because in EPAM
they have the same origin. As items are learned over time, the discrimina-
tion net grows to encompass the new alternatives. Growing the net means
adding new tests, which in turn means that more information will be ex-
amined in all objects being sorted. An important class of sorted objects is
the set of cues. Cue information sufficient at one moment for a firm
association may be insufficient at a later moment. As described above, this
may lead to response failure. The failure is caused entirely by the ordinary
process of learning new items. In the case of oscillation, the new items are
items within a single list being learned. In the case of retroactive inhibi-
tion, the new items are items of the second list being learned in the same
discrimination net. In both cases the reason for the response failure is the
same. According to this explanation, the phenomena are first cousins (a
hypothesis which has not been widely considered by psychologists).

In the EPAM model, the term interference is no longer merely descrip-
tive—it has a precise and operational meaning. The process by which later
learning interferes with earlier learning is completely specified.

C. FORGETTING

The usual explanations of forgetting use in one way or another the simple
and appealing idea that stored information is physically destroyed in the
brain over time (e.g., the decay of a "memory trace," or the overwriting of
old information by new information, as in a computer memory). Such
explanations have never dealt adequately with the commonplace observa-
tion that all of us can remember, under certain conditions, detailed and
seemingly unimportant information after very long time periods have
elapsed. An alternative explanation, not so easily visualized, is that for-
getting occurs not because of information destruction but because learned
material gets lost and inaccessible in a large and growing association
network.

EPAM forgets seemingly well-learned responses. This forgetting occurs
as a direct consequence of later learning by the learning processes. Further-
more, forgetting is only temporary: lost associations can be reconstructed
by storing more cue information. EPAM provides a mechanism for ex-
plaining the forgetting phenomenon in the absence of any information loss.
As far as we know, it is the first concrete demonstration of this type of
forgetting in a learning machine.

r

SIMULATION OF VERBAL LEARNING BEHAVIOR 309
Conclusion: A Look Ahead

Verification of an information processing theory is obtained by simulat-
ing many different experiments and by comparing in detail specific qualita-
tive and quantitative features of real behavior with the behavior of the
simulation. To date, H. A. Simon and I have run a number of simulated
experiments. As we explore verbal learning

further,

more of these will be
necessary.

We have been experimenting with a variety of "sense modes" for EPAM,
corresponding to "visual" input and "written" output, "auditory" input
and "oral" output, "muscular" inputs and outputs. To each mode cor-
responds a perceptual input coding scheme, and a discrimination net.
Associations across nets, as well as the familiar associations within nets,
are now possible. Internal transformations between representations in dif-ferent modes are possible. Thus, EPAM can "sound" in the "mind's ear"
what it "sees" in the "mind's eye," just as all of us do so easily. We have
been teaching EPAM to read by association, much as one teaches a small
child beginning reading. We have only begun to explore this new addition.

The EPAM model has pointed up a failure shared by all existing theories
of rote learning (including the present EPAM). It is the problem of
whether association takes place between symbols or between tokens of
these symbols. For example, EPAM cannot learn a serial list in which the
same item occurs twice. It cannot distinguish between the first and second
occurrence of the item. To resolve the problem we have formulated (and
are testing) processes for building, storing, and responding from chains
of token associations (Feigenbaum and Simon, 1962).

■<*.

PROGRAMMING A MODEL OF
HUMAN CONCEPT FORMULATION

Earl B. Hunt& Carl I. Hovland

What is a concept? Ordinarily usage is not precise. The English "the
concept of force," "the concept of massive retaliation," and "concept of
dogs" are all permissible. Church (1956) has offered a definition which
has been accepted, implicitly, by psychologists who perform "concept
learning" experiments. Church's argument is that any given symbol (or

name) can be attached to the members of a set of objects. For any arbitrary
object there exists a rule concerning the description of the object, a rule
which can be used to decide whether or not the object is a member of the
set of objects to which the name applies. The decision rule is the concept
of the name, the set of objects is the denotation of the name.

In a typical concept learning experiment the subject is confronted with
a series of stimuli which are given a particular name and another series of
stimuli which are either given another particular name, or a series of dif-
ferent names. Thus the first set might be called "dogs" and the second
either "not-dogs" or "cats, wolves, sheep, etc." Thus some routines are
necessary to classify the instances to correspond to the names assigned by
the experimenter. These are our ordering routines. Sometimes the various
stimuli given one name have certain common characteristics, e.g., all the
positive instances may have three triangles. At other times there are no
common relating elements, but there are common relationships, e.g. all
the positive instances may have the same size of upper figure as lower
figure, although the figures may be large, medium or small sized in each
row. A machine routine may be required to describe relations between
basic stimulus elements. So we must have description routines in a simula-
tion. Finally, different types of stimulus sets may be organized differently in

310

I

j
PROGRAMMING A MODEL OF CONCEPT FORMULATION 311

terms of different types of logical connectives. Sometimes the concept in-
volves the joint presence of two or more characteristics. Such concepts are
referred to as conjunctive concepts (e.g., large red figure). Other concepts
involve the presence of different subsets of characteristics. These are dis-
junctive concepts, e.g., red or large figures. Different ways of defining the
form of an answer are provided by a set of solution routines.

The program must be capable of simulating a variety of conditions
under which experiments have been performed. As illustrations of some of
the variations, or manipulations, which must be simulated the following
may be mentioned.

The number and complexity of the stimuli may vary from study to study.
The speed of presentation of new stimuli can be altered. The instances
may be left in view or the subject may be forced to rely on his memory.
Different concept learning problems can be compared along such dimen-
sions as: logical complexity of the correct answer, number of relevant vs.
number of irrelevant dimensions, order of presentation of problems of dif-
ferent types, and presentation of information by positive or negative
instances.

The subject may make a variety of responses during the experiment.
Subjects may describe, verbally, their intermediate and final hypotheses
concerning the characteristics of the concept. These responses may give
us clues as to the nature of the individual's information processing pro-
cedures. As such, they constitute accessory measures used in our simula-
tion studies. The time taken to develop an answer under various experi-
mental conditions is also a useful response measure. The errors that
subjects make in subsequent identifications of stimulus names can be
analyzed. The more objective records are to be preferred, and our major
§oal is to predict these by computer simulation.

In order to develop a theoretical explanation of concept learning we
nave accepted the "black box" analogy. We have attempted to write a
computer program which, when given as input coded representations of
the stimuli, will give as output coded responses- that can be used to predict
the responses of a human subject. Accurate prediction of the responses,
not the development of a good hypothesis developer, nor, solely, the re-
Production of previously obtained protocols, is our goal. We are not con-
cerned with the processes specific to the task of categorizing geometric
Patterns. These are used as stimuli because they are convenient and because
tfley represent stimuli which can be described in terms of previously
discriminated stimuli. Hopefullywe shall be able to make conclusions about
concept learning processes irrespective of the particular form of the stimuli.

Reports of our psychological experimental work have been, and are
°eing, made in separate publications. This report will be concerned with
tne programming details of our concept learning model. This model has

1*

312 SIMULATION OF COGNITIVE PROCESSES

been completed, debugged, and used to simulate several experiments.
After describing the model we shall indicate the result of some simulations
and discuss the modifications of the model which have been indicated.

The concept learning program is a list processing language program
written for the IBM 709-7090 data processing systems. The original
programs were written in Information Processing Language V (IPL-V),
the interpreter list processing language developed by Newell, Shaw, and
Simon (Newell, 1961e). Partly for local administrative reasons, we are in
the process of converting our programs to LISP, a list processing language
developed by McCarthy (1960). We do not have sufficient experience
with LISP to compare the two languages for our type of problem. As the
basic logic of the LISP and IPL-V programs are the same, no distinction
willbe made between them.

Description of the Program

The program consists of two blocks of data, specified by the programmer
at the beginning of each run, and five subsystems for data processing. At
the beginning of a simulation the programmer specifies a sequence of
problems, a set of parameters, and a set of lists. The last two represent the
capabilities of the artificial subject. The problem data remains constant
throughout the run, the specifications of the subject may be changed by the
program.

Problems are presented by describing instances, the denotations of
names (classes), and the conditions of presentation to be used. This takes
the form of specification of memory requirements, number of stimuli
presented at a single time, etc. All the conditions used to describe a prob-
lem are specified in the property list of the symbol naming the problem.

Each instance (i.e., object to be categorized) is represented by a symbol
whose property list specifies the symbol's class membership, and, by a list
of pairs, the dimensions and values which constitute a formal description
of the object. For instance, in our previous example, a large, red triangle
would contain the following pairs on its description list: (class name-
"alpha"), (size-large), (color-red), (shape-triangle). The formal descrip-
tion list constitutes the most molecular information about objects which is

made available to the program. Higher-order, working descriptions based
upon relations between elements of the formal description may be de-
veloped by the program.

Dimensions represent the manner in which objects are free to vary. We
have utilized a "dimensional analysis" of objects which specifies a finite
universe with a built-in structure to describe objects (cf. Hovland, 1952)-
Dimensions are also organized into "dimension sets," or groupings. These

I

PROGRAMMING A MODEL OF CONCEPT FORMULATION 313
groupings represent subsets of the set of all dimensions which will be con-
sidered together during recognition and answer development.

The "subject" specifications fall into two broad categories; numerical
parameters and initial settings used to control the program. They will be
discussed as they enter into the action of the model.

Figure 1 specifies the channels of communications between the various
subsystems in the model. There are two major groups of subsystems. The
first, as indicated in Fig. 1, is the recognition and memory system. Its task
is to acquire information from the formal description of presented instances
and to retain this information for later processing by the answer develop-
ment and checking group.

By examining the property list of the problem, the program determines
the conditions of presentation of stimuli. If these conditions would not
require memorization by a human subject (i.e., if instances are presented
to the subject and left in view) the name of each instance, together with
its entire formal description, is added to internal memory as the instance
is presented. We do not maintain that subjects see all of acomplex instance
at the time it is presented. However, when the conditions of presentation
are such that he can always reexamine the instance we see no reason for
using a special recognition program.

If an instance is shown only once, and then removed, the subject can
only store the information which he receives at the time the instance is
Presented. Here a special "recognition" program is needed. We have a
rather primitive method for reading instances into memory in our present
model. Included in the initial specification of the artificial subject is a list
of dimension sets. Sets are read in the order in which they are placed on
the list. During a particular problem our program reads, at every presenta-
tion of an instance, all dimension sets which have ever been read. If this
Provides sufficient information with which to discriminate the current in-

Figure 1. Program control chart.

314 SIMULATION OF COGNITIVE PROCESSES

"r>.R. . jS"<

stance from previous instances, the reading process terminates. If suf-
ficient information is not presented, a new dimension set is read, and the
discrimination test reapplied. New dimension sets are added until either all
dimension sets have been used or discrimination from previously pre-
sented instances is possible. When the read program is terminated the
appropriate description (some part of the formal description) is entered
into internal memory.

For problems in which a requirement for memory exists, a limited oc-
cupancy model of human memory is employed (cf. Hunt, 1960a). The
subject parameters specify a certain number of storage cells. These are
set aside for representational memory of instances. Each new instance is
stored, at random, in one of the cells. The previous content, if any, is lost.
Thus, the probability that the artificial subject has a given instance avail-
able decreases as the number of intervening instances increases. We con-
sider this model a crude approximation to human memory, although it has
been shown to be useful in predicting the probability of utilization of in-
formation in certain cases.

Figure 1 represents the very indirect tie between recognition memory
and answer developing checking units in the present system. It may be that
this is not the most effective arrangement. Schemes for joining the sub-
systems may be considered in a later model.

The "heart" of the model is the answer development subsystem. Its
internal procedure is depicted in Fig. 2. The answer developing section
finds binary decision rules for distinguishing between the denotation of one
name and its complement. In doing so it restricts its attention to one dimen-
sion set at a time. Dimension sets are selected in the order specified by the
current description of the artificial subject. If an answer already exists
which involves a particular dimension set, that set will be ignored in answer

Figure 2. Answer-developing procedure.

i
PROGRAMMING A MODEL OF CONCEPT FORMULATION 315

development. The "executive routine" of the answer developing system is
entered when a dimension set is found for which no answer is currently
available. The plan followed by the executive routine is to prepare an
execution list containing the names of three routines which will be executed
in the order specified by the execution list. The contents of internal
memory are used as output for the first and second of the three routines.They, in turn, provide the output for the third (last) routine of the execu-
tion list. Successful completion of the third routine results in a tentative
concept definition.

The executive routine selects routines for the execution list from three
reference lists. These are initially specified by the programmer as part of
the subject's description list. They may be changed during execution of a
simulation.

The first reference list contains the names of ordering routines. Each
of these routines splits the instances on internal memory into two sets,
working positive and working negative instances. The two categories are
mutually exclusive and exhaustive of all instances in memory. In the
simulations we have tried thus far three ordering routines are provided.One places in the "working positive" set all instances which are members
of a class which has been indicated, by the programmer, as the class for
which a concept is to be found. The second currently available routinereverses this procedure, placing the same instances in the working negative
set. (If theprogrammer has indicated that there are several classes of equalimportance the class name of the most recently presented instance is usedby these two routines.) The third ordering routine defines as "working
Positives" all those instances which have the class name of the smallest set
that is represented in internal memory, provided that there are at least twoinstances in the set.

Another reference list contains the name of routines which produce a
working description of the instances in memory. These routines attach to
each instance in internal memory a description based on a transformation°f that part of the formal description included in the current dimension
set. We have dealt with two description routines. One simply copies thenecessary dimensions and values from the formal description to the work-mg description. The other routine defines new dimensions based upon the
relation between values of the dimensions of a formal description. Thefollowing rules are used to generate the working description:

1. A new dimension is defined for any pair of (source) dimensions
whose values are numerical quantities on the same scale. For a particularinstance the value of the new dimension is EQUAL, GREATER, orLESS, depending on the comparison of the values of the original pair ofdimensions on that instance.

316 SIMULATION OF COGNITIVE PROCESSES

2. A new dimension is defined for any pair of source dimensions on the
formal description list if, over the entire set of instances in memory, the
two source dimensions share a common value. (The common value need
not appear on both dimensions in the same instance.) The value of the new
dimension is, for a particular instance, either SAME or DIFFERENT,
depending on a comparison of the value of the original dimensions on the
instance in question.

In actual programming, the ordering and description routines are applied
serially. They are functionally parallel; the output of one does not affect
the output of the other. They both provide output to the solution routine.
This consists of all instances in internal memory, recategorized and re-
described. The solution routine attempts to define a method for discriminat-
ing between working positive and working negative instances. The dis-
crimination is always stated as a definition of the working positive instances,
even though these may be members of the complement of the class for
which the program is trying to define a concept.

At present the model contains three solution routines. The first two are
suited for handling conjunctive concept learning problems (problems in
which the answer can be stated using only the logical connective and).
The third is a conditional procedure which is slower, more complex, and
of greater generality.

The two "conjunctive" routines both, as their first operation, list those
dimensions which have only one value over the entire set of working
positive instances. If this list does not exist no conjunctive definition of the
working positive instances exists. If the list does exist, it is handled some-
what differentlyby the two routines. The first conjunctive routine searches
through each of the dimensions to find if one of them never has the same
value on the negative instances as it does on all positive instances. The
second routine examines all negative instances to see whether any negative
instance has the entire conjunction of dimension-value pairs which are
common to all positive instances. The routine returns an answer if no such
instance can be found. Thus either routine, when it succeeds, defines a con-
junctive concept that can be used for the instances in internal storage.

The third solution routine, the conditional routine, is a recursive func-
tion which, if slightly modified, would give the artificial subject the capa-
bility of answering any concept learning problem. As it currently stands,
it provides the capability of solving disjunctive concept learning problems
of limited complexity.

The conditional routine first identifies the dimension-value pair which
is most frequently found on positive instances. It then generates two sub-
lists of working positives and working negatives, all of which contain this
pair. The first conjunctive routine is applied to the two sublists. If it sue-

i
PROGRAMMING A MODEL OF CONCEPT FORMULATION 317

ceeds, it returns with an answer which can be applied to any future in-
stance, which has the appropriate dimension-value pair. If it happens thatthe conditional routine generates only a sublist of positive instances, theanswer is the value of the single dimension being considered. If the dimen-
sion-value pair does not occur on a future instance, the class membershipof this instance is indeterminate.

If an answer is not generated in this manner, or if there remain un-classified instances, the conditional routine is repeated, omitting dimension-
value pairs previously considered and any instances which have beenclassified. The result of the application of the conditional and conjunctive
routines constitute a second "conditional" answer. This procedure is
repeated until all instances in internal memory have been classified oruntil all dimensions have been considered. The result is a classification rule
composed of a chain of statements about simple conjunctive answers andthe rules under which they apply (e.g., red triangle, green circle). Thechain of statements may be of any length, but each statement must containonly two dimension-value pairs. We could have removed this restrictionby applying the second conjunctive rule instead of the first. We could alsohave permitted an nth-level conditional rule by applying the conditionalroutine, recursively, to the sublists until all instances were classified. The
resulting procedure would generate a rule for all concept learning prob-lems. It would not necessarily be the most compact statement of the
correct rule. It could degenerate into a description of particular instances.When the executive routine selects an execution list it is, in effect, apply-
ing a template for an answer to a particular problem. If the problem hasan answer which involves the relevant features abstracted by the orderingand description routines, operating on a particular dimension set, and ifthe answer is of a particular logical type, there exists an execution listwhich will find it.

The manner in which our first model changes its template is also indi-cated in Fig. 2. Initially the dimension set is selected. The first executionhst is then selected from thereference lists contained in the subject descrip-tion. The first execution list always uses the routines which are at the topof each reference list. If the execution list cannot obtain an answer, thedescription or solution routine (alternately) is replaced until the original
execution list is reconstructed. When this happens a new ordering routine« chosen. The alternation of description and solution routines is repeated
Until, again, an execution list is repeated. At this point a new orderingroutine is selected. When there are no more ordering routines the dimen-sion set is replaced, using the next dimension set on the subject's list oforder of noticing dimension sets. The process ends whenever either, ananswer is developed, all dimension sets are examined, or, when the allottedtime is exceeded. How this is instrumented will be described presently.

318 SIMULATION OF COGNITIVE PROCESSES

i

I

I

A.

During a particular problem the order of dimension sets remains con-
stant. However, during the time when an answer is being developed, the
reference lists for description and solution routines may be temporarily
altered. This is done by moving a symbol from first to last place on its
reference list whenever it is removed from an execution list. One of the
ways in which we can simulate individual differences is to change the
initial order of routines on the reference lists.

As we have indicated, there is a "time-checking" mechanism which may
interrupt the answer development process. Associated with each routine
on a reference list is an index number. These numbers are specified by
the programmer as part of the initial data. The programmer also specifies,
as part of the problem data, a number which represents the time that the
artificial subject has to develop an answer. Depending on the presentation
conditions, this may represent the time he is permitted to spend on the
entire problem or the time between stimulus presentations. Every time a
routine on an execution list is applied, its index number is subtracted from
a time signal which was, originally, set equal to the allowable time number.
When the time signal reaches zero, answer developing is halted (possibly
with the reference lists for description and solution rearranged) and control
is returned from theexecutive solution routine to a higher level.

The index number associated with each routine can be thought of as an
"effort" number, the cost of a particular information processing routine
to the subject. Success in any problem depends on a complex interaction
between the rules for rearrangement of order of routines on reference lists,

the value of the index number, and the value of the allowable time number.
One of our more fascinating research tasks is the unraveling of this relation.

The model, as presently programmed, has an independentcheck on time.
Whenever a new instance is presented it is examined to see if its class
membership agrees with that predicted for it by currently active answers.
If the new instance does not agree, or (in the case of conditional answers)
if no class membership is predicted for that instance, the answer develop-

ment routine will be entered. If correct prediction occurs the answer
development section is entered only if a "slow" rate of stimulus presenta-
tion is specified in the problem description.

Whenever an answer is developed the dimension set and execution list
used are stored on its description list. When a problem is solved (i-e-
after all instances have been presented), those dimension sets which have
been associated with an answer, and those routines which have appeared
on successful lists, are moved to the head of their respective reference lists-
Thus, the characteristics of the subject which were originally specified by

theprogrammer have been modified by the program.
The transfer procedure has an interesting psychological implication.

Our artificial subject shows positive or negative transfer only when the

319PROGRAMMING A MODEL OF CONCEPT FORMULATION

i

I

I

1

preceding problem is solved. Also, transfer is almost entirely dependent
upon the form of the immediately preceding problem. We do not know
whetheror not this is true of human problem-solving.

Simulations and Evaluations

The model was not conceived in vacuo. Previous, unprogrammed models
(Hovland and Hunt, 1960) had been considered for some time. In addi-
tion, we gathered protocols from Yale undergraduates who attempted to
solve a "concept learning" problem which had three logically correct
answers; a disjunction, a conjunction, and a relation. (This problem has
been described previously (Hunt and Hovland, 1960) and some data on
its difficulty was available.) All three conditions of presentation were given
to each subject. The model we have just presented gave the best over-all
"postdiction" of response of any model we could devise. In fitting it we
altered the order and identity of symbols on reference lists, but otherwise
kept the model constant. Since each subject solved threeproblems, we were
able to make some tests of our transfer procedures and thus do not rely
too heavily upon prespecified orders. The results of our match were
generally encouraging. However, they cannot be taken as validating
evidence since theprotocols were used to develop the program.

Some more encouraging evidence came when the artificial subject
attempted a series of problems used by Shepard, Hovland and Jenkins
(1961). This was a completely separate study. Human subjects were asked
to find categorizing rules for each of the six possible types of splits of eight
instances, each describable by one of two values on three dimensions, into
two sets of four each. Human subjects could solve, quite rapidly, a prob-
lem in which all relevant information could be derived from a single dimen-
sion. So could our artificial subject. Both human and artificial intelligence
found a problem consisting of a "string" of two conditional statements
(e.g. big and red, or small and white) easy. In a third case, humans and
the artificial subject were unable to develop a workable rule for the authors'
Type VI" classification, in which the answer requires either description

of each instance or a rather subtle rule about alternation of values. Humans
did better than the artificial subject in one situation. When the correct
answer could be stated as a simple rule with one exception, our program
finds the problem difficult. Humans find it hard, but not nearly as hard as
the "Type VI" problem. The results of this simulation, and particularly the
discrepancy just mentioned, forced us to consider alternate recursions in
the conditional solution routine.

A somewhat similar, unpublished, experiment was performed by Hunt
and H. H. Wells. Here the five commonly used logical connectives between
two elements provided the answer. A "Truth table" was constructed and

320 SIMULATION OF COGNITIVE PROCESSES

i

1

presented to subjects in geometric form. For example, the connective "p
and q" might be represented by "red and star." The five problems were
presented in five orders, each subject solving all five problems in one of
the orders. Simulation and analysis of this experiment has not been com-
pleted at the time of this writing, however, we have some preliminary
results. There is good general agreement between our simulation routines
and some protocols. Both the computer model and the subjects are sensitive
to the order in which problems are presented, but their reactions are not
as similar as we would like. A new transfer procedure is needed. In an
experiment which is not directly related to simulation, Wells is studying
the manner in which human subjects learn methods of solution for disjunc-
tive problems. We hope that his experiments will provide some clues about
the nature of the transfer procedures we should include in our model.

We do not claim to have presented a complete explanation of concept
learning! Certainly others will agree with us. In programming the model we
made many decisions with little theoretical or empirical justification. Some
of theseare certain to be wrong. But which ones?

We shall probably have to change our routines for memory and recogni-
tion. Some of the known phenomena of memory cannot be reproduced
by a simple occupancy model. For instance, the effect of stimulus similarity
upon memory cannot be represented. Our model has an all-or-none aspect
in its interference features. An intervening instance either completely
eliminates the record of a previous instance or does not affect it at all. This
does not seem to be the final answer to the problem of memory in concept
learning.

Two alternative memory systems are being considered. One system re-
tains and extends the limited occupancy model. Instead of storing one
"code word" (actually, a list structure), representing all known informa-
tion about an instance, on a single occupancy list, several code words
would be stored in several occupancy lists. Each of these code words
would represent a particular type of information about some part of the
instance in question. Storage of each code word would be independent on
each occupancy list. Code words referring to the same instance would
reference each other's locations. When information from memory was
required a picture of each instance would be reconstructed from the cross-
referencing system. However, since intervening instances would be storing
instances independently on each occupancy list, some of the code words
might be replaced. The extent of this replacement would dependupon the
similarity between the instance to be recalled and the stimuli which fol-
lowed its presentation. This system would be sensitive to stimulus similarity
effects.

Alternately, we could use an associationist memory system. Instead of
trying to remember units of information directly we would build "associa-

PROGRAMMING A MODEL OF CONCEPT FORMULATION 321

I

1

tions" between names and stimulus features. This is the logic of the tech-
nique used by many learning theorists in psychology. Machinery to realize
such a memory has been extensively investigated by Rosenblatt (1958,
1959). There is also some similarity between this approach and the
classification mechanisms based upon Selfridge's "Pandemonium" scheme
(Selfridge and Neisser, 1960). To adopt such a memory system would
require changing the entire logic of our model. Association schemes gen-
erally contain, in themselves, a mechanism for concept learning. It alsoseems that they require some sort of gradient of generalization. Recent
experiments (Shepard and Chang, 1961a; Shepard et al., 1961ft) indicatethat, in concept learning, the tendency to code stimuli symbolically plays a
greater role than generalizationbased upon stimulus similarity. For these
reasons we have, tentatively, rejected an associationist memory mechanism.

In the present model we subject the formal description of an instance
to two transformations. When an instance is presented, the dimensions of
the formal description are sampled to determine what information is to be
Placed in memory. At some later time, that part of the formal description
which is in memory is retransformed to provide a working description. The
two procedures could be combined if the description routine currently atthe head of the description routine reference list were to be applied directly
to an instance before it entered memory.

Such a procedure would have advantages in saving storage space. Insteadof having to have two separate locations, for working and permanentdescription, in the internal memory, only one description need be stored.But we pay for saving this space by losing information. By definition, any
Working description can be derived from the formal description. All work-
ing descriptions cannot be derived from each other. For instance, if weknow that an instance contained two figures of the same color, we do notknow what that color is. As a result, our artificial subject's ability toutilize a particular description routine at time t would depend very much
Upon the descriptionroutines usedpreviously.

The role of "set" at time of presentation as a determinant of latermemory characteristics needs more extensive investigation. Some experi-
ments (Lawrence and Coles, 1954; Lawrence and Laßerge, 1956), suggestthat "set" is a function of how memory is searched rather than how items
enter into memory. Also, there exists a rather contradictory literature on'latent learning," a term used to describe experiments in which animals,trained to respond to cue A in the presence of cue B, which is irrelevantto the animal's current need, learn more rapidly a later response to cue B.From present experimental results it is not obvious how stimulus recogni-
tion and answer development procedures should be connected in a conceptlearning simulation.

Procedures for representing transfer may not be represented adequately

322 SIMULATION OF COGNITIVE PROCESSES

i

i

in the present model. Transfer is defined as the effect of previous problem-
solving experience upon solution of the problem with which the subject is
faced at the time of the test. We decided to work first with a simple method
of representing transfer, in which the subject tries whatever worked last
time. A principal result of the simulation of the Hunt and Wells work on
logical connectives has been a demonstration that a new transfer procedure
is needed.

In the tradition of classical learning theory, we could attach a modifiable
numerical index to each routine on a reference list. This index could be
used to determine the probability that a routine would be selected. This
method of representing learning is probably the most common. The
principal objection to it is that it implies the existence of "counters in the
head" and, essentially, makes our program a digital simulation of an
analog system.

The alternative to association indices is a new method of ordinal re-
arrangement of routines on a reference list. The problem with ordinary
rearrangements is that they did not permit us to specify a variable distance
between routines on a list. Suppose we consider each concept learning
problem as a contest between routines on the same reference list. The one
that finds a place on a successful execution list is victorious. How many
times must the routine in position n "win" before it gains the next highest
position? Should it jump positions? As we have indicated, some research
relative to this topic is being conducted.

Conceivably, we may have to change our entire method of transfer.
At present our model records answers, with associated information about
useful routines. We could attach to routines information about problems
on which they had been useful. We would then have to develop some way
for the artificial subject to extract, rapidly, key features of a problem while
the answer is being developed. Routines would be examined to see what,
in the light of past experience, was their probable usefulness on this sort
of problem.

Closely related to the problem of transfer is the problem of response
selection during learning. Our present model rearranges its order of re-
sponse selection after a problem is solved. During a problem, response
selection is controlled by time parameters which are independent of pro-
gram control. No use is made of intermediate computations in selecting
the next item to be placed on an execution list. In an alternate model this
might be the controlling factor. The means-end analysis of the Logic
Theorist (Newell and Shaw, 1957ft) uses intermediate calculations heavily-
Amarel (1960) has proposed a computer model for an area very similar
to ours in which intermediate computations exert control on answer
development.

Our simulation work, and analysis of experimental data, has convinced

PROGRAMMING A MODEL OF CONCEPT FORMULATION 323
us that some method of making the choice of one item on an executionlist dependent upon the product of execution of previously selected rou-tines is desirable. What is not clear is the optimum amountof dependency.Bartlett (1958) has presented an analog, in an entirely different context,
which may clarify the problem. He compared problem-solving and think-
ing to motor skills responses, such as serving in tennis. There are certain
points at which a chain of responses can be altered; in between these
points a series of acts will be executed without interruption. Our problem,
experimentally, is to identify the responses and choice points.

We feel that the principal use of our model, so far, has not been in the
generating of an explanation of concept learning so much as it has beenin indicating the type of new experimental data needed. We have had to bevery specific in our thoughts as we programmed this model. As a result,
we have reached some conclusions about the kind of experiments that
need to be done. It may well be that the typical concept learning experi-
ment confuses three processes; memory, recognition, and symbolic prob-
lem-solving. It is not clear whether or not these should be treated as partof a unitary "concept learning" act. They can be programmed separately.In addition we have become concerned with questions of transfer, theeffect of the subject's current hypothesis upon his later retention of infor-
mation, and the effect of time pressure upon information processing. A
real awareness of these problems has been a major outcome of program-
ming a concept learning model.

Comparisons with Related Work

Viewed formally, our problem is closely related to models of pattern
recognition. Programming either a pattern recognizer or a concept learner
involves the development of a mechanism which operates on a specified
stimulus universe to map stimuli from predetermined subsets into particu-lar responses. Because of this mathematical identity, at least one critic
(Keller, 1961) has suggested that problems of this sort should be treated
together, without "psychologizing" or "neurologizing." While this may be
useful in developing theorems about a canonical form of categorization, it
may not be an appropriate strategy for simulation studies. In particular,our approach is quite different from that of the pattern recognition studies
with which we are familiar.

The most striking difference is in the manner in which we precode the
stimuli. Pattern recognizers usually accept stimuli coded into projections
°n a grid. The result is a string of bits, each bit representing the presence
°r absence of illumination of some part of the grid. The same representa-tion could be used for a temporal pattern. Each bit would stand for the
Presence or absence of some stimulus feature.

324 SIMULATION OF COGNITIVE PROCESSES

We presuppose the existence of a dimension and value coding (Hovland,
1952) and deal with perceptual aspects which are readily verbalizable. A
pattern recognizer develops its own code. Any coding scheme developed
by a pattern recognizer will be specific to the stimuli used (visual vs. audi-
tory, etc.). Since we are interested in the manipulation of coded elements
we avoid this problem by fiat in our programming and by explicit instruc-
tions to our subjects in our experimental work.

Our model is also different from most pattern recognizers in the proc-
esses it uses. Pattern recognizers, at least as developed by Selfridge and
his co-workers (Selfridge and Neisser 1958, 1959), and by Rosenblatt
(1960), are basically parallel processing devices which utilize a large
number of redundant, error-prone tests. Our program is a serial processor
which tries to develop a single, perhaps complex, error-free classification
test. We do not see any incompatibility in the two approaches. Our pro-
gram deals with the simulation of a symbolic process. That the two prob-
lems are formally similar does not mean that they are realized in the same
way by problem-solvers.

In principle, there would be no objection to utilizing a pattern recog-
nizer to provide the input to the concept learner. The combined system
could develop its own dimensions and values and then operate upon them.
In practice, such a scheme is undoubtedly premature. But it is a long-
range goal.

The concept learning problem has been attacked directly in two previ-
ously mentioned studies, by Kochen (1961a) and Amarel (1960). Kochen
restricted his program to solution of "concepts" based upon a conjunctive
rule involving stimuli specified by strings of bits. His program consisted of
executing algorithms upon the information about the universe of objects
which was available at any one time, in memory. The program also con-
tained features for making random guesses about the correct concept.
These guesses could be weighed for "confidence," using an index which
satisfied Polya's (1954) postulates for plausible reasoning. One of
Kochen's (1954) findings, based on Monte Carlo runs of his system, was
that changes in the value of the confidence index could be used to estimate
the probability that an answer was correct before a proof of the answer
was available.

Amarel (1960) proposed a machine that could generate routines to
map arguments to values in symbolic logic. The key feature of his pro-
posal, one we might well adopt, is his use of intermediate results to "moni-
tor"future answer development.

Neither Kochen nor Amarel were directly concerned with simulation of
human performance. This difference in goals, and features of program-
ming, are the major differencesbetween our work and theirs.

Superficially, our program is similar to the list processing programs

n

,l

IPROGRAMMING A MODEL OF CONCEPT FORMULATION 325
written by the Carnegie Institute of Technology-RAND Corporation group
headed by Newell, Shaw, and Simon, and McCarthy (McCarthy, 1960)
and his associates at MIT. In particular, the work of Feigenbaum (1959),
at RAND, is related to ours. He developed a program to simulate paired-
associates learning. As part of his program he included a routine for se-
lective recognition of stimulus features. As more experience with the
stimulus universe was provided, more features were read into the system
to enable it to make finer discriminations. The logic of Feigenbaum's
recognizing system, and in particular its capability for dropping stimulus
features which are not useful in discrimination, could be incorporated
into our program.

Our present program, although running now, is in no sense complete.
Almost every new simulation has indicated ways in which it could be im-
proved. We intend to continue to investigate concept learning by use of
an information processing model. But we do wish to add a word of cau-
tion. Neither our model, nor any other, has generated a large number of
new experiments. This is a traditional test of the utility of a scientific
model, and it is going to have to be met by us and by others interested
in this field. We do not feel that the utility of computer programming
models in psychology has been proven or disproven. The jury is still out
We, of course, hope that a favorable verdict will be returned.

section 3

Decision-making
under Uncertainty

A large number of decisions are made under conditions of uncer-
tainty, i.e., where the decision-maker does not know the conse-
quences of his alternatives. The commander sending his troops into
battle is faced with such a decision problem. The book publisher
deciding how many copies of a book to print is in a similar situation.
Economists, mathematicians, and statisticians have studied how peo-
ple "should" behave in these situations, while behavioral scientists
have studied how people do behave in these situations. The two
articles in this section are in the latter category. In both of them,
the computer is used in the construction of information processing
models of the behavior of individual decision-makers in uncertain
situations.

Feldman reports a study of behavior in the binary choice experi-
ment. In this experiment the subject is asked to predict which of
two events will occur on each of a series of trials. With the aid of
data obtained from students "thinking aloud" in the binary choice
experiment, Feldman has been able to construct models of the cogni-
tive processes underlying binary choice behavior. These models
represent the hypothesis-testing behavior that subjects exhibit in
these experiments. One of these models and the associated protocol
are presented in the following article.

Clarkson has chosen to study human behavior in portfolio selec-
tion. He has studied how an investment officer in a bank selects a
portfolio of stocks for a trust fund, given the legal constraints in-
volved, the goals of the trust, and the conditions of the market.

328 SIMULATION OF COGNITIVE PROCESSES

Clarkson's analysis of the behavior of this decision-maker has en-
abled him to construct a computer program which, in test cases, has
been able to make very accurate predictions of the trust officer's
behavior. In four test cases, the model selects 29 stocks—the same
number as the trust officer—and correctly predicts the number of
different stocks in each portfolio. The model does very well on the
number of shares of each stock, too. Of the 29 selections, there are
only five cases in which the model selected a stock different from
the stock selected by the trust officer. These results certainly indicate
that Clarkson's model is an excellent predictor of the trust officer's
behavior.

The implications of both these models extend beyond the particu-
lar decision situations in which they were developed. Feldman's work
indicates that what appears to be a simple problem is treated by the
subject as a very complex situation. The hypothesis-testing procedure
which the subject uses is quite similar to the behavior of the re-
searcher studying the subject. The subject is looking for patterns in
the event series, and the experimenter is looking for patterns in the
subject's behavior. Both are trying to induce the regularity which
they both believe does exist. Clarkson's model furnishes important
support for a problem-solving model of human decision-making
that depicts a decision-maker of limited rationality using a limited
memory and a rather small set of rules of thumb. Neither the sub-
ject in the binary choice experiment nor the trust investment officer
are following the accepted strategies for "rational" behavior in their
environments. Detailed analyses such as Feldman and Clarkson have
done provide useful information on how people behave in particular
decision situations and suggest explanations of behavior in other
situations.

Julian Feldman is a member of the faculty of the School of Busi-
ness Administration, University of California, Berkeley.

Geoffrey Clarkson is a member of the faculty of the School of
Industrial Management, Massachusetts Institute of Technology.

SIMULATION OF BEHAVIOR
IN THE BINARY
CHOICE EXPERIMENT

Julian Feldman

Introduction

Modern, high-speed digital computers have been used to simulate large,
complex systems in order to facilitate the study of these systems. One of
these systems that has been studied with the aid of computer simulation is
man. The present report describes another addition to the growing list of
efforts to study human thinking processes by simulating these processes on a
computer. The research summarized here has been concerned with simulat-
ing the behavior of individual subjects in the binary choice experiment
(Feldman, 1959). The first section contains a description of the experi-
ment. An overview of the model is given in the second section. The model
for a particular subject is described in some detail in the third section.

The Binary Choice Experiment

In the binary choice experiment, the subject is asked to predict which
of two events, Et or E2 , will occur on each of a series of trials. After the
subject makes a prediction, he is told which event actually occurred. The
sequence of events is usually determined by some random mechanism,
e-g-, a table of random numbers. One and only one event occurs on each
trial. The events may be flashes of light or symbols on a deck of cards. The
subject is usually asked to make as many correct predictions as he can.

In the research reported here, the experiment described in the preceding
Paragraph was modified by asking the subject to "think aloud"—to give
his reasons for making a prediction as well as the prediction itself. The

329

SIMULATION OF COGNITIVE PROCESSES330

I

subject's remarks were recorded. The subject was instructed to "think
aloud" in order to obtain more information on the processing that the subject
was doing. This technique has been used in some of the classical investiga-
tions of problem-solving behavior (Duncker, 1945; Heidbreder, 1924) and
in other computer simulation studies of thinking (Clarkson and

Simon,

1960; Newell and Simon, 1959a1). A comparison of the behavior of sub-
jects in the binary choice experiment who did "think aloud" with the
behavior of subjects who did not "think aloud" did not reveal any major
differences (Feldman, 1959). The events in the present experiment were
the symbols "plus" and "check." "Check" occurred on 142 of 200 trials
and "plus" on the remaining 58 trials. The symbols were recorded on a
numbered deck of 3-inch X 5-inch cards. After the subject made his
prediction for trial t, he was shown card t which contained a "plus" or
"check." While the subject was predicting the event of trial t, he could
only see the event of trial t-1. A transcription of the tape recording of the
remarks of subject DH and the experimenter, the author, in an hour-long
binary choice experiment is presented in the Appendix. In the Appendix
and the rest of this report, the symbols "plus" and "check" are represented
by "P" and "C" respectively. The transcription will be referred to as a
protocol.

The Basic Model
To simulate the behavior of an individual subject in the binary choice

experiment, a model of the subject's behavior must be formulated as a

computer program. If the program is then allowed to predict the same
event series as the subject has predicted, the behavior of the program—
the predictions and the reasons—can be compared to the behavior of the
subject. If the program's behavior is areasonable facsimile of the subject's
behavior, the program is at least a sufficient explanation of the subject's
behavior. The level of explanation is really determined by the subject's
statements. No attempt is made to go beyond these to more basic processes,
e.g., neurological or chemical, of human behavior. Thus, the model is an
attempt to specify the relationship between the reasons or hypotheses that
the subject offers for his predictions and the preceding hypotheses, predic-
tions, and events. The subject is depicted as actively proposing hypotheses
about the structure of the event series. These hypotheses are tested by
using them to predict events. If the prediction of the event is correct, the
hypothesis is usually retained. If the prediction of the event is wrong, a
new hypothesis is generallyproposed.

The Model for DH

The model for each subject is based on a detailed examination of the
protocol and some conjectures about human behavior. Perhaps the best

331BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

I

i

A

thing to do at this point is to describe in some detail a model for the sub-
ject,DH, whose protocol appears in the Appendix.

The Hypotheses
This model proposes two types of hypotheses about the event series. The
first type of hypothesis is a pattern of events. The model has a repertoire
of nine patterns:

progression of C's
progression of P's
single alternation
2 C's and 1 P
1 C and 2 P's
2 P's and 2 C's
3 P's and 3 C's
4 P's and 4 C's
4 P's and 3 C's
The model can propose that the event series is behaving according to

one of these patterns and use the pattern hypothesis to predict the event of
a given trial, t. The predictions of the first two patterns—progression of
C's and progression of P's—for trial t are independent of the events pre-
ceding trial t. The predictions of the other patterns (the alternation pat-
terns) are dependent on these preceding events. Thus, if the subject
Proposes the pattern "single alternation" for trial t and the event of trial
t —- 1 was a C, the prediction for trial t is a P. In order to facilitate the
determination of the prediction of an alternation pattern for trial t, the
Patterns are coded as sorting nets. For example, the pattern "2 C's and
1 P" is represented in the followingfashion:

Is event t — 1 a C?
No—Predict C for trial t.
Yes—Is event t — 2 a C?

No—Predict C for trial t.
Yes—Predict P for trial t.

The second type of hypothesis that the model can propose is an anti-
Pattern or guess-opposite hypothesis. For example, the model can propose
that the event of trial t will be the opposite of that predicted by a given
Pattern. This type of hypothesis is the model's representation of the notion
°f "gambler's fallacy"—the reason people predict "tails" after a coin falls
'heads" seven times in a row.

The most general form of hypothesis has two components: a pattern
component and a guess-opposite component. The prediction of the hy-
pothesis is obtained by finding the prediction of the pattern component. If
the hypothesis has a guess-opposite component, then the prediction of the

332 SIMULATION OF COGNITIVE PROCESSES

hypothesis is the opposite of the pattern prediction. If the hypothesis does
not have a guess-opposite component, then the prediction of the hypothesis
is the prediction of the pattern component. Thus, while the prediction of the
pattern hypothesis "progression of C's" is always a C, the prediction of the
hypothesis "guess-opposite-progression-of-C's"is always a P.

The Basic Cycle
The basic cycle of the model is as follows: The model uses an hypothesis
to predict the event of trial t. The event is then presented. The model in
Phase One "explains" the event of trial t with an explanation hypothesis. In
Phase Two a prediction hypothesis for trial t -f- 1 is formed. The model
uses this prediction hypothesis to predict trial t -f- 1 . The event of trial
t -\- 1 is presented, and the cycle continues.

Phase One

The basic motivation for this phase of the model is that the model must
"explain" each event. An acceptable explanation is an hypothesis that
could have predicted the event. The processing of Phase One is represented
in the flow chart of Fig. 1.

The processing to determine the explanation hypothesis for trial t begins
by testing whether the pattern component of the prediction hypothesis for
trial t could have predicted the event of trial t correctly. If the pattern
component could have predicted correctly, the pattern component is the
explanation hypothesis. If the pattern component could not have predicted
correctly, the pattern-change mechanism is evoked. Thus if the prediction
hypothesis for trial t contained only a pattern component and the hy-
pothesis predicted correctly, the explanation hypothesis for trial t is the
prediction hypothesis for trial t. If the prediction hypothesis for trial t
contained a guess-opposite component and the hypothesis predicted cor-
rectly, the pattern-change mechanism is evoked because the pattern
component could not have predicted the event correctly by itself. If the

A.

COULD

THE PATTERN

COMPONENT OF

THE

PREDICTION- HYPOTHESISFOR

TRIAL T HAVE

PREDICTED

THE EVENT

OF

TRIAL T

CORRECTLY?

B.

YES —EXPLANATION-HYPOTHESIS FOR

TRIAL T

IS

THE PATTERN

COMPONENT OF

THE PREDI

C

T I0 N -H

YPOTH

E

S

I

S FOR

TRIAL T.

C. NO— EVOKE PATTERNS

THAT

COULD

HAVE

PREDICTED

THE

EVENTSOF TRIALS

T AND T- 1

CORRECTLY.

THE PATTERN

OF

THE
PREDICTION-HYPOTHESIS

FOR

TRIAL T

IS EVOKED

IF IT

COULD

HAVE

PREDICTED CORRECTLY

THE

EVENTS OF

TRIAL

T-l, T-2,

AND T-3.
D.

SELECT FROM

THE

SET OF EVOKED PATTERNS

THAT PATTERN THAT

HAS

BEEN

SELECTED MOST OFTEN ON PRECEDING TRIALS.

E.

IS

THE

SELECTED

PATTERN THE PATTERN

COMPONENT OF

THE

PREDICTION-HYPOTHESIS FOR

TRIAL T?
F.

YES— EXPLANATION-HYPOTHESIS FOR

TRIAL T

IS THROW

ME

OFF

THE

SELECTED

PATTERN.

G. NO

—EXPLANATION-HYPOTHESIS

FOR

TRIAL T

IS

THE

SELECTED

PATTERN.

Figure 1. Phase One of binary choice model for DH.

333BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

prediction hypothesis for trial t was a guess-opposite hypothesis and it
predicted incorrectly, the pattern component of the prediction-hypothesis
becomes the explanation hypothesis for trial t. The motivation here is
really quite simple although the explanation may sound involved. If, in this
binary situation, the hypothesis that a pattern will change leads to an in-
correct prediction, the pattern must have persisted; and the pattern is an
acceptable explanation of the event. If the hypothesis that a pattern will
change leads to a correct prediction, the pattern obviously did not persist;
and the possibility of a new pattern is considered.

The pattern-change mechanism is evoked on trial t if the pattern com-
ponent of the prediction hypothesis for trial t is unable to predict the event
of trial t. The pattern-change mechanism consists of two parts. The first
part evokes a subset of the nine patterns listed above. The second part of
the pattern-change mechanism selects a single pattern out of the evoked
set. A pattern is evoked, i.e., considered as a possible explanation of the
event of trial t, if the pattern can predict the events of trials t and t — 1.
The pattern of the prediction hypothesis for trial t, i.e., the pattern that
cannot predict event t, is included in the evoked set if it can predict events
t — l, t — 2, and t — 3. Of the patterns that are evoked, the pattern that
has been selected most often on prior trials is selected as the pattern
component of the explanation hypothesis. If the pattern component of
the prediction hypothesis for trial t is selected, then the explanation
hypothesis is an antipattern hypothesis which is the model's interpretation
of the subject's hypothesis "you have thrown me off the pattern" (cf.
trial 9 of the protocol in the Appendix). The model interprets event t as
an attempt to "throw me off" when the following three conditions are met:
(1) the pattern is unable to predict the event of trial t; (2) the pattern is
able to predict at least the three consecutive events of trials t — 1, t — 2,
and t — 3; and (3) the pattern is also the most frequently selected of those
Patterns that are evoked.

Phase Two

While Phase One is concerned mainly with the processing of the pattern
component of the hypothesis, Phase Two is concerned with the processing
of the guess-opposite component. Phase Two is represented in the flow
chart of Fig. 2.

If the prediction hypothesis for trial t contained a guess-opposite com-
ponent, the guess-opposite component is processed in a fashion quite
analogous to the processing of the pattern component in Phase One. If the
antipattern prediction hypothesis for trial t predicted the event of trial t
correctly, the guess-opposite component is retained, and the prediction
hypothesis for trial t -+- 1 is guess-opposite-the-pattern-of-the-explanation-
hypothesis. If the antipattern prediction hypothesis for trial t predicted

V

334 SIMULATION OF COGNITIVE PROCESSES

H. DID THE

PREDICTION-HYPOTHESIS FOR

TRIAL T CONTAIN A GUESS-

OPPOSITE COMPONENT?

I.

YES—

DID THE PREDI

CT lON

-H

YPOT HES

I

S FOR

TRIAL T

PREDICT

THE EVENT

OF

TRIAL T

CORRECTLY?

J.

YES

—PREDICTION-HYPOTHESIS

FOR

TRIAL T+l

IS GUESS-OPPOSITE

THE PATTERN COMPONENT

OF

THE

EXPLANATION-

HYPOTHESIS FOR

TRIAL T.
K.

NO

— DID THE PREDICTION

HYPOTHESIS FOR TRIALS

T- 1 AND
T-2

CONTAIN GUESS-OPPOSITE COMPONENTS

AND WERE THE

PREDICTIONS OF

THE

EVENTS OF THESE TRIALS CORRECT?

L.

YES

—

PREDICTION-HYPOTHESIS FOR

TRIAL T+l

IS GUESS-

OPPOSITE

THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.
M.

NO

—

PREDICTION-HYPOTHESIS FOR

TRIAL T+l

IS

THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.
N. WILL THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T CONTINUE?
(SEE TEXT

FOR

AN

EXPLANATION OF THIS

TEST.)
0.

YES— PREDICTION-HYPOTHESIS FOR

TRIAL T+l

IS

THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.
P.

NO—

PREDICTION-HYPOTHESIS

FOR

TRIAL T+l

IS GUESS-

OPPOSITE THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.
Q. PREDICT EVENT

FOR

TRIAL T+l.

Figure 2. Phase Two of binary choice model for DH.

the event of trial t incorrectly, the guess-opposite component is considered
for retention in a fashion analogous to the "throw-me-off" consideration
for patterns. If the prediction hypotheses for trial t — 1 and t — 2 had
guess-opposite components and these hypotheses predicted correctly, then
the guess-opposite component is retained for the prediction hypothesis of
trial t+l. If these conditions are not fulfilled, the guess-opposite com-
ponent is dropped; and the prediction hypothesis for trial t + 1 is the ex-
planation hypothesis for trial t.

If the prediction hypothesis for trial t did not contain a guess-opposite
component, the model considers whether or not the guess-opposite com-
ponent should be introduced on trial t + 1 . The model makes this decision
on the basis of its past experience. It determines the number of consecu-
tive events including and preceding the eventof trial t that can be predicted
by the explanation hypothesis for trial t. This number will be called Ni-
Then the model searches its memory backward from the last trial included
in Nx to find a trial for which the explanation hypothesis was the same as
the explanation hypothesis for trial t. Then the model determines the num-
ber of contiguous events including, preceding, and following this prior
occurrence of the explanation hypothesis of trial t that can be predicted by
this hypothesis. This number will be called N2. If N2 = Ni, the model de-
cides that the explanation hypothesis for trial t will not be the prediction-
hypothesis for trial t + 1 . The prediction hypothesis for trial t+l be-
comes guess-opposite-the-explanation-hypothesis for trial t. If N2 > Ni,
the model decides that the explanation hypothesis for trial t will be the
prediction hypothesis for trial t+ 1 . If Ni > N2, the model decides that
this prior occurrence of the explanation hypothesis for trial t is really not
pertinent and continues to search its memory for an occurrence of the
explanation hypothesis where N^N,. If no such occurrence can be

1
335BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

found, the prediction hypothesis for trial t + 1 is the explanation hypoth-
esis for trial t.

Predicting with the Models

Models of individual behavior like the one described for DH can be
used to predict the same series of binary events that the subject was asked
to predict. The predictions and hypotheses of the model—the model's
protocol—can then be compared to the subject's protocol. The model does
not speak idiomatic English, and so the comparison is made between the
machine's protocol and a suitably coded version of the subject's protocol.

A.

COULD

THE PATTERN

COMPONENT OF

THE PREDI

CT lON

-H

YPOT HES

I

SFOR

TRIAL T HAVE

PREDICTED

THE EVENT

OF

TRIAL T

CORRECTLY?

B.

YES

—

EXPLANATION-HYPOTHESIS FOR

TRIAL T

IS

THE PATTERN

COMPONENT OF

THE

PREDICTION-HYPOTHESIS FOR

TRIAL T.
* 1. DID

SUBJECT'S

EXPLANATION-HYPOTHESIS
*

FOR

TRIAL T

CONTAIN

PATTERN

COMPONENT

*

OF

THE

PREDICTION-HYPOTHESIS FOR

TRIAL T? 120
*

YES

—

GO TO

6. 117
*

NO

—

ERROR

—FAILURE

TO EVOKE

PATTERN-
*

CHANGE

MECHANISM. GO TO

C.

3

C. NO— EVOKE PATTERNS

THAT

COULD

HAVE

PREDICTED

THE

EVENTSOF TRIALS

T AND T- 1

CORRECTLY.

THE PATTERN

OF

THE

PREDICTION-HYPOTHESIS FOR

TRIAL T

IS EVOKED

IF IT

COULD

HAVE

PREDICTED

CORRECTLY THE

EVENTS OF TRIALS T-l, T-2,

AND T-3
* 2.

WAS

THE PATTERN

OF

THE

SUBJECT'S EXPLANATION

*

HYPOTHESIS FOR

TRIAL T

EVOKED?

78
* YES —

GO TO

D. 61
*

NO

—

ERROR

—FAILURE

TO EVOKE

PATTERN.
* ADD

SUBJECT'S

PATTERN

TO EVOKED SET

AND

CONTINUE.

17
D.

SELECT FROM

THE

SET OF EVOKED PATTERNS

THAT PATTERN THAT

HAS

BEEN SELECTED

MOST OFTEN ON PRECEDING TRIALS.

* 3.

WAS

THE PATTERN

OF

THE SUBJECT'S EXPLA
*

NATION-HYPOTHESIS FOR

TRIAL T

SELECTED?

78
*

YES

—

GO TO

E. 64
*

NO

—

ERROR

—FAILURE

TO SELECT

PATTERN.
*

REPLACE INCORRECT

PATTERN WITH

SUBJECT'S

* PATTERN AND

CONTINUE.

14
E.

IS

THE

SELECTED

PATTERN THE PATTERN

COMPONENT OF

THE

PREDICTION-HYPOTHESIS FOR

TRIAL T?
F.

YES

—EXPLANATION-HYPOTHESIS

FOR

TRIAL T

IS THROW

ME

OFF

THE

SELECTED

PATTERN.
* 4. DID

SUBJECT'S

EXP LAN AT 10 N -H

YPOT HES

I

S

*

FOR

TRIAL T

CONTAIN

TH

ROW-M

E-0 FE ? 27
*

YES— GO TO

H. 26

*

NO— ERROR

—INCORRECT

EVOCATION OF

*

THROW-ME-OFF.

DELETE TH

ROW-'ME-OFF

* AND

GO TO

H. 1
G.

NO

—EXPLANATION-HYPOTHESIS

FOR

TRIAL T

IS

THE

SELECTED

PATTERN.
* 5. DID

SUBJECT'S EXPLANATION-HYPOTHESIS

*

FOR

TRIAL T

CONTAIN THROW-ME-OFF?

, 51
*

YES

—

ERROR—

FAILURE

TO EVOKE THROW-ME-

*

OFF. INSERT THROW-ME-OFF

AND

GO TO

H. 3
*

NO

—

GO TO

H. 48
* 6. DID

SUBJECT'S EXPLANATION-HYPOTHESIS

*

FOR

TRIAL T

CONTAIN THROW-ME-OFF?

117
*

YES

—

ERROR—

FAILURE

TO EVOKE THROW-ME-

*

OFF. INSERT THROW-ME-OFF

AND

GO TO

H. 3
*

NO

—

GOTOH.

114
Figure 3. Summary of behavior of Phase One of binary choice model for DH
adapted for conditional prediction.

336 SIMULATION OF COGNITIVE PROCESSES

H. DID THE PREDICTION-HYPOTHESIS

FOR

TRIAL T

CONTAIN

A

GUESS-OPPOSITE COMPONENT?

I.

YES—

DID THE

PREDICTION-H

V P

OT

HE

S

I

S FOR

TRIAL T

PREDICT

THE EVENT

OF

TRIAL T

CORRECTLY?

J.

YES— PREDICTION-HYPOTHESIS FOR

TRIAL T+l

IS GUESS-OPPOSITE

THE PATTERN

COMPONENT OF

THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.
* 7. DID

SUBJECT'S PREDICTION-

H V P 0 TH E

S

I

S

* FOR TRIAL T+l

CONTAIN GUESS-OPPOSITE

*

COMPONENT?

b

*

YES— GO TO

12. 5

*

NO— ERROR— INCORRECT RETENTION OF

*

GUESS-OPPOSITE COMPONENT.

DELETE
*

GUESS-OPPOSITE

AND

GO TO

12. 1
K.

NO—

DID THE

PREDICTION HYPOTHESIS FOR TRIALS

T- 1 AND
T-2

CONTAIN GU

E

SS

-0

PPOS

I TE

COMPONENTS

AND WERE THE

PREDICTIONS OF

THE

EVENTS OF THESE TRIALS CORRECT?

L.

YES

—

PREDICTION-HYPOTHESIS FOR

TRIAL T+l

IS GUESS-OPPOSITE

THE EXPLANATION-HYPOTHESIS

FOR

TRIAL T.

* 8. DID

SUBJECT'S

PREDI

C

TI 0 N -H

YPOTH

E

S

I

S

*

FOR

TRIAL T+l

CONTAIN GUESS-OPPOSITE

* COMPONENT? 2

*

YES— GO TO

12. 2
NO —

ERROR

—

INCORRECT RETENTION OF

*

GUESS-OPPOSITE COMPONENT.

DELETE

*

GUESS-OPPOSITE

AND

GO TO

12. 0
M.

NO—

PREDICTION-HYPOTHESIS

FOR

TRIAL T+l

IS

THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.
* 9. DID

SUBJECT'S PREDICTION-HYPOTHESIS

*

FOR

TRIAL T+l

CONTAIN GU

E

SS

-0

PPOS

IT E

*

COMPONENT?

12
*

YES— ERROR

—FAILURE

TO

KEEP

GUESS-

* OPPOSITE

COMPONENT. INSERT GUESS-

*

OPPOSITE

AND

GO TO

12. 1

* NO—

GO

TO 12. H
N. WILL THE EXPLANATION-HYPOTHESIS

FOR

TRIAL T CONTINUE?
(SEE TEXT

FOR

AN EXPLANATION

OF THIS

TEST.)
0.

YES—

PREDICTION-HYPOTHESIS

FOR

TRIAL T+l

IS

THE

EXPLANATION-HYPOTHESIS FOR

TRIAL T.

*10.

DID

SUBJECT'S

PREDICTION-HYPOTHESIS
*

FOR

TRIAL T+l

CONTAIN GUESS-OPPOSITE

*

COMPONENT?

136
* YES —ERROR —FAILURE

TO EVOKE GUESS-

*

OPPOSITE COMPONENT. INSERT GUESS-

*

OPPOSITE

AND

GO TO

12. 1?
*

NO—.GO TO

12. 126
P.

NO—

PREDICTION-HYPOTHESIS

FOR

TRIAL T+l

IS GUESS-OPPOSITE

THE EXPLANATION-HYPOTHESIS

FOR

TRIAL T.
*11. .DID

SUBJECT'S

PREDI

CT

I0 N -H

YPOTH

E

S

I

S

*

FOR

TRIAL T+l

CONTAIN GU

E

SS

-0

PPOS

ITE
*

COMPONENT?

3 '*

YES

—

GO TOl2.

2

* NO—

ERROR— INCORRECT SELECTION OF

*

GUESS-OPPOSITE.

DELETE

GU

E

SS

-0

PPOS

I TE
* AND

CONTINUE.

37
*12.

WAS

PATTERN

OF

SUBJECT'S

EXPLANATION-

*

HYPOTHESIS FOR

TRIAL T THE

SAME AS

* THE PATTERN

OF

THE

SUBJECT'S

PREDICTION-
*

HYPOTHESIS FOR

TRIAL T+l?
*

YES— GO TO

Q. 9i

*

NO

—

ERROR

—FAILURE

TO CHANGE

PATTERN.
*

INSERT SUBJECT'S

PATTERN IN

PREDICTION-

*

HYPOTHESIS FOR

TRIAL T+l AND

CONTINUE.

3
Q.

PREDICT

EVENT

FOR

TRIAL T+l. _

*13.

DID

SUBJECT PREDICT SAME

EVENT? I 9'

* YES —

GO

TO A. I"

*

NO

—

ERROR— INCORRECT PREDICTION.

*

CORRECTANDGOTOA.

'
Figure 4. Summary of behavior of Phase Two of binary choice model for DH
adapted for conditional prediction.

337

BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

The model's protocol can be generated by presenting the model with the
events in the same way the subject was presented with the events in the
binary choice experiment; or the computer can take the experimenter's
role, too, if suitable precautions are taken to prevent the model from peek-
ing. However, this straightforward method of simulating the subject's
behavior raises difficulties. These difficulties are identical to those of get-
ting a chess or checker program to play a book game (Newell, Shaw and
Simon, 1959c; Samuel 1959a). Because the decision of the chess or
checker program at move m depends on its decisions at the preceding
moves, m — 1, m — 2, . . . , such a program, when it is playing a book
game, must be "set back on the track" if its move deviates from the book
move. The program and the book must have the same history if the pro-
gram is to have a fair chance to make the same decision as that made in
the book game. This "setting back on the track" may involve resetting a
large number of parameters as well as changing the move itself. Elsewhere,
I have called this "setting-back-on-the-track" technique conditional pre-
diction. The prediction of the model is conditional on the preceding deci-
sions of the model being the same as those of the subject it is trying to
Predict (Feldman, 1962).

The application of the conditional prediction technique to binary choice
models such as the one described above for the subject DH involves (1)
comparing the program's behavior and the subject's behavior at every
Possible point, (2) recording the differences between the behaviors, and
(3) imposing the subject's decision on the model where necessary. A type
of monitor system is imposed on the program to perform these functions.
The model for DH with the conditional prediction system controls is
represented in Figs. 3 and 4. An example will help clarify these figures. In
Rg. 3, after each decision by the model to keep the pattern of the pre-
diction hypothesis for trial t for the explanation hypothesis for trial t (B),
this decision is compared to the subject's decision (1). If the model's
decision was different from that of the subject, control is transferred to the
Pattern-change mechanism (3 trials). If the model's decision was the
same as that of the subject, control is transferred to another part of the
monitor (117 trials). Figures 3 and 4 only contain the results for 195
trials because the model began at trial 6.

Conclusions
Deficiencies of the Models
The model for DH and the similar models that have been constructed to
Slmulate the behavior of two other subjects in the binary choice experiment
(Feldman, 1959) are deficient in several respects. First of all, the com-
parison of the behavior of the model to that behavior of the subject from

338 SIMULATION OF COGNITIVE PROCESSES

which the model was developed is, of course, not a very good test of the
model. This type of comparison only yields some indication of the ade-
quacy of the model and its components. Comparison of the behavior of
the model to sequences of behavior of the subject not used in constructing
the model awaits correction of some of the deficiencies mentioned below.

The segment of the model which has the highest number of errors rela-
tive to the number of times it is used is the guess-opposite segment (see
Fig. 4). The subject certainly exhibits this type of behavior, but the
model does not very often predict "guess opposite" when the subject does.

The pattern-change segment has a better error record, but it raises an-
other issue. This segment is actually a selection device. A pattern is se-
lected from the list of patterns that the subject uses. A more elegant pat-
tern-change mechanism would generate a pattern out of the preceding
sequence of events and some basic concepts. One of these concepts might
be that patterns with equal numbers of P's and C's are preferred to alter-
nation patterns with unequal numbers of P's and C's, all other things being
equal.

The models have no mechanisms for making perceptual errors—"see-
ing" one symbol when another has occurred. Examination of the protocol
of DH (Appendix) indicates that he does sometimes think that a C is a P
(e.g., trial 196).

The models do not have a sufficiently rich repertoire of hypotheses.
Subjects entertain more types of hypotheses about the event series than
the two types, pattern and antipattern used in the model for DH. Some
subjects entertain more sophisticated hypotheses. For example, one sub-
ject was able to detect the fact that a series of events was randomized in
blocks of ten trials, i.e., the series had 7 P's and 3 C's in each block of ten
trials.

Some evidence also exists that when suitably motivated by money, some
subjects in a binary choice experiment will predict the most frequent event
on each trial. Models for these subjects require statements of the condi-
tions under which subjects abandon testing other hypotheses or at least
abandon testing hypotheses by using them to predict events. Hypotheses
could still be considered and tested without using them to predict events.

Contributions of the Models
The consequences of computer simulation for the study of human behavior
have been discussed at some length in several places, and I have made a
limited statement of my views on this matter in another place (Feldman,
1962). It will suffice then to discuss some of the implications of the work

reported here for our understanding of behavior. The computer models of
binary choice behavior are relatively simple computer programs; however,
they are relatively complex psychological models. A widely accepted view

I
I

339BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

of binary choice behavior has been the idea of verbal conditioning em-
bodied in the stochastic learning model. In its simplest form, this model
says the subject's probability of predicting Ei or E2 in the binary choice
experiment is an exponentially weighted moving average over preceding
events. The verbal conditioning model is hardly consistent with the hy-
pothesis-testing behavior exhibited by DH and a dozen other subjects for
whom I have protocols. Protocols of group behavior in the binary choice
experiment made available to me by David G. Hays are also consistent
with the general idea of hypothesis-testing. Other inadequacies of the
verbal conditioning model and evidence for hypothesis-testing models have
been discussed elsewhere (Feldman, 1959).

The computer has provided the exponents of hypothesis-testing models
of behavior with the means for studying and testing these complex models.
Oversimplified explanations of human behavior can no longer be justified
on the grounds that the means for studying complex models do not exist.
Hopefully, the use of computers to simulate human behavior can extend
man's intellect by helping him study his own behavior.

Appendix: Protocol of Subject DH1

(All right, now I'll read the instructions to you. I'm going to show you
a series of symbols. They will either be a P symbol or a C symbol. Before
each word I'll give the signal NOW. When you hear the signal NOW,
tell me what symbol you expect will occur on the next trial and why you
selected that symbol. That's the purpose of the tape recorder. Take your
time. After you have given me your guess, I will show you the correct
symbol. Your goal is to anticipate each word as accurately as you can.
Please . . . Well, do you have any questions?) Primarily, I just guess
whether it'll be a P or a C. (That's it.) But this explaining why I think
so. It can be little more than—I think it'll be this, I guess, I have a feel-
ing. How more involved can it be than that? (Well, whatever reasons you
have. If those are the only reasons that occur to you as you go thru this,
those will be the only reasons. Maybe they won't. OK, we'll try a few and
then if you have any questions . . .)
(Now what do you expect the first symbol will be?) P. (OK, the Ist

symbol is a C.)
(OK, now what do you expect the 2d symbol will be?) It'll be a P.

(Why?) It's pictured in my mind. (OK, the 2d symbol is a C.)
I'U say a C. (Why?) Primarily this time because I'm trying to outguess

you. (OK, the 3d symbol is a C.)
(What do you say for the 4th symbol?) I'll say C again. (Why?) This

1 The statements in parentheses are those of the experimenter.

340 SIMULATION OF COGNITIVE PROCESSES

time I feel it'll be a C. (The 4th symbol is a C. When you give your
answer, if you say, "I think the sth one will be something," it'll be easier
to check the tape against the answer sheet.)

(What do you think the sth one will be?) The sth one will be a P. (Why
is that?) I feel it'll be a P, that's all. (The sth one is a C.)

(What do you think the 6th one will be?) The 6th one will be a C be-
cause you've been giving me C's all along, and I don't think this pro-
gression will end. (The 6th one is a C.)

(What do you think the 7th one will be?) The 7th one will be a C be-
cause I don't think the progression will be broken. (OK, the 7th one
was a C.)

The Bth one will be a C for the same reason. You won't break the pro-
gression. (OK, the Bth one is a P.)

(What do you think the 9th one will be?) The 9th one will be a C. (Why
is that?) I think that you just gave me the P to throw me off and you'll
continue the progression. (The 9th one is a C. Oh, one thing, can you
see these cards?) Yes. (Can you see me writing?) No, I can't. (OK.)
I'm not looking. (Well, you can look at these cards. I want you to see
I'm not picking these out of my head. This set has been predeter-
mined.)

All right. This one will be a P. The 10th one will be a P. (Why is that?)
I feel that the progression will start to mix up now. (The 10th one is
aC.)

(What do you think the 11th one will be?) The 11th one will be a C
You'recontinuing the progression. (The 1 1th one is a C.)

(What do you think the 12th one will be?) The 12th one will be a C
because you're continuing the progression. (The 12th one is a P.)

The 13th one will be a C. The 12th one was a P. You were trying to
throw me off. The progression will continue. (The 13th one is a P.)

The 14th one will be a P. You're beginning a new progression with P's-
(The 14th one is a P.)

The 15th one will be a P. You're still continuing the progression. (The
15th one is a P.)

(What about the 16th one?) The 16th one will be a C. ... to throw me
off now. (The 16thone is a C.)

The 17th one will be a C. You're going to see if I'll revert to the pro-
gression of P's. (The 17th one is a C.)

The 18th one will be a P. You're going to break this progression of C's-
(The 18th one is a C.)

The 19th one will be a P. You're going to get off this progression of C's-
(The 19th one is a P.)

The 20th one will be a P. You're going to try to throw me off trying to
make me think that all—think you're going back to the other progres-

341BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

sion which I'm confused about now. I don't remember what the last
one was—C, I believe. (The 20th one is a P.)

The 21st one will be a C. You won't continue with theprogression of P's.
(The 21st one is a P.)

The 22d one is a C. You're doing this so that I might think the P progres-
sion will continue. (The 22d one is a C.)

The 23d one will be a C. You're trying to make me think that the next
one will be a P—going back to the old progression. (The 23d one is
aC.)

The 24th one will be a C. You're going to continue the progression of C's.
(The 24th one was a C.)

The 25th one is a C. You're still going to continue the progression of C's.
(The 25th one is a C.)

The 26th one is still a C. You'll continue the progression. (The 26th one
isaC.)

The 27th one is a P. You'll break the progression now. (The 27th one is
aC.)

The 28th one will be a P. You're going to break the progression now.
(The 28th one is a C.)

The 29th one is a C. You're continuing the progression. (The 29th one is
aC.)

The 30th is a C. You'll still continue the progression. (The 30th is a C.)
The 31st is a C. You'll continue the progression. (The 31st is a C.)
The 32d is a C. You'll still continue the progression. (The 32d is aP.)
The 33d is a C. You gave me a P last time to throw me off. (The 33d is

aC.)
The 34th is a C. You'll continue the progression. (The 34th is a C.)
The 35th is a P. You're going to throw me off the progression. (The 35th

isaC.)
The 36th is a C. You'll continue the progression. (The 36th is a C.)
The 37th is a C. You'll continue the progression. (The 37th is a C.)
The 38th is a C. You'll continue the progression. (The 38th is a C.)
The 39th is a C. You'll continue the progression. (The 39th is a C.)
The 40th is a C. You'll continue the progression. (The 40th is a C.)
The 41st is a C. You'll continue the progression. (The 41st is a C.)
The 42d is a C. You'll continue the progression. (The 42d is a C.)
The 43d is a C. You'll still continue the progression. (The 43d is a C.)
The 44th is a C. You'll still continue the progression. (The 44th is a C.)
The 45th is a C. You'll still continue the progression. (The 45th is a C.)
The 46th is a C. You'll still continue the progression. (The 46th is a C.)
The 47th will be a P. You'll now break the progression. (The 47th is a

C)

342 SIMULATION OF COGNITIVE PROCESSES

The 48th will be a C. You'll go back to the old progression. (The 48th is
aC.)

The 49th is a C. You'll continue the progression. (The 49th is a C.)
The 50th is a C. You'll continue the progression. (The 50th is a P.)
The 51st will be a C. You gave me the P to throw me off. (The 51st is

a P.)
The 52d is aP. You've begun a progression of P's. (The 52d is a C.)
The 53d is a P. You gave me a C to throw me off. (The 53d is a C.)
The 54th is a C. You'll continue the progression of C's. (The 54th is a C)
The 55th is a C. You'll still continue the progression. (The 55th is a C.)
The 56th is a C. You'll continue the progression. (The 56th is a P.)
57 is a P. The P will throw me off the progression thinking you had tried

to throw me off the C progression with your last P. (57 you said was a
P?) P. (57 was a C.)

58 is a C. You began a progression of C's. (58 is a P.)
59 is a C. You're still trying to throw me off with the C's. (59 is a P.)
60 will be a P. You'rebeginning a progression of P's. (60 is a C.)
61 is a P. You're zigzagging between P's and C's. (61 is a P.)
62 is a C. You'll continue theoscillation. (62 is a C.)
63 is a C—rather 63 is a P because of the oscillation pattern. (63 is a P.)
64 is a C because of the oscillation pattern. (64 is a C.)
65 is a P because of the oscillation pattern. (65 is a C.)
66 is a C. You'vebegun a progression of C's. (66 is a P.)
67 will be a C. You're oscillating again. (67 is a C.)
68 is a C. You're having a different type of oscillation—2 C's between a

P. (68 is aP.)
69 is a C. You're oscillating with C's and P's. (69 is a C.)
70 will be a P. It's the alternate symbol. (70 is a P.)
71 will be a C because of the oscillation sequence. (71 is a C.)
72 will be a P because of the oscillation sequence. (72 is a C.)
73 will be a C. You've begun a new progression of C's. (73 is a C.)
74 is a C. You're continuing theprogression. (74 is a C.)
75 is a C. You're still continuing with the progression. (75 is a C.)
76 is still a C. You're continuing with the progression. (76 is a C.)
77 is a C. You're still continuing with the progression. (77 is a C.)
78 is a C. Theprogression is continuing. (78 is a P.)
79 is a C. The P is to throw me off. The progression continues. (79 is a

C)
80 is a C. The progression will continue. (80 is a C.)
81 is a C. Theprogression continues. (81 is aP.)
82 will be a C. You're alternating now with C's and P's. (82 is a P.)
83 is a P. You've begun a progression of P's. (83 is a C.)

343BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

84 will be a C. TheP's were given to throw me off. (84 is a P.)
85 will be a P. You've begun a new alternating sequence. (85 is a P.)
86 will be a C. You're following with a C and 2 P's. Another C will come.

(86 is a C.)
87 will be aP. You'll follow the same sequence. (87 is a C.)
88 will be a P. You've begun a sequence of 2 C's and a P. (88 is a C.)
89 is a C. You've begun a new progression of C's. (89 is a C.)
90 is a C. You'll continue the progression. (90 is a C.)
91 is a C. Theprogressioncontinues. (91 is a C.)
92 is a C. Theprogression continues. (92 is a P.)
93 is a P. The P's given to me previously to make me think that the pro-

gression was being broken and that you would revert to it after the P.
The next one will be a P. (93 is a C.)

94 will be a C. You've gone back to the C progression. (94 you say now is
aC.) 94 is a C. (OK, 94 is a C.)

95 is a C. You've begun a progression of C's. (95 is a P.)
96 will be a C. You're alternating now with C's and P's. (96 is a P.)
97 is a C. You've begun a progression of a C and 2 P's. (97 is a P.)
98 is a P. You've begun a progression of P's. (98 is a C.)
99 is a C. You've begun a progression of 3 P's and 3 C's. You've already

had the 3 P's. 98 (sic) will be a C. (That was . . . 99 is going to be
aC. Yousaid. 99 is a C.)

(What's 100?) 100 will be a C. It follows the progression. (100 is a C.)
101 will still be a C. Continue the progression of 3 P's and 3 C's. (101

isaC.)
102 will be a C. You've begun a progression of C's. (102 is a C.)
103 is a C. You'll continue the progression of C's. (103 is a C.)
104 is a C. You'll continue with the progression. (104 is a C.)
105 will be a C. You'll continue the progression. (105 is a C.)
106 will be a P. You'll break the progression now. (106 was a C.)
107 will be a C. You'll continue the progression. (107 was a P.)
108 will be a C. You gave me the P to throw me off. The progressionwill

continue. (108 is a C.)
109 will be a C. You'll continue the progression. (109 was a P.)
110 will be a C. You're alternating with C's and P's. (110 is a C.)
Hi will be a P. You'll continue the alternation. (11l was a P.)
112 will be a C. You'll continue the alternation. (112 was a P.)
113 will be a C. You've begun a progression of a C and 2 P's. (113 is

a P.)
114 will be a P. You've begun a progression of P's. (114 is a P.)
115 will be a P. You'll continue the progression. (115 is a C.)
116 will be a P. The C was given to throw me off. (116 is a C.)

344 SIMULATION OF COGNITIVE PROCESSES

117 is a C. You've begun a progression of 4 P's and 4 C's. (117 is a P.)

118 will be a P. The progression has changed from 4 P's and 4 C's to
4 P's and 3 C's. (118 is a C.)

119 will be a P. You're alternating with C's and P's. (119 is a C.)
1 20 will be aC. You're continuing the progression. (1 20 is a P.)
121 will be a P. You have a progression of 2 C's and 2 P's. (121 is a P.)
1 22 will be aC. You'll continue this progression of 2 and 2. (122 is a C.)
123 will be a C. You're continuing the progression. (Of what?) Of 2 C's

and 2 P's. (123 is a C.)
124 will be a C. You've begun a progression of C's. (124 is a C.)
124 (sic) will be a C. You're continuing the progression. (125 is a C.)
126 will be a C. You're continuing the progression. (126 is a P.)
127 will be a C. You gave me the P to throw me off. (127 is a P.)
128 will be a P. You've begun a progression of P's. (128 is a C.)
129 will be a C. You've begun a progression of 2 P's and 2 C's. (129 was

aC.)
130 will be a C. You've begun a progression of C's. (130 is a P.)
131 will be a P. You're continuing the progression of 2 P's and 2 C's.

(131 is a C.)
132 will be a P. You're alternating the signs now. (132 is a C.)
133 will be a C. You've begun a sequence of C's. (133 is a C.)
134 will be a C. You're continuing the sequence. (134 is a C.)
135 is a C. You're continuing with theprogression. (135 is a P.)
136 will be a P. You've begun . . . you're trying to throw me off now

with a 2d P. Think there would be only one P. (136 is a C.)
137 is a C. You're going to continue with the progression of C's. (137 is

aC.)
138 is a C. You'll continue the progression. (138 is a C.)
139 is a C. You'll continue the progression. (139 is a P.)
140 is a C. TheP was given to throw me off. (140 is a P.)
141 is a C. You gave me the 2 C's (sic) for the same reason as the

previous time you had given me the 2 C's 'er 2 P's . . . (141 is a C)
142 is a C. You'll continue with the progression. (142 is a C.)
143 is a C. You'll continue with the progression. (143 is a C.)
144 is a C. You'll continue with the progression. (144 is a C.)
145 is a P. You'll break the progression. (145 is a C.)
146 is a C. You'll continue the progression. (146 is a C.)
147 is a C. You'll continue the progression. (147 is a C.)
148 is a C. You'll continue the progression. (148 is a C.)
149 is a C. You'll continue the progression. (149 is a C.)
150 is a C. You'll still continue the progression. (150 is a C.)
151 is a C. You'll still continue the progression. (151 is a C.)
152 will be a P. You'll break theprogression. (152 is a C.)

1
345BEHAVIOR IN THE BINARY CHOICE EXPERIMENT

i

A.

153 is a C. You'll continue the progression. (153 is a P.)
154 is a C. You've broken the progression and you'll revert to it now.

(154 is a C.)
155 is aC. You'll continue the progression. (155 is a P.)
156 is aC. You're alternatingwith P's and C's. (156 is a C.)
157 is a C. The alternation of P's and C's was to throw me off the pro-

gressionof C's. The C progression will continue. (157 is a P.)
158 is a C. You're still going back to C sequence. (158 is a C.)
159 is a C. You're still going to continue this sequence. (159 is a P.)
160 is a C. You have an alternating sequence of P's and C's. (160 is a C.)
161 will be a P. You'll continue to alternate. (161 is a P.)
162 will be aC. You'll continue this oscillation. (162 is a P.)
163 will be a C. You'll continue the alternation. (163 is a C.)
164 will be aP. You'll continue the alternation. (164 is a C.)
165 will be a P. You'll go back to the alternation. (165 is a C.)
166 will be a C. You've begun a sequence of C's. (166 is a C.)
167 will be a C. You've begun a sequence of C's. (167 is a P.)
168 will be a P. You've begun a sequence of 2 C's and 2 P's. (168 is a C.)
169 is a C. The previous P's were given to throw me off. You'll continue

the sequence of C's. (169 is a C.)
170 will be aC. You'll continue the sequence. (170 is a P.)
171 will be a P. You'll begin a sequence of P's. (171 is aP.)
172 will be aC. You'll revert to the C's. (172 is a C.)
173 will be a C. You're alternating with 2 P's and 2 C's. (173 is a P.)
174 will be aC. The alternation is a C and aP. (174 is a C.)
175 will be a P. You'll continue this alternation. (175 is a C.)
176 will be aC. You'vebegun a sequenceof C's. (176 is aP.)
177 will be a C. You'll continue with the progression of C's. (177 is a P.)
178 will be a C. You've begun a progression of 2 P's and 2 C's. (What

did you say 178 was?) AC. (178 is a C.)
179 will be a C. You'll continue with another C to complete the sequence

of 2 P's and 2 C's. (179 is a C.)
180 will be aP. You'll continue this sequence. (180 is a C.)
181 is a C. You'vebegun a sequence of C's. (181 is a C.)
182 is a C. You'll continue the sequence. (182 is a C.)
1 83 is aC. You'll continue the sequence. (1 83 is a P.)
184 will be a C. The P was given to throw me off. (184 is a C.)
185 is a C. You'll continue the sequence of C's. (185 is a C.)
186 will be a C. You'll continue the sequence. (186 is a C.)
187 will be aC. You'll continue the sequence. (187 is a C.)
188 is a C. You'll continue the sequence. (188 is a C.)
189 is a C. You'll continue the sequence. (189 is a P.)
190 will be aC. The P was given to throw me off. (190 is a C.)

346 SIMULATION OF COGNITIVE PROCESSES

191 will be a C. The double P (sic) was given to throw me off a little
more. (191 is a C.)

192 is a C. You've . . . been giving me a sequence of 2 P's and 2 C's.
(192 is a C.)

192 (sic) is a P. You're continuing the sequence of 2 P's and 2 C's. (193
is a C.)

194 is a C. You've begun a sequence of C's. (194 is a C.)
195 is a C. You'll continue the sequence. (195 is a P.)
196 will be a P. You have a sequence here of inserting 2 P's. (196 is a C.)
197 is a C. TheP was given to throw me off. (197 is a C.)
198 will be a C. You'll continue the sequence. (198 is a C.)
199 is a C. You'll continue the sequence. (199 is a C.)
200 will be a C. You'll continue the sequence. (200 is a C.)

I

A MODEL OF THE
TRUST INVESTMENT PROCESS

Geoffrey P. E. Clarkson

The object of this study is the investment of trust funds held by banks
in the United States—funds that currently amount to nearly $60 billions.
The purpose of our model is to simulate the process employed in the in-
vestment of trust funds in common stocks. When making a decision a trust
officer in a bank is confronted with a large assortment of information.
Information abounds on the operation of firms and the market valuation
of their stocks, and published reports make predictions about the future
state of the general economy and stock market. When an investor acts in
an agency or fiduciary capacity, legal restrictions and the desires of his
client must also be considered. These factors, when evaluated and com-
bined into an investment program, ultimately result in a decision to buy
specific quantities of particular stocks and bonds. Thus, an investor choos-
ing a portfolio is processing information: he sorts the useful from the
irrelevant, and decides which parts of the total information flow are most
important.

The investment process is a problem in decision-making under uncer-
tainty. Our model, written as a computer program, simulates the proce-
dures used in choosing investment policies for particular accounts, in
evaluating the alternatives presented by the market, and in selecting the
required portfolios. The analysis is based on the operations at a medium-
sized national bank 1 and the decision-maker of our model is the trust
mvestment officer.2 We require our simulation model to select portfolios

The trust assets of this bank are approximately equal to the average for all na-tional banks.
It should be noted that our model reflects the behavior of one investor and hence

347

348 SIMULATION OF COGNITIVE PROCESSES

i

A

using the same information that is available to the trust officer at the time
his decisions are made.

Postulates andData for the Model

Since our model is a theory of individual decision-making behavior, the
method of analysis is based on the theory of human problem-solving
(Newell, Shaw, and Simon, 1958a). In keeping with the postulates of this
theory, the main postulates for the analysis of the investment decision
process are that there exist:

1. A memory that contains lists of industries each of which has a list
of companies associated with it. The memory also contains information
associated with the general economy, industries, and individual companies. 3

2. Search and selection procedures that perform the task of searching
the lists of information stored in memory, selecting those bits that have
the required attributes, regrouping the selected items of information into
new lists, and performing algebraic operations when necessary. These
procedures function in a manner similar to a clerk who prepares lists of
stocks suitable for current investment by scanning a master list.

3. A set of rules or criteria that guide the decision-making process by
stipulating when and how each decision process is to be used. The set of
rules constitutes the structure of the decision processes for an individual
investor. It might be compared to the "rules of thumb" of the traditional
"expert," but there is an important difference—namely, the set of rules
must be defined unambiguously.

In common with other problem-solving programs, the processes are
used iteratively and recursively. Lists of industries and companies are
searched for particular attributes; sublists are created, searched and di-
vided again. For example, to obtain a high growth portfolio, the list of
companies stored in memory is searched to obtain securities with the de-
sired characteristics. Additional criteria are employed to narrow (or ex-
pand) this list. Further search and testing against desired criteria yields
the specific selection of stocks to buy.

Like the investor it simulates, the program stores the final result (list)

may not describe the general case. The implications of this study for more general
theories of investment are discussed in Clarkson (1962), chap. 8.

s Investors categorize companies by industry. Not all investors may associate iden-
tical companies with a given industry, but the process of classification by industry
remains invariant as the primary basis for listing companies in the memory. The
information associated with each company also varies among investors, but each may

be represented as having a list of attributes with their values stored in memory, e.g-
growth rate, dividendrate, price earnings ratio, expectedearnings, expected yield, etc-

[349A MODEL OF THE TRUST INVESTMENT PROCESS

i

A

for future use. If the same problem reoccurs, the entire process need not
be repeated. The list may be judgedby present criteria, accepted, adapted
to meet new conditions, or completely rejected. In the latter event the
program would renew search and selection activity until a new list had
been formed.

To define a model of trust investment behavior within this general
framework we require the basic rules (operations) used in making a deci-
sion to purchase particular securities. To obtain these data, trust depart-
ments of several local banks are studied by interviewing departmental
officers and by observing behavior at committee meetings called to review
past and future decisions. Attention was then focused on an investment
officer who was chiefly responsible for all decisions relevant to the choice
of portfolios within a particular bank. The history of several accounts were
examined and naive behavioral models were constructed to help uncover
these decision processes that appeared to be invariant among accounts.

In an attempt to confirm or refute these hypotheses, the trust officer
was asked to permit "protocols" to be made of his decision processes.4
These protocols recorded the trust officer's decision processes for accounts
that arose in the course of his work. The decisions made during those
Problem sessions determined the particular securities that were purchased
for those accounts.

Close inspection of the protocols revealed that many of the decisions
Pertaining to the formulation of expectations, and the evaluation of indus-
tries, companies and stocks were made before the selection of a particular
Portfolio began. In an attempt to discover how these prior decisions were
made a new approach was taken. The trust officer was asked to read arti-
cles from financial journals and analysts' reports, to which he subscribed,
and comment on the ideas, forecasts, facts, etc., presented in the articles.Protocols of these thought processes were more successful in that they
revealed many of the decision processes subsumed in the earlier transcripts

On the basis of these data and analytic techniques, a model was con
structed. The model considers the problem of investing' the funds of new
accounts in common stocks. It does not directly consider the problem of
allocating the funds among bonds, preferreds, and common stocks. The
trust investment model is stated in terms of a computer model and is pre-
sented in the nextsection.5

*A "protocol" is a transcript of the verbalized thought and actions of a subjectwhen the subject has been instructed to think or problem-solve aloud. Thus, the
ranscript is a record of the subject's thought processes while engaged in making avision. Since a protocol is a detailed description of what a person does it avoidss°me of the problems inherent in interviewand questionnaire techniques that ask thesubject to state his reasons for behaving as he does. For further discussion seeNewell,

Shaw,

Simon (1958a).
The program is written in Information Processing Language V (Newell, 1961*0.

350 SIMULATION OF COGNITIVE PROCESSES

The trust investment process can be divided into three parts: (a) the
analysis and selection of a list of stocks suitable for current investment—
the "A" List, (b) the formulation of an investment policy, and (c) the
selection of a portfolio. Each of these sections can be also broken down
into a number of subsections (seeFig. 1) .

The process of selecting a current list of stocks [step (a)] entails an
analysis of individual companies as well as an appreciation of the factors
affecting their respective industries and the economy as a whole. The
problem of formulating an investment policy [step (b)] involves a process
that translates the information on the beneficiary or client into an invest-
ment goal that will yield the desired combination of income and/or appre-
ciation. This process requires the trust investor to consider such things as
the effect of taxes on the stream of income generated by the portfolio as
well as the stability of that stream. The actual selection of a portfolio
[step (c)] follows directly from steps (a) and (b). While the selection

Figure 1. Structure of decision process.

A MODEL OF THE TRUST INVESTMENT PROCESS 351

I

A,

procedure contains rules on diversification and on how to determine the
size of participations, the essence of the process lies in carrying the prior
analysis to its logical conclusion.

In presenting this model of trust investment behavior, we shall follow
the outline of the process given in Fig. 1 so that each subsection as well
as the interrelations can stand by themselves for critical appraisal.

Having outlined the investment process and the method of analysis used
in constructing the model, the only question that needs to be examined
before proceeding with a description of the model is the effect of the
organization and the fiduciary relation on the trust investment process. 6

Since banks are responsible for all investments made in their name,
elaborate procedures are set up to review and approve all investment de-
cisions. 7 Also, the necessity of being able to justify their investment deci-
sions in a court of law has led trust investors to create a set of criteria with
which to judge the quality of any given portfolio or investment. For all
practical purposes these criteria can be reduced essentially to one maxim:
A security is of investment quality // and only if it is being bought or isbeing held by other leading trust institutions.8 Clearly, this maxim is cir-
cular in nature and if strictly true would preclude change. However, the
smaller the bank the truer the maxim, which implies that innovations must
come from the larger banks acting by themselves or in small groups. If
innovations do not occur very frequently, the maxim then asserts that the
general list of stocks that are considered suitable for trust investment will
remain fairly stable over time. The addition of a further observation,
namely, that trust investors eschew taking losses, i.e., selling stocks whose
Prices have fallen below the purchase price, allows an even stronger pre-
diction to be made. The basic list of stocks—the "B" List—that are con-sidered to be suitable for trust investment by a particular bank will remainfairly stable over time, any changes being in the form of additions. Thus,tor any given trust investor, the basic list of stocks from which he canchoose is given to him by the historical record. At any particular point intime an investor selects stocks from a subset of his basic list. This subset

As we are principally concerned with the investment of trust funds for individualaccounts, the important constraints are those that are imposed on the investor by theranking institution and the fiduciary relation with the client.
"All investments of trust funds shall be made, retained or disposed of only with*c approval of the Trust Committee. . . . The Trust Committee shall, at least onceduring each period of twelve months, review all the assets held in or for eachfiduciary account to determine their safety and current value and the advisability ofretaining or disposing of them." Excerpt from the Trust Manual of a National Bank.It is interesting to note that this Trust Committee is appointed by the Board of

"Sectors and is composed of the President, the Vice-President in charge of invest-ments, the Vice-President in charge of trusts, and other officials.
By a simple substitution of words this maxim can roughly be applied to the com-position of portfolios, i.e. the ratio of common stock to bonds and preferred stocks.

352 SIMULATION OF COGNITIVE PROCESSES

is a proper subset of the "B" List and is defined by a concept of relative
valuation. As expectations, prices, yields, and other metrics change with
time, so does the content of this subset which is called the "A" List.

Hence, institutional constraints reduce the problem of determining the
list of stocks from which, at a given point in time, an investor actually
chooses—the "A" List—to one of "stocks" and "flows." Since the "stocks"
change slowly with time the model assumes them to be given and takes as
part of its goal the analysis and prediction of the "flows."

1. Selection of the CurrentList of Stocks—The "A" List
In this section we shall present the data and the mechanisms that the
model uses to evaluate and select the stocks for the "A" List. Unlike the
model's processes for steps (b) and (c), the mechanisms described in this
section are not intended to be a reproduction of the analytic procedures
used by the trust officer each time he selects a new portfolio. To reproduce

Figure 2. Selecting the "A" List,

I

A MODEL OF THE TRUST INVESTMENT PROCESS 353
only those procedures would require us to ignore all the data on each
company that he has collected and processed in preceding years. To take
the historical data into account, the model must employ a set of mecha-
nisms that generate the same sorts of measures and comparative data that
the trust officer actually employs when he is selecting a portfolio. Clearly,
the trust investor (unlike the model) does not evaluate all companies at
one time. But, our object is to use that set of mechanisms that yield the
right kind of data and measures of performance. Thus, the processes de-
scribed in this section should not be viewed as a complete simulation of
what the trust officer does prior to each portfolio selection, but rather as
an approximation of the processes he has used over the years in order to
build up a set of measures by which the performance of a company can
be judged. Our success in this respect will be tested later on.

In order to describe the processes that are involved in the selection of
the "A" List it is necessary, at first, to treat some of the mechanisms as
though they were independent of each other. While this is not in fact the
case, the ways in which they are interrelated will be discussed after thedata processing mechanisms have been described. To facilitate this ex-
plication a flow chart of the selection procedure is presented in Fig. 2.

IA. PROCESSING THE RAW INFORMATION
Although the information used to derive the current list of stocks is classi-
fied into three main categories, e.g., general economy, industry, and com-
pany, the processes by which the information is handled are roughly the
same. Differences occur in the content of the information processed andthe manner in which interrelations are formed, but the basic structure ofthe sorting and evaluating processes remains the same.

For each category there is a set of attributes that correspond to the im-
portant variables in that category. For example, for all companies the set
of attributes consists of sales, earnings, cash flow per share, profit margin,
working capital, price earnings ratio, dividend payout ratio, dividends pershare, dividend yield, and prices. The values of these attributes are their
numerical values, and these are determined by the information which is
ted into the model. Since the values will reflect the changes that occur ineconomy, industry and company variables those that change frequently are
readily distinguished from those that do not. Those that change infre-
quently with time reflect the general trend of the economy, industry, or
company, while the others indicate those attributes that are more sensitive
to short-run fluctuations. The mechanisms that derive these values are the
same in all cases, and it is to theseprocesses that attention is now directed.
lAI. Determination of Attributes and Their Values. All information, ex-
cept that dealing with economy or industry forecasts, is fed into the modelm numerical form. These data consist of the historical values of each

f

354 SIMULATION OF COGNITIVE PROCESSES

attribute in the system for the last ten years.9 The data are entered in the
form of lists, and from these basic lists the model generates, for each
attribute, three additional lists. The first of these lists contains the mean
of the ten historical values. The second contains a set of nine values which
record the rate of increase (or decrease) of each value in the historical
record over the value immediately proceeding it. The third of these lists
contains the average rate of change of the values for the entire ten year
period. For each attribute, then, the model contains the four following lists
of information:

(i) Current Value. This list contains the last ten annual values of each
attribute arranged chronologically so that the most recent is at the head
of the list.

(ii) Ten-year Average. Each time a new value is added to (i) a new
average of the ten values is placed on this list. Thus, this list contains a

ten yearmoving average of the values in (i).
(iii) Recent Changes. This list contains the rate of increase (or de-

crease) of each value in the Current Value List over the value immediately
below it. Thus, if the values of the Current Value List are called xit where
i = 1, 2, . . . , 10, then the Recent Change List will have nine entries
whose values will equal:

?i where i = 1, 2, . . . , 9
Xi+.i

(iv) Average Rate of Change. This list contains the average rate of
change of the values on list (i) for the entire ten year period. Like list (ii)>
this is revised every time there is a new entryon the Current Value List.

Hence, the basic information which is given to the model is processed so
that it is expressed in terms of rates of change and/or ratios which are
directly comparable throughout the system.
7/42. The Formation of Expectations. Information on forecasts is fed into
the model in two different forms. Forecasts for economy and industry

attributes are converted for input into a three-valued scale "above,'
"below," or "equal to." The entry is based on the published predictions
that the value for a given attribute is going to rise, fall, or stay the same
over the next interval of time. Numerical data is not used in an attempt
to avoid the chaos of averaging the array of forecasts found in financial
literature.

For the analysis of company performance, however, numerical forecasts
' The attributes themselves are taken as given. They were derived by an analysis of

trust investors' decision processes and by observing which variables are considered
important by investment services.

The data for economy and industry attributes was taken from Moody's Industrials,
Review of Current Business, and Statistical Abstracts, while data for company at-
tributes was taken from the Value Line Investment Survey.

iA MODEL OF THE TRUST INVESTMENT PROCESS 355

I
are needed, and in a further effort to avoid conflicting opinions all fore-
casts for company attributes are taken from the Value Line Investment
Survey.

All forecast attributes have the current forecasts as their only value.
Previous forecasts are not kept and the model takes each forecast at face
value without making any attempt to judge its "goodness" or "record of
success." This procedure may not be too realistic as it ignores the effects
of personal preferences on perception. But, the model is not equipped to
handle "second guessing" and other judgmental modifications and the
information is assumed to be reliable. Before discussing the role of expec-
tations in our model, it is necessary to mention some further behavioral
characteristics of trust investors.

By and large, trust investment is long-term investment. As previously
noted, trust investors do not engage in trading stocks for their clients, but
look to the long-term growth of the economy and the market to justify
their investments. This is not to say that they remain aloof from daily,
monthly, or yearly fluctuations, but rather that their emphasis is on the
analysis of industries and their respective companies. Their basic belief
is that the market will eventually recognize a company's "true value."
Hence, in general, trust investors analyze companies and not the market.

Clearly changes in the market do affect investor behavior, but the effects
are more in keeping with a feedback mechanism than one where the in-
vestor acts on the basis of his own market forecasts. Thus, attributes con-
taining forecasted information are included in this model, but they receive
different amounts of attention depending on whether the attributes belong
to the economy, industries, or specific companies. Since the content of the
Expectation Lists varies as well as the form, these lists are described in
turn.

(i) Economy and Industry Expectation Lists. For each attribute in
both of these categories the Expectation Lists contain two entries. The
first is the forecasted value for that attribute converted into the input form
of "above," "below," or "equal to." The second is the first value on the
Recent Change List—namely, the rate of change of that attribute for last
year—converted into the same three-valued scale.10 Hence Economy and
Industry Expectation Lists contain pairs of "aboves," "belows," or "equals
to" which under two possible sets of conditions will form a pattern of only
"aboves" or "belows."

(ii) Company ExpectationLists. Expectation Lists exist for five of the
ten company attributes.11 These Expectation Lists contain one or two en-
tries all of which are in numerical form. These entries are derived from

10 In this case the three-valued scale is recording whether the rate of change forthis attribute last year was positive, negative or zero.
"The five attributes which have forecasted values are: sales, earnings per share,

cash flow per share, profit margin, and dividendsper share.

356 SIMULATION OF COGNITIVE PROCESSES

the twelve-month and three- to five-year forecasts recorded in the model
for these attributes. The first entry is on all Expectation Lists and is ob-
tained by converting the twelve-month forecast into an expected rate of
change. The second entry exists only for sales and earnings per share
Expectation Lists and is obtained by converting the three- to five-year
forecast into an expected average rate of change.

18. EVALUATING THE DATA

Logically this section should contain all the procedures of evaluation used
in this model. However, in order to simplify the problem of describing
the actual mechanisms, the processes of evaluation have been divided into
two parts. Those that pertain to the information within each major cate-
gory, i.e., economy, industry, and company, are examined here; those that
involve the interrelations between these sections are discussed in Sec. lc.

The model evaluates the data by creating two main lists: the Relative
Performance List, and the Relative Value List. As these processes are
described in some detail it is worth pausing for a moment to make a list
of the information already gathered for each attribute of each company:

(i) A list of the last ten values of the attribute
(ii) The mean of these ten values
(iii) A list of the rates of change of these values
(iv) The mean of theserates of change
(v) For relevant attributes an Expectation List that contains the ex-

pected rate of change for the coming year and, in the case of the sales and
the earnings per share attributes, the expected average rate of change for
the next threeto five years

Attention has been drawn to this information as the processes of evalua-
tion use these data as inputs.
181. The Relative Performance List. In order to determine the rela-
tive performance of each company within its given industry a list is made
for each of the basic lists for each attribute of the mean for that attri-
bute for each company. Hence, for each attribute there is now a list of
means each of which belongs to a particular company within a given indus-
try. The average of this list of means is taken so that we now have a dis-
tribution of means for a given attribute, plus the mean of that distri-
bution. The deviation of each mean from the distribution mean is calculated
as a percentage deviation and is then converted into the three-valued scale
"above," "below," or "equal to." These per cent deviations from the dis-
tribution mean are recorded on the Relative Performance List of each
attribute.

To classify this process further let an represent the class of all company
attribute means where:

f357
t = 1, 2, . . . , n represents the
j = 1, 2, . . . , m represents the

number of attributes for each company
number of companies for each industry

Then the matrix An,m =

is the row-by-row array of means for each attribute, for all
within a given industry. The mean of the distribution of
attribute i is given by:

companies
means for

1 m

di = —) anmLi '3-1
uch means forms the vector

"ai
02

_an
_

j deviations of each o

i;

from its respec
difference (a^ — di) as a per cent of c
attribute for all companies are given b

Oil ~ Ol 012 — Ol Oi„ — Oi
oi ai ' d"i

021 — O2 022 — O2 02n> — 02, _ , . . .
O2 02 O2

Onl

—O

n 0„2 —an Onm —&n
z'z>. . . , :on

a„ a„

ige deviations are then converted into

The list of all such means forms the vector

To determine the deviations of each o

i;

from its respective mean a 4 the
model takes the difference (an — at) as a per cent of a». Hence, the de-
viations for each attribute for all companies are given by the row-by-row
array:

These percentage the three-valued
scale "above,""below," or "equal to" where the base for the comparison is
given by a five per cent boundary level either side of the distribution mean
a». Thus for the relevant 12 attribute there is a Relative Performance List
on which is recorded:

"All Relative Performance Lists contain items (i) and (ii). Lists for attributes
cash flow per share and profit margin contain items (i), (ii) and (iii). While lists
for -sales, earnings per share, and dividends per share attributes contain all fouritems.

LUST INVESTMENT PRO

iber of attributes for c
iber of companies for <

On Oi2 " " " Oim
021 022 - " " fl2m

_0„l

O

n2 " " " Onm.

358 SIMULATION OF COGNITIVE PROCESSES

(i) The mean value over the last ten years as well as whether this
mean is "above," "below," or "equal to" the mean for this attribute for
the other companies in this industry.

(ii) The mean rate of growth over the last ten years as well as whether
this mean is "above," "below," or "equal to" the population mean for
this attribute.

(iii) The expected rate of growth over the coming twelve months
as well as whether this expected rate of growth is "above," "below," or
"equal to" the mean of the population of expected rates of growth.

(iv) The mean, expected rate of growth over the next three to five
years as well as whether this mean rate of growth is "above," "below," or
"equal to" the mean of the population of mean, expected rates of growth.

182. The Relative Value List. Having described the procedures that
determine the Relative Performance of each company within its industry,
we will now examine the set of processes that determine the Relative
Value of each company's stock.

As noted above each company has an attribute that records a three- to
five-year forecast of its earnings per share. Although this is only an es-
timate, the figure is assumed to be reliable and is used, for each company
to form a price earnings ratio of the forecasted earnings. As the model
already contains the values for the current price earnings ratio and the
historical mean of the prices earnings multiple for that company, the
entries for the Relative Value List are as follows: The first consists of
the difference between the mean price earnings ratio and the price earnings
ratio of the forecasted earnings. This difference is taken as a per cent
of the mean and is recorded as "above," "below," or "equal to" the
historical mean. The second entry consists of the difference between the
historical mean and the current price earnings ratio. As before, this dif-
ference is taken as a per cent of the historical mean and is recorded as
"above," "below," or "equal to." To clarify this process, let:

P = current market price
E = expected earnings per share for the current year

E* = forecasted earnings per share three to five years from now
P/E* = ten year average of price earnings ratio

Then for each company the calculations are as follows, the results of
each being recorded as "above," "below," or "equal to."

,„ (P/E) - (P/E*)
(i) jj^
(n) JJ^

j

A MODEL OF THE TRUST INVESTMENT PROCESS 359
The Relative Value List contains these results, plus their value on the
three point scale in the order that they are produced. Thus, for each
company the Relative Value List is a pair of "aboves," "belows," or
"equals to" which under two possible conditions will form a pattern of
only A "aboves" or "belows."

IC. THE INTERRELATIONS

Up to now we have described the mechanisms which process the data as
though they were independent of each other. While this is true to a cer-
tain extent, these mechanisms are related by the processes that select the
stocks suitable for current investment. In order to present these interre-
lations in as orderly fashion as possible, we will first examine the processes
that select the "A" List under simplified conditions. By relaxing these
conditions we will be able to examine the complexities as they occur.

To facilitate the exposition it is necessary to assign names to the
two values which appear on the Relative Value List. Hence, if we let:

we can, in the future, refer to the values of x and y of the Relative
Value List.
ICI. Selecting the "A" List. For simplicity, we shall first assume that
all Economy and Industry Expectation Lists have both of their values
reading "above." For such a condition to hold, the economy would have
to be in the middle of a roaring boom. But ignoring this implication for a
moment, we can now examine the basic operations of the selection mech-
anism which is composed of two parts:

(i) The Scanner. This mechanism examines each Economy and In-
dustry Expectation List in turn and notes the values of adjacent pairs. In
this case all adjacent pairs have the same value, i.e., "above." Hence,
having completed its search and finding such perfect accord the Scanner
halts and the Selector takes over.

(ii) The Selector. Under such ideal conditions the selection process
consists of searching through the Relative Value Lists of all companies
and placing on the "A" List those companies whose Relative Values are
recorded as:

(x) = "above," or "equal to"
(y) = "above," "equal to," or "below"

IC2. Relaxing the Conditions—A. Throughout this discussion it must
be remembered that information is fed into the various categories, i.e.,
economy, industry, and company, at different intervals of time. Although
these intervals may be chosen to suit any particular set of requirements,

pp, p P
* = E~E* and y = E~E

360 SIMULATION OF COGNITIVE PROCESSES

we have assumed the following time lags: Information on economy and
industry attributes is fed in quarterly while company attributes are
adjusted monthly.

Given these time differentials we will now examine the effects of
adding new information, to the respective categories, in the order in
which they are assumed to occur.

(i) After a change in prices or earnings per share the information is
processed as per Sees. 1a and 1b above, and new values are placed on
the Relative Value List. The Scanner then proceeds to check the Economy
and Industry Expectation Lists and finding them unchanged initiates the
selection procedure. The Selector examines the "A" List first and removes
from it any companies whose entries on their Relative Lists have changed
to:

The Selector then proceeds to the remaining list of companies and
places on the "A" List all companies whose entries on their Relative
Value List now record:

(x) = "above" or "equal to"

(ii) At the end of each quarter, new information is entered into the
model on economy and industry attributes and, when relevant, on company
attributes as well. Whenever new information is fed in it is processedimmedi-
ately, as per Sees. 1a and Ib, and the attention of the Scanner is directed to-
ward that category which received the new information. When more than
one categoryreceives new information, the Scanner always goes to the most
general category first, e.g., economy or industry, and then proceeds down
through the categories noticing and recording changes as it goes. At this
point changes in the Economy and Industry Expectation Lists are trans-
lated into one of two values, "hold" or "delete hold." These values are
placed on the Relative Value List. Companies which were previously
on the "A" List are not taken off the list. They are left there until the new
information on the companies themselves decides the issue of whether they
should stay on the list or not.
IC3. Relaxing the Conditions—B. In order to examine all the operations
of the Scanner and the Selector, changes in the forecasted values of the
Economy and Industry Expectation Lists will be divided into three cate-
gories :

(i) Forecasted Value Falls below Recent Change Value. As noted
earlier, the function of the Scanner is to examine the Economy and
Industry Expectation Lists of all the attributes that have received new
information. In this case let us assume that information has been entered

(x) = "below"

361A MODEL OF THE TRUST INVESTMENT PROCESS

Iinto the model which forecasts a leveling off in capital spending, while
at the same time the most recent change in this index is still rising.
Given this change the Scanner will first proceed to the capital spending
Expectation List. Noticing that the other economic Expectation Lists
are unchanged the Scanner will descend a level and create a list of the
capital intensive industries. The Scanner then examines the changes that
have occurred in the Industry Expectation Lists. Since the forecasts for
some of these industries will also have fallen or leveled off, the list of af-
fected industries is reduced to that set whose forecasts have been lowered. 13

The Selector then takes over and scans the list created by the Scanner
and searches the "A" List for companies belonging to those industries. All
such companies are subjected to the following test:

(a) Mark all companies "hold" which have entry (x) on the Relative
Value List recorded as "equal to."

If the forecasts for the other economic attributes fall, the Scanner
searches all industry Expectation Lists for corresponding changes, makes
a list of those industries whose forecasted values have fallen and pre-
sents this list to the Selector which applies the same set of tests as before.

(ii) Recent Change Value Falls Below Forecasted Value. In this case
the functions of the Scanner and Selector are essentially the same as in
(i) except that the Selector applies one extratest.

If economic indices have turned down the performance of some in-
dustries and companies will also have turned down. This means that
basic changes in company evaluations may be taking place at the same
time. However, since these changes are completed first the function of the
Scanner is still to create a list of the affected industries, and of the Se-
lector to apply the following tests to those companies on the "A" List
which belong to the affected industries.

(a) Mark all companies "hold" which have entry (x) on the Relative
Value List recorded as "equal to."

(/?) Mark all companies "hold" which have entry (y) on the Relative
Value List recorded as "below."

(iii) Forecasted Values and Recent Change Values Both Turn Down.
Under these conditions, although the Scanner performs in the same man-
ner, a change occurs in the tests applied by the

Selector,

instead of testing
the companies presented to it by the Scanner on the basis of the tests
given above, the Selector makes the following more rigorous tests:

"The assumption here is that the forecasts for total capital spending cannot
change without a corresponding change in one or all of the capital intensive indus-
tries. The only exception to this rule is the Construction Industry which is also
included on the list of industries to be examined if there is a fall in the expected
ievel of capital spending.

362 SIMULATION OF COGNITIVE PROCESSES

(y) Remove all companies from the "A" List which have entry (x)
on theRelative Value List recorded as "equal to."

(B) Mark all companies "hold" which have entry (y) on the Relative
Value List recorded as "below."

Clearly, the three categories of forecast changes are not mutually
exclusive and at any given point in time one would not expect to find
the model in one particular category but rather in some combination of
the three. This situation in no way changes the functions of the Scanner
and Selector; it merely requires them to take each category in turn and
perform the required operations sequentially.

When forecast and recent change values are moving up, instead of
down as described above, the testing procedures of the Selector are
reversed. Instead of marking companies with "hold" and removing them
from the "A" List, a "hold" is replaced by a "delete hold" and companies
are restored to the "A"List.

The Formulation of an Investment Policy

By and large, trust investors formulate investment policies for two
types of funds: (1) large trust funds, e.g., Common Trust Funds (ex-
cluding Pension and similar types of funds, and (2) individual trust
accounts.

As we are primarily interested in the investment decisions pertaining
to the latter set of accounts, the model does not consider the problem
of investing the funds of Common Trust Funds. The decision on whether
to invest an account in a Fund or not, however, is relevant to the de-
cision process. Although the rules governing this process are not ex-
plicitly included in the model—that is, the model is only concerned with
investing the funds of individual accounts—a brief discussion of these
rules is included here.

2A. COMMON TRUST FUNDS

As the cost of management per dollar invested is much lower in Common
Trust Funds than in individual accounts, banks prefer to invest small ac-
counts in their funds. In order to persuade clients to participate in these
funds, banks are forced to make the funds' goals explicit. In practice these
funds have goals which range from an emphasis on capital appreciation
to stability of principal with emphasis on current income.

As the legal restriction governing the investment of Common Trust
Funds have ben discussed elsewhere (Clarkson, 1962), the rules outlined
here pertain only to the decision on whether to invest the assets of in-
dividual accounts in one of thesefunds.

i
A MODEL OF THE TRUST INVESTMENT PROCESS 363

A

(a) All "legal"14 trusts are eligible for investment in a Common Trust
Fund. Accounts which are not legal trusts and/or whose beneficiaries have
waived legal requirements are not so invested.

(b) All legal trusts that have assets of less than X dollars are
automatically placed in a Common Trust Fund. 15

(c) Legal trusts greater than X dollars may or may not be placed
in a Common Trust Fund. As noted before, no account may participate
for more than $100,000. Thus, in the range between X dollars and
$100,000 the decision will be determined by the degree of correspondence
between the goals of the account and the expected results of the Common
Trust Fund.

28. INDIVIDUAL TRUST ACCOUNTS
In order to determine a client's goal, the investment officer has two main
sources of information: an administrative officer's interview with the
client, and the written record. The former provides the investor with some
subjective impressions of the client and the latter with a copy of the legal
instrument (often a will) setting up the trust. In most cases this document
contains information about the beneficiary, the investment powers of the
bank, what is to be done with the principal, the desired amount of income,
etc. The instrument also contains information about the beneficiary's age,
marital status, number and age of dependents, place of legal residence,
income-tax bracket, and status and age of future beneficiaries if any.

Armed with this data, the investment officer must now decide on
an investment policy for the account. This policy must lie somewhere
along the continuum between the extremes of growth and income and the
process that determines it is as follows :

"'"Legal investment* statutes fall into two general categories: (1) those that re-
strict all or part of the investments to specific investments or specific classes of in-
vestments, and (2) those that limit investment in non-legal securities to a given per-
centage of the account or fund. The statutory limitations on investment in non-legal
securities range from 30 percent to 50 percent of the market value (in one state,
inventory value) of the fund." Survey of Common Trust Funds, 1959, Federal Re-
serve Bulletin, May, 1960, p. 480.

Pennsylvania belongs in the first category and "legal" stocks are defined by law
(Act No. 340, 1951) as those securities which, if preferred stocks have paid divi-
dends for sixteen years and which, if common stocks have had positive earnings andhave paid dividends in twelve out of the last sixteen years. A list of securities meet-■ng these requirements is prepared by the Pennsylvania Bankers Association. (Corpo-
rate Securities Considered Legal Investments for Trust Funds in the State of Penn-
sylvania, Trust Division, Pennsylvania Bankers Association,

October,

1960).
Many people when setting up the trust relation specifically waive these investment

restrictions. Thus, "legal" refers to situations in which the investment officer must
comply with these investment restrictions.

15To protect this Bank's anonymity, the precise dollar figures are not revealed.
Nationally, the average Common Trust Fund participation is approximately $23,000.
Federal Reserve Bulletin, May, 1960, p. 481.

364 SIMULATION OF COGNITIVE PROCESSES

(1) The Scanner. Information on the client is fed into the model
in the form of a list which contains the following attributes: (i) The
desired amount of growth, (ii) The desired amount of income, (iii)
Whether current income is sufficient for the client's needs, (iv) The de-
sired amountof stability of income and principal, (v) Income-tax bracket,
(vi) Client's profession, (vii) Client's place of legal residence, (viii)
Whether trust is revocable or not, and (ix) Whether trust is legal or not.
The function of the Scanner is to proceed through the first six of these at-
tributes testing for the value of each in turn. 16 The tests consist of classi-
fying the values of attributes (i), (ii), (iv), (v), and (vi) on the basis
of whether they are below a median value or not. The criteria for these
tests are given to the model in advance and the Scanner converts the
values of the attribute into a two-valued seale—"Low," or "Not Low"—-
which correspond to being below or not below the particular criterion.
Attributes (iii) and (vii) are scaled on a "Yes," "No" basis.

The results of these tests are placed on a list so that for each client
there is a particular pattern of test answers. Thus for a client in the legal
profession, who is a resident of Pennsylvania and has a large current in-
come, a high tax bracket, and desires to build an estate to provide for
his retirement, the pattern generated by the Scanner would read: (i)

"~ Low," (ii) "Low," (iii) "Yes," (iv) "Low," (v) "~ Low," (vi)

"~ Low," (vii) "Yes."
(2) The Selector. The function of the Selector is to take the list

generated by the Scanner and convert it into the appropriate investment
policy. Clearly, the number of possible combinations of growth and in-
come is large. But, in practice they can be characterized in the following
manner: 17

(i) Growth Account. In these accounts assets are expected to ap-
preciate at an average rate of 10% per year over a ten-year
period. Income is not stressed and fluctuations in principal are
tolerated.

(ii) Growth and Income Account. Here assets are expected to ap-
preciate at 5-6% per year, while dividend yield should approach
2-3% per year,

(iii) Income and Growth. In this type of account assets are only
expected to appreciate at 3-4% per year. The desired dividend
yield is 3-4% per year and the stability of the income stream is
stressed.

(iv) Income Account. Here the size and stability of the income
streams are stressed with the expected dividend yield being

16 Attributes (viii) and (ix) are used by the portfolio-selection process.

" It should be noted that the figures used here are in no way fixed and will in fact
varywith changing market conditions.

A MODEL OF THE TRUST INVESTMENT PROCESS 365

Figure 3. Selector for investment policy.

4-6% per year. In this type of account growth (capital appre-
ciation) is not stressed.

The Selector chooses an investment policy for a particular client by
aPplying a set of tests to the pattern of answers given to the Selector by the
Scanner. The flow chart for this procedure is given in Fig. 3, and essen-
tially consists of applying different sets of tests depending on the type of
Pattern derived by the Scanner. Thus, the Selector chooses the appropriate
'nvestment policy by correctly identifying the pattern of answers that is
Presented to it.

TheSelection of a Portfolio
To facilitate the explanation of the selection procedures it is worth-

while interrupting the discussion for a moment to outline the information
that is on hand prior to choosing a set of stocks for a particular portfolio.

(a) A list of stocks, the "A" List, which contains those stocks that
are judged to be suitable for current investment. These stocks are cate-
gorizedby industry.

366 SIMULATION OF COGNITIVE PROCESSES

(b) For each company on the "A" List there is a Relative Value List,
a set of Relative Performance Lists, as well as historical, current, and
forecasted information on sales, earnings, dividend yield, and other attri-
butes.

(c) A list of information on the client for whom this portfolio is to
be selected. This list includes the information discussed in the second
section as well as an attribute that records the sum of money which is to
be invested in common stocks.

(d) An investment policy that was chosen for this client as outlined
above.

Given this information, the selection of a portfolio is essentially a
process of mapping the set of industries and companies in (a) onto the
investment policy in (d). This process yields a subset of industries and
their respective companies that is reduced to a particular set of stocks
for a portfolio by the addition of the information in (b) and (c), and the
application of a set of tests based on this information. The actual processes
governing this selection procedure are as follows :

3A. SELECTION OF INDUSTRIES APPROPRIATE TO THE
INVESTMENT POLICY

Despite the large overlap between the characteristics of various indus-
tries, the investment officer associates a set of industries with each goal.
As this association depends on the characteristics of the goal as well
as the general characteristics of the companies within each industry,
the particular set of industries associated with a given goal may include
some of the industries which are associated with other goals. For example,
some industries contain companies which vary only slightly in their in-
dividual characteristics, e.g., banks, or utilities, while others, like oils,
are more heterogeneous and appear on several lists. As the investment of-
ficer's classification of an industry's characteristics change very slowly
with time, no attempt was made to determine how these attitudes and as-
sociations were developed. Instead, these lists were derived by direct
questioning and examination of the investment officer's behavior. The
model, then, takes these lists as given and by searching through the "A
List derives, for each goal, a list of those industries and companies that
are on the "A" List. Thus, for each goal there is now a list of industries
whose companies are both currently acceptable as well as suited to the
investment performance desired from theportfolio.

38. SELECTION OF COMPANIES

Once the list of industries has been generated, the companies on this
list are selected for participation by the application of still another Scanner-
Selector mechanism.

A MODEL OF THE TRUST INVESTMENT PROCESS 367

IIn this case the Scanner and the Selector have two separate functions.
The first is to check the list of information on the client and see if the
trust is a legal trust and/or whether the client is a resident of Pennsyl-
vania [attributes (ix) and (vii)]. If either or both are the case the Se-
lector applies one or both of the following two tests:

(i) If the trust is a true fiduciary relation all the companies on the
given list that do not have legal status in Pennsylvania are rejected.

(ii) If the client is a resident of Pennsylvania, all the companies that
are subject to property tax in Pennsylvania are rejected.
Having eliminated all companies that do not meet the only two absolute
criteria the model then takes the remaining list of companies and applies
to it the set of tests that are associated with each investment policy.

The Scanner performs the task of ordering the companies in each
mdustry on the basis of the dominant attribute of the investment policy.
For example, if an Income Portfolio was being selected the Scanner
would rank order the companies in each industry on the basis of yield.
The Selector takes the first company from the industry that is at the head
°f this list and applies a set of tests to it.

The tests consist of a series of binary decisions on the performance
and expectations of important attributes. As the importance of partic-
ular attributes depends on the investment policy that is being applied,
the series of tests varies with each investment goal.

The set of tests is qualitative in nature and is applied, in turn, to the
companies within each industry. Unless the value of some attribute isvery much out of line with what it should be, the Selector will accept the
nrst company that is processed. If for some reason the first company does
not pass the tests, the Selector moves on to the second company and re-
Peats the process. If no company from that industry is able to pass through
the set of tests, the Selector moves on to the next industry. If after process-
lng all the industries funds remain to be invested, the Selector returns tothe first industry from which no selection was made and recommences
Processing. This time processing begins at that test that immediately pro-
ceeds the spot where the Selector stopped on the first run through. Ass°on as a company is selected the Scanner and Selector move on to the
""ext industry.

To further clarify this process, consider the set of tests which theSelector applies in order to choose growth portfolios (see Fig. 4). Ascan be seen from the flow chart, the tests are grouped in hierarchies.
Thus, if Company A passes Test 3 it will go directly to Test 5. But, if it
°oes not pass Test 5, it must pass Tests 6, 7, and 8, before it can be ac-
cepted back into the mainstream of tests. If no company from a particular
mdustry succeeds in being accepted, and the Selector returns to it in order

368 SIMULATION OF COGNITIVE PROCESSES

T(= Mean growth in price (past) 2 20%
T3 = Mean growth in earnings per share (past)
T4 = Mean growth in sales (past)
T5 = Forecasted growth in earnings per share (Iyr)
T6 = Forecasted growth in sales (Iyr)
T7 = Mean growth in cash flow per share (past)
T8 = Mean growth in profit margin (past)
T9 = / on Relative Value List
T,0 = P/E*<lP/E) by 10%
Tll = Forecasted dividend > 0
Ti2= Forecasted dividend =0
T,3 = Price > 10%below high

B = "Below" A = "Above" A= Accept

"B = "Not below" ~A = "Notabove" A= Reject

Figure 4. Growth-portfolio discriminationnet.

to recommence testing, then this testing would occur in the following way-
If company A was first rejected at Test 6, the Selector would now begin
testing at Test 7. In this particular case, testing might continue until a com-
pany was selected. However, as each Discrimination Net has a test that an
participations must meet, it is entirely possible for the model to reject
all companies within a given industry.

3C. DIVERSIFICATION

Diversification is achieved by insisting that all accounts participate in at
least five industries, and that participation in stocks be limited, in general,
to one per industry. When the portfolio includes bonds and preferred
stocks, each $10,000 invested in bonds or preferreds is taken to be equiva'
lent to a participation in one industry. Hence, for an account of $50,000

369A MODEL OF THE TRUST INVESTMENT PROCESS

I
with $20,000 invested in government bonds, the model would require
that the remaining funds be invested in at least three industries.18

3D. SIZE OF PARTICIPATION

The number of shares to be purchased of each company that is selected for
participation is determined by the "Share Selector." The essence of this
process is givenby the following rules:

(1) The total funds to be invested in common stocks are divided by
the number of participations desired. 19 This produces the average number
of dollars to be invested in each company.

(2) To determine the number of shares to be purchased, the average
number of dollars to be invested in each company is divided by the price
of the particular company's stock. This figure is always rounded to the
nearest multiple of five, and whenever the funds available for each par-
ticipation permit it, round lots, e.g., 100 shares, are purchased.

Clearly, this selection process can only continue as long as there are
funds remaining for investment. When the funds have been used up, the
selection process stops, and the stocks that have been chosen become
the required portfolio.

Testing the Model

In order to test the model's ability to reproduce the behavior of the
trust investor—i.e., to simulate the trust investment process—the model
Was required to select portfolios for a particular set of actual trust ac-
counts. In particular, stock-exchange and other data were fed into the
computer to cover the first and third quarters of 1960. The running pro-
gram was then presented with data on four of the bank's new clients,
for whom the trust investor had selected portfolios during the same two
quarters, and the program was required to generate its portfolios for these
accounts. The portfolios are presented in Figs. 5 and 6, along with the
selections made by the trust officer for the same accounts. The generated
Portfolios were then compared with other portfolios generated by various
random and naive models. The results of these tests indicate that the trust

18 As can be seen from the above, the investment officer's "rule of thumb" seeks
'o spread risk by diversification. But as Markowitz has shown (H. Markowitz,Port-
folio

Selection,

p. 109, New York, 1959) when the returns on securities are corre-
lated, this may not be accomplished if the amount invested for the client is relatively
small.

" For accounts of $50,000 or less the usual number of participations is

five,

each
'10,000 of bonds and preferreds counting as one. For accounts greater than $50,000
the minimum number is usually five as approximately $10,000 is invested in each
Participation.

370 SIMULATION OF COGNITIVE PROCESSES

Simulation of Account 1, 1/8/60
Growth Account

Funds available for investment: $22,000
The program selected: The Trust Officer selected:

60 General AmericanTransportation
50 Dow Chemical

30 Corning Glass
50 Dow Chemical
10 1.8.M.10 1.8.M.

60 Merck and Company 50 Merck and Company
50 Owens Corning Fiberglass45 Owens Corning Fiberglass

Simulation of Account 2, 6/10/60
Income and Growth Account

Funds available for investment: $37,500
The program selected:

100 American Can Co.
100 Continental Insurance
100 Equitable Gas Co.
100 DuquesneLight Co.
100Libbey Owens Ford
100 International Harvester
100 Philadelphia Electric
100 Phillips Petroleum
100 Socony Mobil

The Trust Officer selected:
100 American Can Co.
100 Continental Insurance
100 Equitable Gas Co.
100 General Public Utilities
100 Libbey Owens Ford
50 National Lead

100 PhiladelphiaElectric
100 Phillips Petroleum
100 Socony Mobil

Figure 5. Comparison of portfolios selected by the model and by a trust
Accounts 1 and 2.

officer

Simulation of Account S, 7/8/60
Income and Growth Account

Funds available for investment: $31,000
The program selected: The Trust Officer selected:

100 American Can Co.
100 Continental Insurance
100Duquesne Light
100Equitable Gas
100 Pennsylvania Power and Light
100 International Harvester
100 Libbey Owens Ford
100 Socony Mobil Oil

100 American Can Co.
100 Continental Insurance
100 Duquesne Light
100 Equitable Gas
100 General Public Utilities
100 InternationalHarvester
100Libbey Owens Ford
100 Socony Mobil Oil

Simulation of Account 4, 8/26/60
IncomeAccount

Funds availablefor investment: $28,000

The program selected:
100 American Can Co.
100 Continental Insurance
100 Duquesne Light
100 Equitable Gas
100 Pennsylvania Power and Light
100 International Harvester
100 Phillips Petroleum

The Trust Officer selected:
100 American Can Co.
100 Continental Insurance
100Duquesne Light
100Equitable Gas
100 GeneralPublic Utilities
100 International Harvester
100Phillips Petroleum

officerFigure 6. Comparison of portfolios selected by the model and by a trust
Accounts 3 and 4.

371A MODEL OF THE TRUST INVESTMENT PROCESS

IIinvestment program selected a greater proportion of correct securities
than did any one of the alternative models.

To obtain additional confirmation, the testing process was carried one
step further—that is, the processes by which the portfolios are generated
were submitted to empirical test. The test consisted of comparing the
stream of output of the trust investment model to the recorded decision
behavior of the trust investor. This test was applied to several of the
mechanisms incorporated in the model. While it is not possible to state
that all the processes were unequivocally confirmed, the evidence strongly
supports the hypothesis that the model's mechanisms capture a considerable
Portion of the trust investment process.

i

section 4

Social Behavior

In recent years much empirical work has been done in the field of
social behavior, particularly in the area of small group experiments.
This work has provided us with much information about the effects
of a wide range of variables on group behavior.

More recently, work has been done on models of group behavior.
This work has been in part based on the empirical studies, but it has
also contributed to the direction of the empirical work. The models
have been formulated in ordinary verbal terms, and more recently in
mathematical forms—differential equations and Markov processes.

The empirical work and the mathematical models have been very
interesting and stimulating. However, there have been many com-
plaints about the simplicity and paucity of the mathematical models.
One reply to this sort of criticism has been the creation of computer
models.

The charge to students of social behavior to look to the computer
model as a useful technique was given by Bales in his paper on
"Small Group Theory and Research" (1959). Bales took as the
sociologist's goal the prediction of behavior in natural settings as
opposed to the prediction in highly controlled laboratory situations.
To accomplish this goal, Bales believes that what is required is a
synthesis of "large numbers of variables in highly complex condi-
tional relationships to one another." And he goes on to say that the
computer is the tool that can aid in the attainment of such a model.

This charge has been taken up by Bales and his associates, who
are pursuing a research program directed toward developing com-

374 SIMULATION OF COGNITIVE PROCESSES

puter models of group behavior (Bales, 1959); by McPhee, who has
developed a computer model of voting behavior (1961); and by
John and Jeanne Gullahorn, who have developed a computer model
of social interaction. The following article by the Gullahorns is a
report of their work prepared especially for this collection.

John Gullahorn is a member of the faculty of the Department of
Sociology and Anthropology at Michigan State University. Jeanne
Gullahorn is a graduate student at the same institution. They are also
consultants to the Artificial Intelligence Section, System Development
Corporation.

f
i
I

A COMPUTER MODEL OF
ELEMENTARY SOCIAL BEHAVIOR

John T. Gullahorn & JeanneE. Gullahorn

Ten years ago the social psychologist Solomon Asch observed, "To act
in the social field requires a knowledge of social facts—of persons and
groups. To take our place with others we must perceive each other's exist-
ence and reach a measure of comprehension of one another's needs, emo-
tions and thoughts" (1952, p. 139). In recent years the traditions of
psychoanalysis, field theory, and symbolic interaction have generated many
insightful explorations of how individuals perceive and cognize the human
environment. A radical departure from these relatively intuitive approaches
has recently appeared in George Homans' Social Behavior, which incorpo-
rates principles from two self-consciously rigorous disciplines—classical
economics and behavioral psychology (1961). In our opinion the work
represents one of the most provocative explanations of human response in
interpersonal situations yet published, and we have selected Homans'
treatise as a model for research concerning individual reactions in rela-
tively simple social interaction. At present our efforts are directed pri-
marily toward building and refining a statement of the model of elementary
social behavior in the form of a computer program written in Information
Processing Language (Newell, 1961e). In addition to enhancing the clarity
and precision of the model, we hope such a representation will ultimately
contribute to the goal of naturalistic prediction of behavior in small groups.

Before proceeding to a discussion of the program itself let us consider
briefly Homans' treatment of elementary social behavior, that is, of "face-
to-face contact between individuals, in which the reward each gets from
the behavior of the others is relatively direct and immediate" (1961, p. 7).
His model envisages human behavior as a function of its payoff; in amount

375

7

376 SIMULATION OF COGNITIVE PROCESSES

and kind, an individual's responses depend on the amount and quality of
reward and punishment his actions elicit.

To illustrate the application of the propositions he advances to explain
social exchange, Homans uses Blau's description of interpersonal behavior
in a bureaucracy (1955). Sixteen agents holding the same title were em-
ployed in this federal office. The men varied in competence, and as ex-
pected the more skilled received more requests for assistance from their
co-workers. In analyzing the social economics of such consultations, Blau
and Homans regard the interaction as an exchange of values: both par-
ticipants benefited, but both had to pay a price. The agent requesting help
usually was rewarded by being enabled to do a better job; however, he
paid the cost of implicitly admitting his inferiority to a colleague who by
title was supposedly his equal. The consultant, on the other hand, gained
prestige; however, he incurred the cost of time taken from his own work.

We have used this relatively simple interaction sequence between two
hypothetical agents, whom we have named Ted and George, to begin
actualizing in a computer program the dynamic implications of Homans
explanatory propositions as they relate to the decision processes of indi-
viduals involved in social exchange. The program, entitled HOMUNCU-
LUS, now is running for interactions between two persons; but we are
still in the stage of writing additional routines to introduce refinements
into the basic model. The simulation appears to have verisimilitude, but
its verity has not yet been tested against actual social interaction.

The Program

In planning the program of our model we first had to make explicit
our conception of a person as an information processing organism. That
is, in order to behave according to the principles set forth in Homans'
explanatory propositions a person must be "programmed" to do at least
the following: He must be able to receive stimuli, recognize stimuli, store
stimuli in memory, and compare and contrast stimuli; he must be able to
emit activities, differentiate reward and punishment, associate a stimulus
situation with a response, and associate a response with a reinforcement;
and, on the basis of past experience, he must be able to predict the prob-
ability of reward resulting from each response he contemplates. In social
situations he must be able to differentiate among other members of a
group, evaluate a social stimulus in terms of the specific person emitting
it, and select his response accordingly so as to elicit a positive reaction in
turn.

Once we had outlined some of the basic qualities necessary for a pro-
grammed social being, we then faced the practical problem of how to get

A MODEL OF ELEMENTARY SOCIAL BEHAVIOR 377
!such a creature into the computer. Fortunately, IPL-V is ideally suited

to the solution of this task. Since it is a list processing language, both
data and routines are written in the form of lists. Very complex informa-
tion can be handled efficiently through the use of list structures, or hier-
archies of lists containing as many sublists as desirable, and of description
lists which associate with any symbol a list of its attributes and their
values. A person thus is represented in our program as a list structure
containing a large number of description lists. Among the data included
in the list structure of a person are such items as his identity, his abilities,
his relative and absolute positions in various social groups, his image lists
of his reference groups, and his image lists of other group members.

The flow chart depicted in Figs. 1 through 3 represents our interpreta-
tion of the processes involved in operationalizing Homans' propositions
for elementary social behavior. The interaction sequence we have pro-
grammed begins with an agent, Ted, emitting to his colleague, George, a
symbol which represents a request for help in completing a job assign-
ment. Let us postpone discussion of Proposition 5 (P5, Box I in the flow
diagram) and begin with Proposition 1 (PI, Box IV) and consider only
the positive branches in the diagram so that each proposition can be de-
scribed briefly in sequence. Our programmed statement of Homans' propo-
sitions specifies the symbol manipulating processes which enable George
to decide what action he will emit in response to Ted's request.

Proposition 1
"omans' first explanatory proposition concerns the influence of stimulus
andresponse generalization:

// in the recent past the occurrence of a particular stimulus-situation
has been the occasion on which a man's activity has been rewarded,
then the more similar the present stimulus-situation is to the past
one, the more likely he is to emit the activity, or some similar activity,
now (1961, p. 53).

iri translating the proposition into computer routines enacting decision
Processes, we found it necessary to consider in sequence two aspects of
'he "stimulus-situation." To begin with we hypothesized that our agent,peorge, would react in a relatively global manner to the general situation
'tself. Thus our interpretation of the initial information processing implied
by Proposition 1 (see PI, Box IV in Fig. 1) involves George's considering
whether AR (the activity received—in this example, a request for help),s a general stimulus situation in which his responses (AE's, or activitiesemitted) have been rewarded. In executing this process one routine repre-
senting a retrieval function of our programmed agent (George) searches

~,

378 SIMULATION OF COGNITIVE PROCESSES

A.

PI 12

AR
Ted

Figure 1

a memory list of reinforced stimulus situations to determine whether the
present input is among them.

Taking the positive branch of the flow diagram and thus assuming thai
George has found that responding to a request for help has led to reward
in the past, let us proceed to his next consideration, depicted in Box X ot
the flow chart in Fig. 2. George now must determine whether his responses
to a request for help have been rewarded by Ted, the person currently
introducing the situation.

In order to check on past interactions with Ted, George must search
deeper into his memory structure. We noted that the list structure of an
individual includes a list in which he stores his image of every person
within the group. One routine locates the image list, finds the sublist on it

which describes George's previous interactions with Ted, determines
whether he has received the present stimulus from Ted before, and if so
whether his repsonses to it have generally been rewarded by Ted. In the
case we are discussing, George discovers that in the past his responses to

requests for assistance have been reinforced by Ted.
Having determined that the stimulus situation has been a rewarding

occasion and that Ted has been an agent of reinforcement, George now
must consider response alternatives. If he has interacted in similar situa-
tions with Ted and has emitted several different activities which Ted has
rewarded (e.g., solved Ted's problem, referred Ted to a helpful source or

to an expert on the problem in question), then George must choose among
these possible reactions to Ted's request. In our program George selects
up to three activities from a memory list of responses Ted has rewarde

A MODEL OF ELEMENTARY SOCIAL BEHAVIOR 379

A>

r

i
I
I
I

I
I
I

v,

Figure 2.

(Box XXII, Fig. 2) and then proceeds to process further information re
garding these contemplated activities.
Proposition 2
Homans' second proposition deals with the positive influence of the fre-quency and recency of reinforcement:

The more often within a given period of time a man's activity re-
wards the activity of another, the more often the other will emit the
activity (1961, p. 54).

Reformulating this proposition for computer simulation posed a number
of problems. It would have been relatively simple merely to set a counterfor each reinforced response and then retrieve the desired information
regarding reward frequency. However, we felt this procedure would notadequately simulate human information processing systems. Of course,
People do avail themselves of precise measurement scales and use variouscultural artifacts—such as computers—to increase their accuracy. But in
making estimates concerning frequencies and values of rewards ensuingfrom everyday social interaction, people seem to use a less refined means°f measurement. In programming this proposition, therefore, we devised
a rather crude five-point ordinal scale for reward frequency, ranging froman estimate that a response was "nearly always rewarded," through a judg-

T.

380 SIMULATION OF COGNITIVE PROCESSES

A

ment that it was "rewarded about half the time," to an assessment that it
was "almost never rewarded."

At present we are experimenting with different means of manipulating
this scale. One routine we have written increases the ordinal scale value
for the reward frequency after three reinforcements of the response. This
procedure, however, is not completely satisfactory. Indeed, one may argue
that estimates of reward frequency are not necessarily independent of the
emotional salience of the reinforcement. When HOMUNCULUS has
reached the stage of simulating small group behavior in controlled condi-
tions, it should be possible to test various approximations of human judg-
ments of reward frequencies from social interaction and to select the
routines which simulate the actual behavior most accurately.

When the processing for this proposition is completed (P2, Box XXIII*
Fig. 3) , George has a rough estimate of the frequency with which Ted has
rewarded each of the activities he is considering in response to Ted's cur-
rent request for help. Homans' Proposition 2, taken alone, would lead to
the expectation that George would then merely emit the most frequently
rewarded response alternative. But other information must be processed
before a decision is reached.

Perhaps here we should indicate how the program keeps all this mate-
rial in immediate memory for George. Up to one hundred named private
storage cells are assigned for this purpose, and instructions in each routine
specify which cells it is to use for storing its findings. At present George is
using about fifty of these cells. In addition, important information avail-
able to all group participants—for example, what could be seen and heard
during the last five interactions—is kept in named public storage cells.

P2 WIN P3 V XIV P4 vxv

How^frequently has
(Ted's) activity re-
warded each AE I
have emitted ?

What is the value of
(Ted's) rewards to each
AE I have made in

Determine deprivation-
satiation score for Li
anticipated rewards
from (Ted).

High— satiation
rxxvr

Exit

Figure 3.

this situation ?

A MODEL OF ELEMENTARY SOCIAL BEHAVIOR 381
i

A

Proposition 3
Among the other relevant factors that must be considered in selecting an
activity to emit is the value of the anticipated reward. Homans' third
general position states.

The more valuable to a man a unit of the activity another gives him,
the more often he will emit activity rewarded by the activity of the
other (1961, p. 55).

Assessing the value of an activity is somewhat more complicated than
estimating the frequency with which it occurs. Value has two components—one relatively constant and the other, which we shall discuss in Proposi-
tion 4, relatively variable for the periods of time involved in the simple
interactions comprising elementary social behavior. The value component
referred to in Proposition 3 concerns an individual's rank ordering of the
subjective reward attendant on receiving one activity rather than another.
With reference to our example, we might predict that George would find
warm social approval involving Ted's complimenting him in front of col-
leagues to be more "valuable" than a halfhearted response of "Hmm,
thanks," or an annoyedretort, "Well, sorry I bothered you."

At this point in our program, therefore, we have what game program-
mers term a "look-ahead." In considering Ted's request, George has "in
mind" three responses he recalls Ted's having rewarded in the past, and
he has estimated the frequency with which Ted has reinforced each re-
sponse. Now he must consider more carefully the particular reward he
expects Ted to give to each response so that he may determine the inher-
ent worth of each anticipated reward (P3, Box XXIV, Fig. 3). Taking in
turn each activity George is contemplating, the routines executing this
proposition retrieve the responses Ted previously has made to each, deter-
mine which one he is likely to emit now, and search description lists to
find the subjective value of thereward for George.

Proposition 4
Homans' fourth proposition deals with the other component of value—
the deprivation-satiation aspect, or the marginal utility of a given unit of
activity.

The more often a man has in the recent past received a rewarding
activity from another, the less valuable any further unit of that
activity becomes to him (1961, p. 55).

In contrast to the relatively constant intrinsic satisfaction aspect of value,
the deprivation-satiation component varies over a range of possible rank-
ings. Taking into account the amount of an activity a person has received,

▼.

382 SIMULATION OF COGNITIVE PROCESSES

A.

we note that he "values" that activity more when he has been deprived of
it than he does when he is in a state of relative gratification. Thus, while
social approval may be highly rewarding to an individual, if in the recent
past he has received a great deal of this generalized reinforcer then he is
not likely to be so interested at the moment in receiving more.

In processing the information necessary for completion of this stage
of the program, George must evaluate his relative deprivation with refer-
ence to the rewards he anticipates from Ted. George now has in imme-
diately available memory a record of each activity he is contemplating,
and stored with each activity is various information about it, including the
response he expects Ted to make to it. The routines which execute Propo-
sition 4 search the description lists of each of the anticipated rewards to
determine the degree of George's current deprivation or satiation with
respect to them. A deprivation-satiation score based on a simple ordinal
scale is stored as the value of a special attribute on the description list of
each activity. In executing Proposition 5, which we shall discuss later,
routines update the deprivation-satiation score whenever an activity is
received.

With the information retrieved thus far George has an estimate of the
relative frequency with which Ted has rewarded each activity he is con-
sidering emitting. Furthermore, he has predicted Ted's reaction to each
of the projected actions and has determined how rewarding each of these
anticipated reactions is to him, personally, as well as how deprived or
satiated he currently feels with respect to each of these expected rewards.
At this point, therefore, George can rank his contemplated responses in
terms of their expected payoff. But he is not yet ready to emit the highest
ranked action.

Another important consideration is the cost of the proposed response.
Homans defines the cost of an activity as the value of the reward obtain-
able through an alternative activity, forgone in emitting the given one.
In our example, George must forgo working on his own assignment if he
takes time to assist Ted; therefore George must determine the relative
reward value of this alternative activity. To do this he follows a procedure
analogous to that just described, processing information concerning the
frequency of past reinforcement and the value of the anticipated reward
ensuing from this activity as well as his relative satiation with the reward.
Then he can compare the over-all expected reward from his contemplated
response to Ted with the anticipated reward from continuing with his own
work, and he can compute what Homans terms the psychic profit—the
reward of an activity less its cost.

Let us suppose George tentatively is planning to give Ted direct assist-
ance on his problem because in the past Ted has praised him for this
activity, and social approval is a reinforcement George values highly and

A MODEL OF ELEMENTARY SOCIAL BEHAVIOR 383

f

A.

one for which he feels relative deprivation at present. But let us also sup'
pose that George has an important assignment to complete, and that taking
time from it might detract from the quality of his work and thus lessen
the approval he anticipates from his boss for a good job. In this case
George would incur a loss rather than a profit in helping Ted directly;
therefore he will continue processing to see whether one of the other
activities he was contemplating might yield a profit. In this illustration,
George probably will decide that referring Ted to another source will net
him a profit, since he expects some approval for this activity (albeit less
than he would get from directly assisting Ted), and he will incur a very
small cost in terms of time takenfrom his own work.

Having selected what he expects to be a socially profitable activity,
George emits that response to Ted. At this point our program cycles, and
the activity George has emitted becomes the activity Ted has received.
Now Ted must process information in order to select an appropriateand
profitable response to George.

Proposition 5
Distributive justice, the subject of Homan's fifth proposition, is per-
haps the most complex of the concepts involved in the explanation
of elementary social behavior. At the very least it requires consider-
ation of information at another level—that of social norms or accepted
expectations for behavior within a group. Through repetition of inter-
action situations within a group, certain behavior patterns become sta-bilized so that expectations develop regarding what constitutes justice
in the distribution of rewards and costs between persons. The greater a
man's costs in a given interaction, the greater his rewards ought to be.
But the implications of distributive justice go even further, taking into
account a person's investments in an interaction—for example, his
seniority, skill, experience, age, and sex. The greater the investment a per-
son makes in an interaction, the greater the net profit he has a right to ex-
pect. Thus according to the principle of distributive justice it is consen-
sually expected that certain antecedent costs and investments should have
as consequents certain types and degreesof reinforcement.

Homans states the related proposition as follows:
The more to a man's disadvantage the rule of distributive justice
fails of realization, the more likely he is to display the emotional
behavior we call anger (1961, p. 75).

More is included, however, for if a man receives rewards beyond those
to which he considers himself entitled, he is likely to experience guilt
feelings.

Translating this proposition into computer routines posed some of the

384 SIMULATION OF COGNITIVE PROCESSES

most interesting problems we have yet encountered in working with
HOMUNCULUS. In effect, the list structures of our agents had to be
programmed to have consciences, and they had to include a repertoire of
appropriate anger responses.

In essence, our programmed interpretation of this proposition asks
whether a stimulus activity is appropriate in the given circumstances (P5,
Box I, Fig. 1). If so, then the person receiving it can process it as
George did Ted's request, which he considered appropriate. If, however,
the stimulus activity is judged inappropriate, then more complex be-
havior results. To illustrate this let us shift to a description of the inter-
actions between George and Tom, another worker in the same agency.

It is an accepted office norm that a worker who asks for help should
do so openly in a manner acknowledging the superiority of his consultant
with respect to the given problem. Tom, however, has been seeking aid
from George in a rather devious manner, coming to George with "an in-
teresting problem" and saying he would like to see whether George arrives
at the same solution as he. This has occurred three times in the recent past,
and on each occasion, Tom has greeted George's suggested solution with
the comment, "Yes, you reached the same conclusions I did." George de-
cides Tom is violating the norms of fair exchange by evading the cost of
thanking him for his assistance and conceding his superiority. The fourth
time Tom presents him with an interesting problem George angrily re-
sponds, "Look, why don't you do your own work!"

This description, of course, does not answer the question of how the
computer is programmed to behave in such an all-too-human way. George
is programmed to treat time spent solving a problem presented by another
worker as being help to that person for which recognition and social ap-
proval are due. When his colleague responds to his efforts with an unre-
warding confirmation that he arrived at the same conclusion, George finds
this input inappropriate in terms of his expectations regarding distributive
justice. Therefore, routines processing Proposition 5 change Georges
image list of Tom so that next time he expects greater recognition and
thanks than normal to atone for the present evasion. After three repe-
titions of this interaction sequence the discrepancy between Tom's be-
havior and George's expectations will be so great that when George evalu-
ates Tom's response he will plant a signal in his image list of Tom indicat-
ing that interacting with him is not rewarding because Tom violates group
norms.

The next time Tom asks for an opinion after this warning signal has
been set, George will respond by displaying anger or by storing up ag-
gression to be expressed against someone else. In the computer program
an anger response involves emitting behavior punitive to another person.
But before actively punishing Tom, George will first assess the conse-

I
A MODEL OF ELEMENTARY SOCIAL BEHAVIOR 385

quences to himself of such behavior. In one possible interaction sequence,
if George finds that Tom is in favor with George's own boss, he may sup-
press his aggression at the moment and then release it the next time he
interacts with a subordinate.

The routines processing the negative branch of Proposition 5 (Box 11,
Fig. 1), thus not only modify image lists but also use some of the
routines from the other propositions to evaluate the probable conse-
quences of direct anger responses. Depending on the outcome of this
processing, the program either proceeds to Proposition 1 or the interaction
is terminated.

Conclusions

Like other behavioral scientists who are expressing their theories
in IPL-V in order to learn about human processes by simulating them on a
digital computer, we are reducing complex social behavior to symbol-
manipulating processes. Even in this brief outline of our program it should
be obvious that we, too, have found IPL-V particularly appropriate
for operationalizing our model. We have already noted the flexibility
afforded by organizing information in lists and list structures and the
elegant simplicity yet powerful efficiency provided by utilizing descrip-
tion lists for storing information concerning certain symbols. In addition,
the relative ease of organizing routines in hierarchial structures greatly
facilitates the sequential processing of information involving numerous
conditional subroutines. There has not been time to explore the negative
branches of our flow diagram except for Proposition 5; however, the
generalprocesses should be apparent.

In contrast to the more purely cognitive models of behavior, e.g., Feigen-
baum (1959) and Feldman (1959), our model focuses on individual de-
cision-making in social interaction where normative considerations must be
Processed in the interplay of reciprocal rewards and punishments.
HOMUNCULUS is neither a completely general model, like Feigenbaum's
Elementary Perceiver and Memorizer, nor is it specific to particular sub-
jects, like Feldman's simulation of binary choice behavior. Rather, the
Program blends the two approaches. The information processing involved
in the routines is common for all simulated subjects; however, each list
structure describing a group participant is highly specific; consequently,
individual idiosyncracies and recent past histories determine whether cer-
tain subroutines will be executed and what their outputs will be in specific
mteraction sequences.

With reference to underlying assumptions, however, our model shares
several characteristics with those programmed by Feigenbaum and Feld-
man. Like their models, HOMUNCULUS emphasizes nonnumerical proc-

T.

386 SIMULATION OF COGNITIVE PROCESSES

esses and is essentially deterministic rather than probabilistic. In addition,
the decision-making processing is assumed to be serial—that is, we con-
sider a person capable of doing only a limited number of things at one
time. Furthermore, our model conceives of a person as an hypothesis test-
ing, information processing organism capable of receiving, analyzing,
reconstructing, and storing information. HOMUNCULUS is an attempt to

explicate in a way not possible with verbal theory the ability of a person
engaged in normal social interaction to evaluate the context of behavior,
retrieve information necessary to project alternative plans of action, and—
before actually committing himself overtly—to select the conditions under
which he will emit one activity rather than another.

part 3

SurveyofApproaches
and Attitudes

It has been said that the best method of presentation is to tell the
audience what you are going to say; say it; and then tell the audience
what you have said. The first two parts of this injunction have been
fulfilled, and only the last part remains to be carried out. We have
chosen to conclude this volume with Armer's review, "Attitudes
toward Intelligent Machines," and Minsky's review, "Steps toward
Artificial Intelligence." We would be presumptuous if we were to re-
view at length these two excellent pieces, and so we shall ask the
reader to pause for only two short introductory paragraphs.

Attitudes toward intelligent behavior by computers have been in-
fluenced by lack of knowledge and understanding of the work which
has taken place and by preconceived notions of what constitutes
proof of intelligence. This volume has provided the reader with re-
ports of the current state of the art in research on machine intelli-
gence. Armer provides a review and analysis of preconceived no-
tions concerning machine intelligence. His report is based on a sur-
vey of the literature and on his own observations in the United
States and the USSR. Although Armer himself has been associated
with much of the work reported in this volume, he presents an ap-
pealing middle-of-the-road position on the question, "Can computers
think?"

The final article in this volume is Minsky's thoughtful review of
the trials, errors, and successes of artificial intelligence research.
Minsky attempts to supply the field with structure and to state the
problems that remain to be solved. This is a unique and important re-

388 APPROACHES AND ATTITUDES

port and is required reading for a thorough understanding of the
field.

Paul Armer is head of the Computer Sciences Department of the
RAND Corporation.

Marvin Minsky is Associate Professor of Electrical Engineering
at Massachusetts Institute of Technology.

ATTITUDES TOWARD
INTELLIGENT MACHINES

Paul Armer

"A BIRD IS AN INSTRUMENT WORKING ACCORDING TO MATH-
EMATICAL LAW, WHICH INSTRUMENT IT IS WITHIN THE CA-
PACITY OF MAN TO REPRODUCE WITH ALL ITS MOVEMENTS."

Leonardo da Vinci (1452-1519)

This is an attempt to analyze attitudes and arguments brought forth
by questions like "Can machines think?" and "Can machines exhibit
intelligence?" Its purpose is to improve the climate which surrounds
research in the field of machine or artificial intelligence. Its goal is not
to convince those who answer the above questions negatively that they
are wrong (although an attempt will be made to refute some of the neg-
ative arguments) but that they should be tolerant of research investi-
gating these questions. The negative attitudes existent today tend to
inhibit such research (MacGowan, I960). 1

History

Before examining the current arguments and attitudes toward artificial
intelligence, let us look at some of the history of this discussion, for these
questionshave been around for a long time.

Samuel Butler (1835-1902), in Erewhon and Erewhon Revisited
(1933), concocted a civil war between the "machinists" and the "anti-
machinists." (Victory, incidentally, went to the "anti-machinists.") Butler
stated "there is no security against the ultimate development of mechanical
consciousness in the fact of machines possessing little consciousness now"
and specylated that the time might come when "man shall become to the

1 Almost an entire book, Computers and Common

Sense,

The Myth of Thinking
Machines, has been devoted to condemning artificial intelligence research (Taube,
1561). Readers who have been exposed to this book should refer to reviews of it by

Richard Laing (1962) and Walter R. Reitman (1962), particularly the former.
389

390 APPROACHES AND ATTITUDES

machines what the horse and dog are to us." Discussion of this topic
apparently took place in Babbage's time (1792-1871), for the Countess
of Lovelace commented on it, negatively, in her writings on Babbage's
efforts (Bowden, 1953). The topic came into prominence in the late
1940's when Babbage's dreams became a reality with the completion of
the first large digital computers. When the popular press applied the
term "giant brains" to these machines, computer builders and users, myself
included, immediately arose to the defense of the human intellect. We
hastened to proclaim that computers did not "think"; they only did arith-
metic quite rapidly.

A. M. Turing, who earlier had written one of the most important papers
in the computer field on the universality of machines (1936, 1937), pub-
lished in 1950 a paper entitled, "Computing Machinery and Intelligence."
In it he circumvented the problem of properly defining the words "ma-
chine" and "thinking" and examined instead the question of a game
wherein an interrogator, who can communicate with a human and a ma-
chine via teletype, but does not know which is which, is to decide which
is the machine. This is now known throughout the computer field as
"Turing's Test."

Discussion of machine intelligence died down (but not out) in the early
and mid-1950s but has come back in the last several years stronger than
ever before. In fact, it has recently invaded the pages of Science (Mac-
Gowan, 1960; Wiener, 1960; Taube, 1960; Samuel, 1960b).

A Way of Thinking about Thinking

Before beginning an examination of the negative arguments, allow
me to introduce a concept which will aid in discussing these arguments
and which may help resolve some of the semantic difficulties associated
with discussions of "Can machines think?" Like Turing, I avoid defining
"to think." Instead, observe that thinking is a continuum, an n-dimensional
continuum. This notion is certainly not new, for it has existed since
man first compared his mental abilities with another man's, and it is im-
plicit in all of the positive arguments on machine intelligence. Psychologists
long ago developed "intelligence quotient" as a yardstick in this con-
tinuum, and their concept of "factors" is indicative of the
sionality of the continuum of intelligence. The use of the one-dimensional
"1.Q." is obviously an oversimplification of reality. Although the con-
cept of an n-dimensional continuum for intelligence is not new, and al-
though it is implicit in many discussions of artificial intelligence, it lS

rarely stated explicitly.
An analogy may be drawn with the continuum of the ability to trans-

port. With respect to speed in transporting people from New York to

Los Angeles, the jet airplane of today outshines all other existing trans-

391ATTITUDES TOWARD INTELLIGENT MACHINES

iportation vehicles. But it does not compare favorably, costwise, with ships
for transporting newsprint from British Columbia to California. Existing
commercial jet transports cannot transport people from one lake to
another. A Cadillac may be the most comfortable vehicle to transport
people short distances over a good network of roads, but it is hardly a
substitute for the jeep in the environment of ground warfare—the jeep's
forte is versatility and flexibility. In this dimension, in the continuum
of the ability to transport, man outshines the jeep, for man can go where
jeeps cannot, just as the jeep can go where Cadillacs cannot. But men
cannot carry the load that a jeep can nor can men move with the speed of
the jeep.

Similarly, comparisons can be made between men and machines
in the continuum of thinking. If there is objection to the use of the
word "thinking," then "ability to process information" or some similar
term can be used. But it must be admitted that there exists some con-
tinuum of behavior in which men and machines coexist and in which they
can be compared. (See Fig. 1.)

An n-dimensional continuum is difficult to draw when n is large, so
let's examine a two-dimensional one, realizing that reality is far from
being that simple. With respect to raw speed, machines outdo men, but
when it comes to the sophistication of the information processes available,
machines look pretty poor. This dimension deserves further discussion.
While the repertoire of today's machines is quite simple—a few basic arith-
metic operations and comparisons—man's information processes are very
complex. Let me illustrate this point with the following incident. We have
all had the experienceof trying to recall the name of a person we have once
met. On a particular occasion Dr. Willis Ware and I were both trying to
recall an individual's name. We recounted to one another his physical
characteristics, where he worked, what he did, etc. But his name eluded
us. After some time, I turned to Dr. Ware and said, "His name begins
with a 'Z." At which point he snapped his fingers and correctly said,
"That's it, it's Frizell!"

Now, of course, the basic question is "Can the machines' capabilities
in this dimension be improved?" Let me turn the question around—Is
there any evidence that they cannot? I
know of none. In fact, over the last dec-
ade I think impressive progress has been oc me

made. It's easy to underestimate the ad- "s
vances, for "intelligence" is a slippery £
concept. As Marvin Minsky put it, "You
regard an action as intelligent until you
understand it. In explaining, you explain
away" (1959a).

Today's computers, even with their

Complexity or sophisticotionofthe
information processes avai'abl*

Figure 1

7

392 APPROACHES AND ATTITUDES

limited capability in the sophistication dimension, have had tremendous
impact on science and technology. Accomplishments of the last dec-
ade in the fields of nuclear energy, missiles and space would have been
impossible without computers. If we can push the capabilities of com-
puters2 further out in the sophistication dimension, won't they have an
even greater impact? In this context then, the goalof research on artificial
intelligence can be stated—it is simply an attempt to push machine be-
havior further out into this continuum.

It is irrelevant whether or not there may exist some upper bound above
which machines cannot go in this continuum. Even if such a boundary
exists, there is no evidence that it is located close to the position occupied
by today's machines. Is it not possible that we might one day understand
the logical processes which went on in Dr. Ware's head and then
mechanize them on a machine? We obviously will not achieve such a
goal unless someone believes that it is possible and tries to do it. One
does not have to believe that the boundary is nonexistent in order to
try; one need only believe that the boundary is much further out than
theposition occupied by today's machines.

Intelligent Machines and Today's Digital Computer

A common attitude toward today's computers is that such machines
are strictly arithmetic devices. While it is true that machines were first
built to carry out repetitive arithmetic operations, they are capable of
other, nonnumeric tasks. The essence of the computer is the manipula-
tion of symbols—it is only a historical accident that the first application
involved numeric symbols. This incorrect notion of the computer as a
strictly numeric device results in the inability of many to conceive of the
computer as a device exhibiting intelligent behavior, since this would re-
quire that the process be reduced to a numerical one. The reaction of
many people to statements about intelligent behavior by machines seems
to indicate that they take such statements to imply complete functional
equivalence between the machine and the human brain. Since this com-
plete functional equivalence does not exist, such people believe they have
thereby debunked intelligent machines. Their argument is hollow since
this equivalence was never implied. Intelligent behavior on the part of a
machine no more implies complete functional equivalence between machine
and brain than flying by an airplane implies complete functional equiv-
alence between plane and bird.

The concept of comparing the behavior of men and machines in an
/i-dimensional continuum recognizes differences as well as similarities.
' I make no distinction here between the attributes of the computer and those of

the program which controls the computer.

ATTITUDES TOWARD INTELLIGENT MACHINES 39:5

For example, a common argument against machine intelligence is that the
brain is a living thing—the machine is not. In our continuum we simply
recognize the dimension of living and note that machines and men occupy
different positions in this dimension.

While I do believe that today's digital computers can exhibit intel-
ligent behavior, I do not hold that the intelligent machines of the 1970's
will necessarily resemble today's machines, either functionally or physically.
In particular, in my desire to see machines pushed further out in the
continuum of intelligence, my interests in the dimension of speed are very
minor; the organizational aspects (sophistication of the information proc-
esses) are obviously much more important. Likewise, I hold no brief
for the strictly digital approach; a combination of analog and digital
equipment may prove to be better. I do not mean to disown the digital
computer, for it will be a most important tool in the endeavor to advance
in our continuum.

Some of the Negative Arguments

1. The Argument of Invidious Comparison
Considering the behavior of men and machines in the context of intel-
ligence being a multidimensional continuum, an argument that a machine
cannot play chess because "it could only operate on standard-size pieces
and could not recognize as chessmen the innumerable pieces of different
design which the human player recognizes and moves around quite
simply" (Taube, 1960) is like saying that the Wright brothers' airplane
could not fly because it could not fly nonstop from Los Angeles to New
York nor could it land in a tree like a bird. Why must the test of intelligence
be that the machine achieve identically the same point in the continuum as
man? Is the test of flying the achievement of the same point in the con-
tinuum of flying as thatreached by a bird?
2. The Argument of Superexcellence
Many of the negativists 3 seem to say that the only evidence of machine
intelligence they will accept is an achievement in our continuum seldom
achieved by man. For example, they belittle efforts at musical composition
by machine because the present output compares miserably with that of
Mozart or Chopin. How many men can produce music that compares
favorably? The ultimate argument of this kind occurred at a recent meet-
ing in England, during which a discussant stated that he would not
accept the fact that machines could think until one proved the famous

The terms "negativists" and "positivists" are used in this report to classify those
who do not and those who do, respectively, believe machines can exhibit intelligent
behavior. Of course, variations of degree exist.

T.

394 APPROACHES AND ATTITUDES

A.

conjecture of Fermat, better known as Fermat's last theorem. By this
logic one concludes that, to this date, no man has been capable of think-
ing, since the conjecture remains unproven.

3. The Argument by Definition
There are many variations of this type of argument. For example, some
negativists want to include in their definition of intelligent behavior the
requirement that it be carried out by a living organism. With such a defini-
tion, machines do not behave intelligently. However, there does still exist
machine behavior which can be compared with human behavior. To con-
clude that research on the simulation of such human behavior with a
machine is wrong, as some have done, because the machine is not living,
is like concluding that research on the simulation of the functions of the
human heart with an artificial heart is wrong because the artificial organ
is not a living one.

4. The Argument by Stipulation
An examination of the arguments advanced by the negativists reveals that
many of them are not arguments at all, but only statements. They dismiss
the notion out of hand, saying things like, "Let's settle this once and for
all, machines cannot think!" or "A computer is not a giant brain, in
spite of what some of the Sunday supplements and science fiction writers
would have you believe. It is a remarkably fast and phenomenally accurate
moron" (Andree, 1958).

5. The Argument by False Attribution
Typical of this type of argument is the following:

The Manchester machine which was set to solve chess problems
presumably proceeded by this method, namely by reviewing all the
possible consequences of all possible moves. This, incidentally, re-
veals all the strength and weakness of the mechanism. It can review
far more numerous possibilities in a given time than can a human
being, but it has to review all possibilities. The human player can
view the board as a whole and intuitively reject a number of possi-
bilities. The machine cannot do either of these (Hugh-Jones, 1956).

The statements about machine behavior in the above quotation are
simply not true. While it is true that some of the early approaches tochess-
playing machines were in the nature of attempts to review all possibilities
in limited depth (Kister et al., 1957), this is not the only way in which
the problem can be approached. The chess-playing routine of Newell,
Shaw, and Simon (19586) does not examine all possibilities. And those
which it does consider it examines in varying detail. The routine rejects

f
ATTITUDES TOWARD INTELLIGENT MACHINES 395

moves which appear to be worthless; it selects moves which appear to be
good ones and examines them in depth to ascertain that they are indeed
good. An earlier routine developed by this same team to prove theorems
in logic (Newell, Shaw and Simon, 1957a) did not examine all possibleproofs—to do so with today's computers would literally take endless time.
Rather, the routine searched through the maze of possible proofs for oneswhich looked promising and investigated them. It relied on knowing which
approaches had worked before. Most of those who scoff about researchon artificial intelligence turn out to be unaware of the details of what is
going on in such research today; it is little wonder that they frequently
make erroneous statements about the field.
6. The Argument by False Extrapolation
This class of argument is typified by extrapolationsbased on assumptionsthat machine properties are invariant. For example:

The human memory is a filing system that has a far greater ca-
pacity than that of the largest thinking machine built. A mechanical
brain that had as many tubes or relays as the human brain has nervecells (some ten billion) would not fit into the Empire State Build-
ing, and would require the entire output of NiagaraFalls to supply
the power and the NiagaraRiver to cool it. Moreover, such a com-
puter could operatebut a fraction of a second at a time before severalthousand of its tubes would fail and have to be replaced (Troll
1954).

The point is tied to the vacuum tube (the article was written in 1954)and has therefore already been weakened by the appearance of the tran-sistor, which requires less space and power and is considerably more re-liable than the vacuum tube. An offsetting development is that the estimateof the number of nerve cells is undoubtedly too low. However, on thehorizon are construction techniques involving the use of evaporatedfilms,where the details of the machine will not be visible under an optical micro-scope (Shoulders, 1960). It seems reasonable to expect that it will bePossible with these techniques to house in one cubic foot of space thesame number of logical elements as exist in the human brain. Power re-quirements will be trivial.
7. The Obedient Slave Argument
One often hears statements like "The machine can only do what it is toldto do." People who advance this obedient slave argument would seem tobe thinking that they are countering others who have pointed to a largeconglomeration of unconnected transistors, resistors and electronic com-ponents, and said "It thinks." Certainly man is involved in machine intelli-

7,

396 APPROACHES AND ATTITUDES

gence—so are parents and teachers in human intelligence. Do we deny
flying to an airplane because a man is piloting it or even to an unmanned
flightbecause a man designedit?—

o i_j

The negativists who say "the machine can only do what it is told to do
overlook the fact that they have not qualified their statement as to what
is the limit of what the machine can be told to do. What evidence exists
concerning the location of that limit? Might it not become possible to tell
a machine to learn to do a given task, a task usually considered to require
intelligence? Many of the tasks being accomplished with computers today
were not considered possible ten years ago.

Recent Computer Tasksand Milestones

The mounting list of tasks which can now be carried out on a computer
but which we normally consider requiring intelligence when performed by
humans, includes such things as:

Proving theorems in logic and plane geometry (Newell, Shaw and
Simon, 1957a; Gelernter, 1960a)

Playing checkers and chess (Samuel, 1959; Newell, Shaw and

Simon,

19586)
Assembly line balancing (Tonge, 1961a)
Composing music (Hiller and Isaacson, 1959)
Designing motors (Goodwin, 1958)
Recognitionof manual Morse code (Gold, 1959)
Solvingcalculus problems (Slagle, 1961)

The collection of capabilities which have been ascribed solely to humans
in the past is being slowly chipped away by the application of computers.
Space precludes going further into the evidence for machine intelligence;
this topic is well covered in the articles previously cited and in other papers
(Newell, Shaw and Simon, 1956; Milligan, 1959; Minsky, 1961a).

Such evidence is, of course, the basis for many of the arguments advanced
by the positivists.

To prove that machines today do not exhibit intelligence, it is only
necessary to define a lower bound in our continuum which is above the
behavior exhibited by the machines and then say that behavior above that
bound is intelligent and below it is not intelligent. This is a variant of the
proof by definition. Many who use this gambit have been redefining the
lower bound so that it is continually above what machines can do today.

For example, we find
Perhaps the most flexible concept is that any mental process which
can be adequately reproduced by automatic systems is not thinking
(Meszar, 1953).

ATTITUDES TOWARD INTELLIGENT MACHINES 397
This redefinition may not be done consciously. A skill which seems
highly intelligent in others becomes much less impressive to us when we
acquire that skill ourselves. It would be useful to have at hand some mile-
stones for the future. Turing's test is one such milestone (1950) but ad-
ditional ones are needed. To this end a clearly defined task is required
which is, at present, in the exclusive domain of humans (and thereforeincontestably "thinking") but which may eventually yield to accomplish-
ment by machines.

Rivalry Between Man and Machines

There is a strong personal factor in the attitude of many negativists.
I'm sure it was a major factor in my being a negativist ten years ago. To
concede that machines can exhibit intelligence is to admit that man has arival in an area previously held to be within the sole province of man. Toillustrate this point, let me quotefrom a letterreceived at RAND:

. . . semantics may have a lot to do with the degree of enthusiasm
for supporting research in this area (artificial intelligence). Subjec-
tively, the terms "intelligent machine" or "thinking machine" dis-
turb me and even seem a bit threatening: I am a human being, and
therefore "intelligent" and these inhuman devices are going to com-
pete with me and may even beat me out. On the other hand, ifthe very same black boxes were labelled "problem solver," or even
"adaptive problem solver," they would seem much more friendly,
capable of helping me in the most effective way to do things that 1
want to do better, but, best of all, I'd still be the boss. This observa-
tion is whollysubjective and emotional. . . .

Another explanation of why some negativists feel the way they do
is related to what might be called the "sins of the positivists." Exaggerated
claims of accomplishments, particularly from the publicity departmentsof computer manufacturers, have resulted in such a strong reaction withinthe scientific community that many swing too far in the opposite direction.

Da Vinci and Flying

At this point allow me to paraphrase the quotation of da Vinci's, withwhich this paper was begun, and also, with the benefit of hindsight, expand
°n it somewhat. Thus, he might have said:

When men understood the natural laws which govern the flight of
a bird, man will be able to build a flying machine.

■y

398 APPROACHES AND ATTITUDES

While it is true that man wasted a good deal of time and effort trying to
build a flying machine that flapped its wings like abird, the important point
is that it was the understanding of the law of aerodynamic lift (even
though the understanding was quite imperfect at first) over an airfoil
which enabled men to build flying machines. A bird isn't sustained in the
air by the hand of God—natural laws govern its flight. Similarly, natural
laws govern what went on in Dr. Ware's head when he produced "Frizell"
from my erroneous but related clue. Thus, I see no reason why we won't
be able to duplicate in hardware the very powerful processes of association
which the human brain has, once we understand them. And if man gained
an understanding of the processes of aerodynamics, may he not also
obtain an understanding of the information processes of the human brain?

There are other facets to this analogy with flight; it, too, is a continuum,
and some once thought that the speed of sound represented a boundary be-
yond which flight was impossible.

Approaches to the Problem of Building an Intelligent Machine

This topic can perhaps be expounded best with another analogy-
Suppose we are given a device which we know exhibits intelligent be-
havior because we have observed it in action. We would like to build a
machine which approaches it in capability (or better yet, exceeds it). We
bring in a group of men to study the basic components of the device to
understand how they work. These men apply pulses to subsets of the leads,
and observe what each component does; they try to understand why the
device behaves as it does in terms of basic physics and chemistry. They
also seek to learn how thesecomponents function in subassemblies.

A second group of men approach the problem from the point of view
that the device is a "black box" which they are not able to open. This
group observes that some of the appendages of the device are obviously
input devices while others are output devices. They observe the device
in operation and attempt to theorize how it works. They proceed on the
basis that it will not be necessary that the machine they are to construct
have the same basic components as exist in the device under study. They

believe that if they can understand the logical operation of the existing
device, they can duplicate its logic in their own machine, using components
they understand and can make.

This second group makes conjectures about the logical construction of
the device and tries these conjectures out on a computer which they have
at hand. These theories are very crude at first and do not mirror the be-
havior of the "black box" very well, but over time the resemblance im-
proves.

Because we learned a lesson from the effort spent on attempting to

ATTITUDES TOWARD INTELLIGENT MACHINES 399

Ibuild a flying machine that flapped its wings, we set a third group to
work studying "intelligence and information processing" per se and build-
ing up a science in the area.

There is much common ground among the three groups and theykeep each other posted on results to date. Furthermore, they all use com-
puters to aid them in their research. The groups combine their know-how
along the way to build better computers (low-I.Q. intelligent machines)
on which to try out their conjectures. Eventually, the three groups "come
together in the middle" and build a machine which is almost as capableas our model. They then turn to the task of building an even better one.

In the real-life situation of studying the human brain, the first group,
studying components and assemblies thereof, is represented by physio-logical work. The second, or "black-box" group, is represented by psy-chological efforts to explain human mental activity. This analogy repre-
sents, I believe, a plausible scenario for the way things might go in trying
to understand the human mind.

Russian Attitudes

Our examination thus far has been Western in origin; in view of theimpact that achievement of the goals of research on artificial intelligence
would have on the technological posture of the United States vis-a-vis theSoviet Union, it might be interesting to look at Soviet attitudes toward in-
telligent machines. As one might suspect, Soviet attitudes have been quitesimilar to Western ones. Positivists and negativists exist, and each camp
advances the same sort of arguments as their Western counterparts. For
example, there are negativists who advance the obedient slave argument.Academician S. A. Lebedev, head of the Institute of Precise Mechanics
and Computational Techniques and host to the U.S. Exchange Delegation
in Computers which visited the USSR in the last two weeks of May,1959 (of which I was a member), on two occasions dismissed my questions
concerning his attitude toward intelligent machines with the statement"Machines can do no more than they are instructed to do."

Their literature is filled with discussions of comparisons between menand machines. In 1961, an entire book, Philosophical Problems of Cyber-
netics (1961), was published on this topic. It was obvious from the ques-
tions asked of our delegation by the Russians about Western attitudesthat it is a hotly debated issue. In the USSR, research on artificial intel-ligence is a part of cybernetics, the term coined by Wiener (1948) andnow a household word in the Soviet Union. Cybernetics is also used as an
umbrella term for research in automatic control, automation, computers,
Programming, information retrieval, language translation, etc. It is uni-
versally recognized as an area related to both men and machines, and the

400 APPROACHES AND ATTITUDES

requirement for an interdisciplinary (engineering, mathematics, com-
puting, biology, psychology, physiology, physics, chemistry, linguistics,
etc.) approach to such research is also recognized.

As in the West, the use of the term "giant brains" in the late 1940's
resulted in a massive revulsion among the Soviet scientific community, and
universal rush to the defense of the human mind. The degree of the re-
vulsion was such that several Soviet writers have blamed it for the fact
that Russia presently lags the U.S. in the digital-computer field (Shaginyan,
1959). One finds frequent references in the Russian literature to the ex-
istence of a negative attitude toward cybernetics, and to the persistence of
this attitude for a period of about ten years.

Soviet literature on cybernetics frequently gives credit to Wiener, yon

Neumann, and other Westerners for pioneering the field. It also contains
many references to the work of Pavlov and mixes in much political dis-
cussion of communism vs. capitalism, and even of Marx and Lenin. For
example, we have:

Karl Marx was the first to make use implicitly and anticipatingly o)
cybernetical ways of thought, or to express it more pointedly, Karl
Marx was the first cybernetician! . . . (Klaus, 1960).

There are some strong positivists in the USSR. For example, I. A.
Poletayev has stated "nothing except prejudice and superstition allow one
to deny with assurance today the possibility that the machine will pass, in

the end, that limit beyond which consciousness begins" (1958). Other
strong positivists include S. L. Sobolev (an Academician and a well-known
mathematician) and A. A. Lyapunov (1960). We also find:

. Thus, the perfecting of computer machines involuntarily leads
us to the need to create a model of the brain. . . . Also, one of the
most effective methods of studying intra-cerebral processes involve
experiments carried out in electrical models of the brain. ...
But cybernetics has its critics too. These are skeptics. One can find
them among scientists and among ordinary citizens, at times also
among administrative personnel. These skeptics reject this branch
of science and deny it the right of existence. . . . In rejecting this
science, they generally state that the very thought of comparing «
machine to a human being is an insult (Moiseyev, 1960) .

The majority of Soviet workers appear to recognize (implicitly, a

least) the continuum discussed in this report, and argue that while there
does exist an upper bound above which machines cannot go, it is no
possible to determine the location of that bound. For example:

As a result we arrive at the conclusion that a machine can perform
all the intellectual human functions which can be formalized . ■ " "

But what can be formalized? . . . Upon brief reflection we con-

1
!

fATTITUDES TOWARD INTELLIGENT MACHINES 401
Ielude that it is impossible in principle to answer this question (Kol-

man, 1960).

Where Do the Russians Stand?

First of all, let us look at what they are doing in those disciplines upon
which research in artificial intelligence depends: computing devices,
mathematics, psychology, and physiology. With respect to computers, I
can speak with firsthand knowledge, for, as mentioned earlier, I spent two
weeks in 1959 visiting Soviet computer installations. In my opinion, they
are somewhat behind us in the actual construction of machines, par-
ticularly with respect to input/output equipment and to numbers of ma-
chines (Ware, 1960; Feigenbaum, 1961c). However, there is nothing
fundamentally lacking in their state of the art. The quantity of machines
is not as important to research as an offhand comparison of numbers of
machines might indicate, since none of their machines is devoted to such
things as social-security records, subscription fulfillment, or airline reser-
vations. In assessing a comparison of this kind, one always wonders how
much of the iceberg we do not see. When visiting the IBM plant in
California, Khrushchev said about computers, ". . . for the time being
We'rekeeping them a secret."

The Russians started work on computers after we did, but they have
certainly narrowed the gap. Furthermore, they are giving high priority to
the computing field. In their announcementconcerning the decentralization
of responsibility for research, an exception was made for computers, along
with fusion, space activities, high-temperature metallurgical research, and
certain areas of chemistry; these research areas remained centralized under
the cognizance of the Academy of Sciences. Of course, the Russians are
interested in spurring the computer field for reasons other than intelligent
machine research. There is no reason to believe that future Russian re-
search on intelligent machines need be hampered by the computer tools
available to them, although machine time is in short supply today.

In mathematics the Russians have had an outstanding reputation for
many decades. In computer mathematics I have no doubts that, in general,
they excel the West. One of the things which impressed our delegation,
and other delegations before ours (Carr et al, 1959), was the number of
outstanding mathematicians now working in the computer field. Un-
fortunately, many U.S. mathematicians view computers as a glorified
slide rule of interest only to engineers, or as an expensive sorting device
of interest to businessmen with clerical problems.

Since psychological research on mental processes and neurophysiological
research on structure and activity of the brain both play a vital suggestive
r°le in the attempt to construct intelligent machines, progress by theSoviets in these disciplines is of considerable interest. Although psychology

402 APPROACHES AND ATTITUDES

was severely inhibited during the Stalin era, a renaissance of impressive
proportions has taken place within the last decade. Physiology, less in-
hibited in the previous era, is in even better shape. The best available
evidence indicates that Russian neurophysiology is dynamic, innovative,
and up to date. The researchers are competent and generally sophisticated;
their laboratories are modern and well equipped.

The Soviets have demonstrated a knack for focusing talent and resources
on important applied problems. I believe that the Soviets regard artificial
intelligence as one such problem area, and that the best of modern Soviet
psychology and neurophysiology will be recruited into the search for solu-
tions. With respect to physiological research, the following is of interest:

Essentially, we (the Western World) have not found the physio-
chemical principles of neural activity, whereas the Russians have not
seriously sought them. However, the current 7-year plan for physi-
ology as presented in a recent editorial by D. A. Biriukev in the
Sechenov Physiological Journal of the USSR calls for precisely this
goal (Freeman, 1960).

A recent visitor of the USSR reports that Soviet physiologists appear
to be under pressure to produce explanations for human behavior which
can be incorporated into machines. He further reports that their work is
apparentlyunder security wraps.

Russian Emphasis on Artificial Intelligence Research

I went to the Soviet Union convinced they were putting a great deal of
emphasis on research in artificial intelligence. Possibly this predisposition
influenced what I thought I saw. I also want to emphasize that / was im-
pressed, not by any substantive results, but by their apparent conviction
that this was an importantresearch area.

In one institute, in response to my question about the problem of
simulating the brain with a computer, I was told "It is considered the
number one problem." The emphasis on "the" was the speaker's; the
statement was made in English. At another institute, when Professor
L. I. Gutenmacher, head of the Laboratory for Electrical Modeling, told
us that the charter of his laboratory was the modeling of human mental
processes, I asked him if he had difficulty obtaining financial support for
such exotic research. His response was "No, not at all; the President of the
Academy of Sciences is convinced that this is an important field for re-
search." There is evidence that he has been given ample support. I was
told that his laboratory, which was formerly (and still is ostensibly) a
part of the Institute of Scientific Information, had all the status of an
institute, being separately funded and reporting directly to the Presidium

1

ATTITUDES TOWARD INTELLIGENT MACHINES 403
of the Academy of Sciences. Gutenmacher's laboratory is apparently re-
sponsible for mechanizing the functions of the Institute of Scientific In-
formation, which is a large, centralized, information retrieval system for
scientific information from all over the world.

Despite much effort, our delegation was unable to visit Gutenmacher's
laboratory. To my knowledge, no Westerner has done so; in fact none had
met Gutenmacher before our delegation. Some in the U.S. have concluded
from this denial of entry to his laboratory that there was nothing to be
shown. However, its work may be classified, as Khrushchev indicated. But
whether or notanything is being accomplished is not pertinent to the point
that the President of the Soviet Academy of Sciences, a man with much
power and resources, believes that modeling human mental activities is
possible, that he recognizes the importance of research in this field, and
that he is devotingconsiderable resources to this end.

What are some of the other indications about Soviet attitudes toward
research on intelligent machines? As previously mentioned, cybernetics is
a household word in Russia. Much is being written on the subject, in
journals and in the popular press. There appears to be an effort in the
popular writings to legitimatize such research as being in harmony with
communism. For example, recall the earlier quote about Marx (Klaus,
1960).

With respect to professional writing on machine intelligence, a journal
entitled Problems of Cybernetics was started in 1958; seven hard-cover
volumes have appeared to date (Lyapunov, 1960, 1961). Since 1955,
seminars on cybernetics have been held at the University of Moscow.
These seminars are aimed at bringing together scientists from various
disclipines. Similarly, the editors of Problems of Cybernetics state that
their aim "is the unification of the scientific interests of those working in
different fields of science concerned with cybernetics."

There seems to be widespread recognition for the necessity of an
interdisciplinary approach to problems of cybernetics. Article after article
appeals to personnel from the various disciplines to get together. How
much effect these appeals and seminars have is unknown. During our
visit to the Soviet Union, we were told that some 500 physicists had been
transferred to the biological sciences. We talked with I. M. Gelfand, a
world-famous mathematician now working in the physiological field. He
began studying the brain but switched to the heart, which he believes to
be much simpler. With knowledge gained from studying the heart, he will
return to the study of the brain. We were also told that other mathema-
ticians were working on psychological and physiological problems.

Within the Soviet Academy of Sciences, there exists a "Scientific Council
on Cybernetics." This council is headed by A. I. Berg and apparently
reports directly to the Presidium of the Academy (Berg, 1960). To my

T

404 APPROACHES AND ATTITUDES

knowledge, there is no evidence of any effect this council may be having
in coordinating, controlling, or encouraging research in cybernetics. Out-
side of Moscow, individual researchers appear to operate entirely on
their own, with little communication with other such researchers, and with
only meager support. However, one does occasionally encounter references
to the formation of new groups and laboratories for such work.

There is some evidence that machine time (until recently in critically
short supply) has been made available for work in this area. Moscow
News of August 12, 1961, has an article on musical composition and
medical diagnosis on a computer while the issue of September 2, 1961,
discusses chess playing by machines and the deciphering of ancient Mayan
manuscripts.

In closing this topic, a quotation which appeared in the February, 1959,
issue of Fortune is pertinent. Frank Pace, Jr., then president of General
Dynamics Corporation, in warning us not to overlook nor be surprised by
Russia's capacity to concentratein specific areas, said:

// the area has real militaryorpsychological value to them, they'll p"(

massive concentration on it, and achieve results all out of proportion
to the general level of their technical ability.

The Importance ofResearch in Artificial Intelligence

I have indicated my feeling that research aimed at pushing machines
further out in the continuum of intelligence is very important. Today's
computers are helping advance the frontiers of man's knowledge in many
fields; computers now pervade almost all scientific disciplines. (The fact
that they pervade the field of research on intelligent machines means that
such research will feed on itself.) The use of computers in research has
been a key factor in the explosion of knowledge we have witnessed in the
last decade. Their contribution to date has stemmed largely from their
speed in doing arithmetic and the reliability with which they do it. As we
move out in the continuum of possibilities, new dimensions and contribu-
tions will become important. A machine which retrieves information from
a large store by complex associative processes like those inherent in Wilhs
Ware's output of "Frizell,"but which exceedsDr. Ware in speed,reliability,
and memory capacity, would be crucial in aiding scientists to cope with the
flood of research results presently inundating science.

The large amount of money spent on machines today is evidence of the
value placed on the computers' abilities along the dimensions of speed
and reliability. If the machine's capabilities can be extended in additional
dimensions, would it not be of great importance? Suppose that the
boundary (if it exists at all) beyond which machines cannot go lies fairly

close to the human brain in the dimension related to the sophistication o

405ATTITUDES TOWARD INTELLIGENT MACHINES
Ithe information processing techniques used. Since it is known that the

machine can exceed the human in speed and reliability, and probably in
amount of memory, such a machine would approach the status of being
"super-human." Of course, this is speculation; the boundary may be much
lower.

We have been examining the question of the technological importance
of research in artificial intelligence in the context of advancing the frontiers
of knowledge for the sake of technological and scientific advancement. In
such a context, there is little cause for any concern or action; progress in
the field is being made at a fairly rapid pace in this country. However,
since we are engaged in a technological race with the USSR, action be-
comes important, particularly since, in my opinion, the Russians appear
to be putting much more emphasis on research in artificial intelligence
than we are. Even if the Russians were not competing in this particular
eventof the "technological Olympics," it is an eventwell worth the running
in that we will learn more about man and in that better machines will
contribute to advancing the frontiers of knowledge in almost every dis-
cipline.

Timing

Before closing, a comment on the question "when?" It is one thing to say
it is possible to push machine capabilities way out in the continuum of in-
telligence, but it is another thing to say when. It was over four hundred
years from da Vinci to the Wright brothers. But the sands of time in the
scientific world have been flowing much more rapidly of late. Advances
now made in a decade compare with earlier steps which took a century.
Few would have believed in 1950 that man would hit the moon with a
rocket within ten years. Gutenmacher, when told recently of the Simon and
Newell prediction that a machine would be chess champion within ten
years (Newell and Simon, 1958a") said that he thought the prediction
conservative; it would happen sooner.

Conclusion

It is hoped that the definition of research on artificial intelligence as an
effort to push machines further out in the continuum of intelligent be-
havior will reduce some of the semantic difficulties surrounding discussions
of such research. I feel that such research is very important to our country
and that we must expand our efforts therein. To do so implies that more
researchers from the related disciplines are needed. The success of our
efforts will depend on how well we do in bringing the various disciplines
together and on the number of well-qualified scientists who are attracted
to this research area.

T.

STEPS TOWARD
ARTIFICIAL INTELLIGENCE

Marvin Minsky

Introduction

A visitor to our planet might be puzzled about the role of computers in
our technology. On the one hand, he would read and hear all about wonder-
ful "mechanical brains" baffling their creators with prodigious intellectual
performance. And he (or it) would be warned that these machines must be
restrained, lest they overwhelm us by might, persuasion, or even by the
revelation of truths too terrible to be borne. On the other hand, our
visitor would find the machines being denounced, on all sides, for their
slavish obedience, unimaginative literal interpretations, and incapacity
for innovation or initiative;in short, for their inhuman dullness.

Our visitor might remain puzzled if he set out to find, and judge for
himself, these monsters. For he would find only a few machines (mostly
"general-purpose" computers, programmed for the moment to behave ac-
cording to some specification) doing things that might claim any real
intellectual status. Some would be proving mathematical theorems ofrather
undistinguished character. A few machines might be playing certain games,
occasionally defeating their designers. Some might be distinguishing be-
tween hand-printed letters. Is this enough to justify so much interest, let
alone deep concern? I believe that it is; that we are on the threshold of
an era that will be strongly influenced, and quite possibly dominated, by
intelligent problem-solving machines. But our purpose is not to guess about
what the future may bring; it is only to try to describe and explain what
seem now to be our first steps toward the construction of "artificial in-
telligence."
406

407STEPS TOWARD ARTIFICIAL INTELLIGENCE

Along with the development of general-purpose computers, the past
few years have seen an increase in effort toward the discovery and
mechanization of problem-solving processes. Quite a number of papers
have appeared describing theories or actual computer programs concerned
with game playing, theorem proving, pattern recognition, and other do-
mains which would seem to require some intelligence. The literature does
not include any general discussion of the outstanding problems of this field.

In this article, an attempt will be made to separate out, analyze, and
find the relations between some of these problems. Analysis will be sup-
ported with enough examples from the literature to serve the introductory
function of a review article, but there remains much relevant work not de-
scribed here. This report is highly compressed, and therefore, cannot be-
gin to discuss all these matters in the available space.

There is, of course, no generally accepted theory of "intelligence"; the
analysis is our own and may be controversial. We regret that we cannot
give full personal acknowledgments here—suffice it to say that we have
discussed these matters with almost every one of the cited authors.

It is convenient to divide the problems into five main areas: Search,
Pattern Recognition, Learning, Planning, and Induction; these comprise
the main divisions of the report. Let us summarize, the entire argument
very briefly:

A computer can do, in a sense, only what it is told to do. But even
when we do not know exactly how to solve a certain problem, we may
program a machine to Search through some large space of solution at-
tempts. Unfortunately, when we write a straightforward program for such
a search, we usually find the resulting process to be enormously inefficient.
With Pattern Recognition techniques, efficiency can be greatly improved
by restricting the machine to use its methods only on the kind of attempts
for which they are appropriate. And with Learning, efficiency is further
improved by directing Search in accord with earlier experiences. By ac
tually analyzing the situation, using what we call Planning methods, the
machine may obtain a really fundamental improvement by replacing th*
originally given Search by a much smaller, more appropriate exploration
Finally, in the section on Induction, we consider some rather more global
concepts of how one might obtain intelligent machine behavior.

/. The Problem of Search1

If, for a given problem, we have a means for checking a proposed solu-
tion, then we can solve the problem by testing all possible answers. But this

1 The adjective "heuristic," as used here and widely in the literature, means related
lo improving problem-solving performance; as a noun it is also used in regard to any
method or trick used to improve the efficiency of a problem-solving system. A

408 APPROACHES AND ATTITUDES

always takes much too long to be of practical interest. Any device that can
reduce this search may be of value. If we can detect relative improvement,
then "hill-climbing" (Sec. I-B) may be feasible, but its use requires
some structural knowledge of the search space. And unless this structure
meets certain conditions, hill-climbing may do more harm than good.

When we talk of problem-solving in what follows we will usually sup-
pose that all the problems to be solved are initially well defined (McCarthy,
1956). By this we mean that with each problem we are given some sys-
tematic way to decide when a proposed solution is acceptable. Most of
the experimental work discussed here is concerned with such well-defined
problems as are met in theorem-proving, or in games with precise rules for
play and scoring.

In one sense all such problems are trivial. For if there exists a solution
to such a problem, that solution can be found eventually by any blind
exhaustive process which searches through all possibilities. And it is usu-
ally not difficult to mechanize or program such a search.

But for any problem worthy of the name, the search through all pos-
sibilities will be too inefficient for practical use. And on the other hand,
systems like chess, or nontrivial parts of mathematics, are too complicated
for complete analysis. Without complete analysis, there must always re-
main some core of search, or "trial and error." So we need to find tech-
niques through which the results of incomplete analysis can be used to
make the search more efficient. The necessity for this is simply over-
whelming: a search of all the paths through the game of checkers involves
some 1040 move choices (Samuel, 1959a), in chess, some 10120 (Shannon,
in Newman, 1956). If we organized all the particles in our galaxy into
some kind of parallel computer operating at the frequency of hard cosmic
rays, the latter computation would still take impossibly long; we cannot
expect improvements in "hardware" alone to solve all our problems!
Certainly we must use whatever we know in advance to guide the trial
generator. And we must also be able to make use of results obtained along
the way.2 ' 3

"heuristic program," to be considered

successful,

must work well on a variety of
problems, and may often be excused if it fails on some. We often find it worthwhile
to introduce a heuristic method which happens to cause occasional

failures,

if there
is an over-all improvement in performance. But imperfect methods are not neces-
sarily heuristic, nor vice versa. Hence "heuristic"should not be regarded as opposite
to "foolproof; this has caused some confusion in the literature.

2 McCarthy (1956) has discussed the enumeration problem from a recursive-
function-theory point of view. This incomplete but suggestive paper proposes, among
other things, that "the enumeration of partial recursive functions should give an
early place to compositions of functions that have already appeared."
I regard this as an important notion, especially in the light of Shannon's results

(1949) on two-terminal switching circuits—that the "average" n-variable switching

STEPS TOWARD ARTIFICIAL INTELLIGENCE 409

A. Relative Improvement, Hill-climbing, and Heuristic Connections
A problem can hardly come to interest us if we have no background of
information about it. We usually have some basis, however flimsy, for de-
tecting improvement; some trials will be judged more successful than others.
Suppose, for example, that we have a comparator which selects as the
better, one from any pair of trial outcomes. Now the comparator cannot,
alone, serve to make a problem well defined. No goal is defined. But if
the comparator-defined relation between trials is "transitive" (Le, if A
dominates B and B dominates C implies that A dominates C), then we
can at least define "progress," and ask our machine, given a time limit, to
do the best it can.

But it is essential to observe that a comparator by itself, however
shrewd, cannot alone give any improvement over exhaustive search. The
comparator gives us information about partial success, to be sure. But we
need also some way of using this information to direct the pattern of
search in promising directions; to select new trial points which are in some
sense "like," or "similar to," or "in the same direction as" those which
have given the best previous results. To do this we need some additional
structure on the search space. This structure need not bear much resem-
blance to the ordinary spatial notion of direction, or that of distance, but
it must somehow tie together points which are heuristically related.

We will call such a structure a heuristic connection. We introduce this
term for informal use only—that is why our definition is itself so informal.
But we need it. Many publications have been marred by the misuse, for
this purpose, of precise mathematical terms, e.g., metric and topological.
The term "connection," with its variety of dictionary meanings, seems just
the word to designate a relation without commitment as to the exactnature
of the relation.

An important and simple kind of heuristic connection is that defined
when a space has coordinates (or parameters) and there is also defined a
numerical "success function" E which is a reasonably smooth function of
the coordinates. Here we can use local optimization or hill-climbing
methods.

function requires about 2"/n contacts. This disaster does not usually strike when we
construct "interesting" large machines, presumably because they are based on
composition of functions already found useful. One should not overlook the
Pioneering paper of Newell (1955), and Samuel's discussion of the minimaxing
Process in (1959a).

*In 1952 and especially in 1956, Ashby has an excellent discussion of the search
Problem. (However, I am not convinced of the usefulness of his notion of "ultra-
stability," which seems to be little more than the property of a machine to search
until something stops it.)

410 APPROACHES AND ATTITUETES

i

B. Hill-climbing
Suppose that we are given a black-box machine with inputs Ai, . . . , A.*
and an output E(kv . . . , \„). We wish to maximize Eby adjusting the
input values. But we are not given any mathematical description of the
function E; hence we cannot use differentiation or related methods. The
obvious approach is to explore locally about a point, finding the direction
of steepest ascent. One moves a certain distance in that direction and
repeats the process until improvement ceases. If the hill is smooth this
may be done, approximately, by estimating the gradient component
dE/dK separately for each coordinate A.;. There are more sophisticated
approaches (one may use noise added to each variable, and correlate the
output with each input, see Fig. 1), but this is the general idea. It is a
fundamental technique, and we see it always in the background of far more
complex systems. Heuristically, its great virtue is this: the sampling effort
(for determining the direction of the gradient) grows, in a sense, only
linearly with the number of parameters. So if we can solve, by such a
method, a certain kind of problem involving many parameters, then the
addition of more parameters of the same kind ought not cause an in-
ordinate increase in difficulty. We are particularly interested in problem-
solving methods which can be so extended to more difficult problems. Alas,
most interesting systems which involve combinational operations usually
grow exponentially more difficult as we add variables.

A great variety of hill-climbing systems have been studied under the
names of "adaptive" or "self-optimizing"servomechanisms.

From other O's

Figure 1. "Multiple simultaneous optimizers" search for a (local) maximum value
of some function E(\t, . . . , X») of several parameters. Each unit U t independently
"jitters" its parameter X(, perhaps randomly, by adding a variation 8t(t) to a current
mean value in. The changes in the quantities

S,

and E are correlated, and the result
is used to (slowly) change in. The filters are to move d-c components. This simul-
taneous technique, really a form of coherent detection, usually has an advantage
over methods dealing separately and sequentially with each parameter. [Cf. the
discussion of "informative feedback" in Wiener (1948, pp. 133ff.).l

STEPS TOWARD ARTIFICIAL INTELLIGENCE 411

▲.

C. Troubles with Hill-climbing
Obviously, the gradient-following hill-climber would be trapped if it should
reach a local peak which is not a true or satisfactory optimum. It must
then be forced to try larger steps or changes.

It is often supposed that this false-peak problem is the chief obstacle to
machine learning by this method. This certainly can be troublesome. But
for really difficult problems, it seems to us that usually the more funda-
mental problem lies in finding any significant peak at all. Unfortunately
the known E functions for difficult problems often exhibit what we have
called (Minsky and Selfridge, 1960) the "Mesa Phenomenon" in which a
small change in a parameter usually leads to either no change in per-
formance or to a large change in performance. The space is thus com-
posed primarily of flat regions or "mesas." Any tendency of the trial
generator to make small steps then results in much aimless wandering
without compensating information gains. A profitable search in such a
space requires steps so large that hill-climbing is essentially ruled out. The
problem-solvermust find other methods; hill-climbing might still be feasible
with a different heuristic connection.

Certainly, in our own intellectual behavior we rarely solve a tricky prob-
lem by a steady climb toward success. I doubt that in any one simple
mechanism, e.g., hill-climbing, will we find the means to build an efficient
and general problem-solving machine. Probably, an intelligent machine
will require a variety of different mechanisms. These will be arranged in
hierarchies, and in even more complex, perhaps recursive, structures. And
perhaps what amounts to straightforward hill-climbing on one level may
sometimes appear (on a lower level) as the sudden jumps of "insight."

//. The Problem of Pattern Recognition

In order not to try all possibilities, a resourceful machine must classify
problem situations into categories associated with the domains of effective-
ness of the machine's different methods. These pattern-recognition methods
must extract the heuristically significant features of the objects in question.
The simplest methods simply match the objects against standards or proto-
types. More powerful "property-list" methods subject each object to a
sequence of tests, each detecting some property of heuristic importance.
These properties have to be invariant under commonly encountered forms
of distortion. Two important problems arise here—inventing new useful
properties, and combining many properties to form a recognition system.
For complex problems, such methods will have to be augmented by facilities
for subdividing complex objects and describing the complex relations
between their parts.

412 APPROACHES AND ATTITUDES

A

Any powerful heuristic program is bound to contain a variety of different
methods and techniques. At each step of the problem-solving process the
machine will have to decide what aspect of the problem to work on, and
then which method to use. A choice must be made, for we usually cannot
afford to try all the possibilities. In order to deal with a goal or a problem,
that is, to choose an appropriate method, we have to recognize what kind
of thing it is. Thus the need to choose among actions compels us to provide
the machine with classification techniques, or means of evolving them. It is
of overwhelming importance that the machine have classification techniques
which are realistic. But "realistic" can be defined only with respect to the
environments to be encountered by the machine, and with respect to the
methods available to it. Distinctions which cannot be exploited are not
worth recognizing. And methods are usually worthless without classifica-
tion schemes which can help decidewhen they are applicable.

A. Teleological Requirements of Classification
The useful classifications are those which match the goals and methods
of the machine. The objects grouped together in the classifications should
have something of heuristic value in common; they should be "similar" in a
useful sense; they should depend on relevant or essential features. We
should not be surprised, then, to find ourselves using inverse or teleological
expressions to define the classes. We really do want to have a grip on "the
class of objects which can be transformed into a result of form V," that is,
the class of objects which will satisfy some goal. One should be wary of
the familiar injunction against using teleological language in science. While
it is true that talking of goals in some contexts may dispose us towards
certain kinds of animistic explanations, this need not be a bad thing in the
field of problem-solving; it is hard to see how one can solve problems
without thoughts of purposes. The real difficulty with teleological defini-
tions is technical, not philosophical, and arises when they have to be used
and not just mentioned. One obviously cannot afford to use for classifica-
tion a method which actually requires waiting for some remote outcome,
if one needs the classification precisely for deciding whether to try out that
method. So, in practice, the ideal teleological definitions often have to be
replaced by practical approximations, usually with some risk of error;
that is, the definitions have to be made heuristically effective, or eco-
nomically usable. This is of great importance. (We can think of "heuristic
effectiveness" as contrasted to the ordinary mathematical notion of "effec-
tiveness" which distinguishes those definitions which can be realized at all
by machine, regardless of efficiency.)

B. Patterns and Descriptions
It is usually necessary to have ways of assigning names—symbolic expres-
sions—to the defined classes. The structure of the names will have a

I
STEPS TOWARD ARTIFICIAL INTELLIGENCE 413

A

crucial influence on the mental world of the machine, for it determines
what kinds of things can be conveniently thought about. There are a
variety of ways to assign names. The simplest schemes use what we will
call conventional (or proper) names; here, arbitrary symbols are assigned
to classes. But we will also want to use complex descriptions or computed
names; these are constructed for classes by processes which depend on the
class definitions. To be useful, these should reflect some of the structure
of the things they designate, abstracted in a manner relevant to the problem
area. The notion of description merges smoothly into the more complex
notion of model; as we think of it, a model is a sort of active description.
It is a thing whose form reflects some of the structure of the thing repre-
sented, but which also has some of the character of a working machine.

In Sec. 11l we will consider "learning" systems. The behavior of those
systems can be made to change in reasonable ways depending on what
happened to them in the past. But by themselves, the simple learning
systems are useful only in recurrent situations; they cannot cope with any
significant novelty. Nontrivial performance is obtained only when learning
systems are supplemented with classification orpattern-recognition methods
of some inductive ability. For the variety of objects encountered in a non-
trivial search is so enormous that we cannot depend on recurrence, and
the mere accumulation of records of past experience can have only limited
value. Pattern Recognition, by providing a heuristic connection which
links the old to the new, can make learning broadly useful.

What is a "pattern"? We often use the term teleologically to mean a
set of objects which can in some (useful) way be treated alike. For each
problem area we must ask, "What patterns would be useful for a machine
working on such problems?"

The problems of visual patternrecognition have received much attention
in recent years and most of our examples are from this area.
C. Prototype-derived Patterns
The problem of reading printed characters is a clearcut instance of a situa-
tion in which the classification is based ultimately on a fixed set of "proto-
types"—e.g., the dies from which the type font was made. The individual
marks on the printed page may show the results of many distortions. Some
distortions are rather systematic: change in size, position, orientation.
Some are of the natureof noise: blurring, grain, low contrast, etc.

If the noise is not too severe, we may be able to manage the identifica-
tion by what we call a normalization and template-matching process. We
first remove the differences related to size and position—that is, we
normalize the input figure. One may do this, for example, by constructing
a similar figure inscribed in a certain fixed triangle (see Fig. 2); or one
may transform the figure to obtain a certain fixed center of gravity and a
unit second central moment. [There is an additional problem with rotational

414 APPROACHES AND ATTITUDES

A.

Figure 2. A simple normal-

equivalence where it is not easy to avoid all
ambiguities. One does not want to equate "6'
and "9." For that matter, one does not want
to equate (0,o), or (X,x) or the o's in

x„

and
x", so that there may be context dependency
involved.] Once normalized, the unknown
figure can be compared with templates for the
prototypes and, by means of some measure of
matching, choose the best fitting template.
Each "matching criterion" will be sensitive to

ization technique. If an ob- . ° . .■"._." „„A
ject is expanded uniformly, particular forms of noise and distortion, and
without rotation, until it so will each normalization procedure. The in-
touches all three sides of a scribing or boxing method may be sensitive to
triangle, the resulting figure small specks, while the moment method will
will be unique, and pattern
recognition can proceed
without concern about re-
lative size and position.

be especially sensitive to smearing, at least for
thin-line figures, etc. The choice of a matching
criterion must depend on the kinds of noise
and transformations commonly encountered.

Still, for many problems we may get acceptable results by using straight-
forward correlation methods.

When the class of equivalence transformations is very large, e.g., when
local stretching and distortion are present, there will be difficulty in finding
a uniform normalization method. Instead, one may have to consider a
process of adjusting locally for best fit to the template. (While measuring
the matching, one could "jitter" the figure locally; if an improvement were
found the process could be repeated using a slightly different change, etc.)
There is usually no practical possibility of applying to the figure all of the
admissible transformations. And to recognize the topologicalequivalence
of pairs such as those in Fig. 3 is likely beyond any practical kind of itera-
tive local-improvement or hill-climbing matching procedure. (Such recog-
nitions can be mechanized, though, by methods which follow lines, detect
vertices, and build up a description in the form, say, of a vertex-connection
table.)

(a) [a) (b) {b')

Figure 3. The figures A, A' and B, B' are topological^ equivalent pairs. Lengths
have been distorted in an arbitrary manner, but the connectivity relations between
corresponding points have been preserved. In Sherman (1959) and Haller (1959)
we find computer programs which can deal with such equivalences.

415 FSTEPS TOWARD ARTIFICIAL INTELLIGENCE

A.

The template-matching scheme, with its normalization and direct com-
parison and matching criterion, is just too limited in conception to be of
much use in more difficult problems. If the transformation set is large,
normalization, or "fitting," may be impractical, especially if there is no
adequate heuristic connection on the space of transformations. Further-
more, for each defined pattern, the system has to be presented with a proto-
type. But if one has in mind a fairly abstract class, one may simply be
unable to represent its essential features with one or a very few concrete
examples. How could one represent with a single prototype the class of
figures which have an even number of disconnected parts? Clearly, the
template system has negligible descriptive power. The property-list system
frees us from someof theselimitations.

D. Property Lists and "Characters"
We define a property to be a two-valued function which divides figures
into two classes; a figure is said to have or not have the property according
to whether the function's value is 1 or 0. Given a number N of distinction
properties, we could define as many as 2" subclasses by their set inter-
sections and, hence, as many as 22 " patterns by combining the properties
with AND's and OR's. Thus, if we have three properties, rectilinear, con-
nected, and cyclic, there are eight subclasses (and 256 patterns) defined
by their intersections (see Fig. 4).

If the given properties are placed in a fixed order then we can represent
any of these elementary regions by a vector, or string of digits. The vector
so assigned to each figure will be called the Character of that figure (with
respect to the sequence of properties in question). [In "Some Aspects of
Heuristic Programming and Artificial Intelligence" (1959a), we use the

Figure 4. The eight regions represent all the possible configurations of values of
'he three properties "rectilinear," "connected," "containing a loop." Each region
contains a representative figure, and its associated binary "Character" sequence.

416 APPROACHES AND ATTITUDES

A

term characteristic for a property without restriction to 2 values.] Thus a
square has the Character (1,1,1) and a circle the Character (0,1,1) for
the given sequence of properties.

For many problems one can use such Characters as names for categories
and as primitive elements with which to define an adequate set of patterns.
Characters are more than conventional names. They are instead very
rudimentary forms of description (having the form of the simplest sym-
bolic expression—the list) whose structure provides some information
about the designated classes. This is a step, albeit a small one, beyond the
template method; the Characters are not simple instances of the patterns,
and the properties may themselves be very abstract. Finding a good set of
properties is the major concern of many heuristic programs.

E. Invariant Properties
One of the prime requirements of a good property is that it be invariant
under the commonly encountered equivalence transformations. Thus for
visual Pattern Recognition we would usually want the object identification
to be independent of uniform changes in size and position. In their pioneer-
ing paper Pitts and McCulloch (1947) describe a general technique for
forming invariant properties from noninvariant ones, assuming that the
transformation space has a certain (group) structure. The idea behind
their mathematical argument is this: suppose that we have a function P
of figures, and suppose that for a given figure F we define [F] = {F!,F2,
. . . } to be the set of all figures equivalent to F under the given set of
transformations; further, define P[F] to be the set {P(F1),P(F2), . . . }
of values of P on those figures. Finally, define P*[F] to be AVERAGE
(P[F]). Then we have a new property P* whose values are independent
of the selection of F from an equivalence class defined by the transforma-
tions. We have to be sure that when different representatives are chosen
from a class the collection [F] will always be the same in each case. In the
case of continuous transformation spaces, there will have to be a measure
or the equivalent associated with the set [F] with respect to which the
operation AVERAGE is defined, say, as an integration.4

This method is proposed (Pitts and McCulloch, 1947) as a neuro-
physiological model for pitch-invariant hearing and size-invariant visual

4 In the case studied in Pitts and McCulloch (1947) the transformation space is a
group with a uniquely defined measure: the set [F] can be computed without repeti-
tions by scanning through the application of all the transforms T„ to the given figure
so that the invariant property can be definedby

where G is the group and

/t

the measure. By substituting T/>(F) for F in this, one
can see that the result is independent of choice of /3 since we obtain the same
integral over G/3" 1 = G.

Ja£Q

STEPS TOWARD ARTIFICIAL INTELLIGENCE 417

A

recognition (supplemented with visual centering mechanisms). This model
is discussed also by Wiener. 5 Practical application is probably limited to
one-dimensional groups and analog scanning devices.

In much recent work this problem is avoided by using properties already
invariant under these transformations. Thus a property might count the
number of connected components in a picture—this is invariant under
size and position. Or a property may count the number of vertical lines in
a picture—this is invariant under size and position (but not rotation).

F. Generating Properties
The problem of generating useful properties has been discussed by
Selfridge (1955) ; we shall summarize his approach. The machine is given,
at the start, a few basic transformations Au . . . , An, each of which
transforms, in some significant way, each figure into another figure. Ax
might, for example, remove all points not on a boundary of a solid region;
A 2might leave only vertex points; A 3 might fill up hollow regions, etc. (see
Fig. 5). Each sequence AixA i 2. . . A il(of these forms a new trans-
formation, so that there is available an infinite variety. We provide the
machine also with one or more "terminal" operations which convert a
picture into a number, so that any sequence of the elementary transforma-
tions, followed by a terminal operation, defines a property. [Dineen (1955)
describes how these processes were programmed in a digital computer.]
We can start with a few short sequences, perhaps chosen randomly.
Selfridge describes how the machine might learn new useful properties.

We now feed the machine A's and O's telling the machine each time
which letter it is. Beside each sequence under the two letters, the
machine builds up distribution functions from the results of applying
the sequences to the image. Now, since the sequences were chosen
completely randomly, it may well be that most of the sequences have
very flat distribution functions; that is, they [provide] no information,

■See pp. 160ff. of Wiener (1948).

Figure 5. An arbitrary sequence of picture

transformations,

followed by a numerical-
valued

function,

can be used as a property function for pictures. Ai removes all
points which are not at the edge of a solid region. A, leaves only vertex points—
at which an arc suddenly changes direction. The function C simply counts the
number of points remaining in the picture. All remarks in the text could be
generalized to apply to properties like AiA2

C,

which can have more than two values.

418 APPROACHES AND ATTITUDES

A.

and the sequences are therefore [by definition] not significant. Let it
discard these and pick some others. Sooner or later, however, some
sequences will prove significant; that is, their distribution functions
will peak up somewhere. What the machine does now is to build up
new sequences like the significant ones. This is the important point.
If it merely chose sequences at random it might take a very long
while indeed to find the best sequences. But with some successful
sequences, or partly successful ones, to guide it, we hope that the
process will be much quicker. The crucial question remains: how do
we build up sequences "like" other sequences, but not identical? As of
now we think we shall merely build sequences from the transition
frequencies of the significant sequences. We shall build up a matrix
of transition frequencies from the significant ones, and use those as
transition probabilitieswith which to choose new sequences.

We do not claim that this method is necessarily a very good way
of choosing sequences—only that it should do better than not using
at all the knowledge of what kind of sequences has worked. It has
seemed to us that this is the crucial pointof learning*

It would indeed be remarkable if this failed to yield properties more
useful than would be obtained from completely random sequence selection.
The generating problem is discussed further in Minsky (1956a). Newell,
Shaw, and Simon (19606) describe more deliberate, less statistical, tech-
niques that might be used to discover sets of properties appropriate to a
given problem area. One may think of the Selfridge proposal as a system
which uses a finite-state language to describe its properties. Solomonoff
(1957, 1960) proposes some techniques for discovering common features
of a set of expressions, e.g., of the descriptions of those properties of
already established utility; the methods can then be applied to generate
new properties with the same common features. I consider the lines of
attack in Selfridge (1955), Newell, Shaw and Simon (1960a), and
Solomonoff (1960, 1958), although still incomplete, to be of the greatest
importance.

G. Combining Properties
One cannot expect easily to find a small set of properties which will be
just right for a problem area. It is usually much easier to find a large set
of properties each of which provides a little useful information. Then one
is faced with the problem of finding a way to combine them to make the
desired distinctions. The simplest method is to choose, for each class, a
typical character (a particular sequence of property values) and then to
use some matching procedure, e.g., counting the numbers of agreements
and disagreements, to compare an unknown with these chosen "Character

'See p. 93 of Selfridge (1955).

419STEPS TOWARD ARTIFICIAL INTELLIGENCE

<A

prototypes." The linear weighting scheme described just below is a slight
generalization on this. Such methods treat the properties as more or less
independent evidence for and against propositions; more general pro-
cedures (about which we have yet little practical information) must ac-
count also for nonlinear relations between properties, i.e., must contain
weighting terms for joint subsets of property values.

1. "BAYES NETS" FOR COMBINING INDEPENDENT PROPERTIES

We consider a single experiment in which an object is placed in front of a
property-list machine. Each property Et will have a value, 0 or 1 . Suppose
that there has been defined some set of "object classes" Fh and that we
want to use the outcome of this experiment to decide in which of these
classes the object belongs.

Assume that the situation is basically probabilistic, and that we know
the probability pit that, if the object is in class Ff then the /th propertyEi
will have value 1. Assume further that these properties are independent;
that is, even given Fh knowledge of the value of Ei tells us nothing more
about the value of a different Ek in the same experiment. (This is a strong
condition—see below.) Let

<£,

be the absolute probability that an object
is in class F3 . Finally, for this experiment define Vto be the particular set
of Z's for which the F*'s are 1. Then this V represents the Character of
the object. From the definition of conditional probability, we have

Given the Character V, we want to guess which F; has occurred (with the
least chance of being wrong—the so-called maximum likelihood estimate);
that is, for which / is Pr(Fj\V) the largest? Since in the above Pr(F) does
not dependon /, we have only to calcuate for which / is

the largest. Hence, by our independence hypothesis, we have to maximize

These "maximum-likelihood" decisions can be made (Fig. 6) by a simple
network device.7

7

At the cost of an additional network layer, we may also account for the possible
cost glk that would be incurred if we were to assign to F* a figure really in class Ft

;

in this case the minimumcost decision is given by the k for which

is the least. Vis the complement set to V. q, t is (1 — pn).

Pr(Fj,V) = Pr(7) " Pr(Fy|F) = Pr(F3) " Pt(V\Fj)

Pv(Fj)-Pr(V\Fj) = tf,Pr(y|Fy)

*>" n Vim <?« = *■ n f^n ?« (d
"gv icy iev^" aii»

y Oirti n vu n *'i ieV «6 r

420

APPROACHES AND ATTITUDES

A.

Figure 6. "Net" model for maximum-likelihooddecisions based on linear weightings
of property values. The input data are examined by each "property filter" Et.
Each E, has "0" and "1" output channels, one of which is excited by each input.
These outputs are weighted by the corresponding p

t

,'s, as shown in the text.
The resulting signals are multiplied in the F, units, each of which "collectsevidence"
for a particular figure class. [We could have used here log (p it), and added at
the Fj units.] The final decision is made by the topmost unit D, who merely chooses
that F, with the largest score. Note that the logarithm of the coefficient pn/qu
in the second expression of (1) can be construed as the "weight of the evidence"
of Et in favorof F,. [See alsoPapert (1961) and Rosenblatt (1958).]

These nets resemble the general schematic diagrams proposed in the
"Pandemonium" model of Selfridge (1959) (see his fig. 3). It is proposed
there that some intellectual processes might be carried out by a hierarchy
of simultaneously functioning submachines suggestively called "demons."
Each unit is set to detect certain patterns in the activity of others and the
output of each unit announces the degree of confidence of that unit that it
sees what it is looking for. Our £{ units are Selfridge's "data demons."
Our units Fj are his "cognitive demons"; each collects from the abstracted
data evidence for a specific proposition. The topmost "decision demon" D
responds to that one in the multitude below it whose shriek is the loudest.8

It is quite easy to add to this "Bayes network model" a mechanism
which will enable it to learn the optimal connection weightings. Imagine
that, after each event, the machine is told which F,- has occurred; we
could implement this by sending back a signal along the connections lead-
ing to that Fj unit. Suppose that the connection for piS (or q^) contains
a two-terminal device (or "synapse") which stores a number w

i;

-. Whenever
the joint event (Fh Ei =1) occurs, we modify w

i;

by replacing it by
8 See also thereport in Selfridge and Neisser (1960).

STEPS TOWARD ARTIFICIAL INTELLIGENCE 421 t

I

A

(wtj + 1)0, where 0 is a factor slightly less than unity. And when the
joint event (Fj, Ei = 0) occurs, we decrement wu by replacing it with
(wij)ff. It is not difficult to show that the expected values of the Wj/s will
become proportional to the pi/s [and, in fact, approach Pu[B/(l — 6)].
Hence, the machine tends to learn the optimal weighting on the basis of
experience. (One must put in a similar mechanism for estimating the
</>/s.) The variance of the normalized weight w

i;

[(l — 6)/0] approaches
[(1 — 0)/(l + o]pijqij. Thus a small value for 6 means rapid learning
but is associated with a large variance, hence, with lowreliability. Choosing
0 close to unity means slow, but reliable, learning. 0 is really a sort of
memory decay constant, and its choice must be determined by the noise
and stability of the environment—much noise requires long averaging
times, while a changing environment requires fast adaptation. The two
requirements are, of course, incompatible and the decision has to be based
on an economic compromise.9

2. POSSIBILITIES OF USING RANDOM NETS FOR BAYES DECISIONS

The nets of Fig. 6 are very orderly in structure. Is all this structure neces-
sary? Certainly if there were a great many properties, each of which
provided very little marginal information, some of them would not be
missed. Then one might expect good results with a mere sampling of all
the possible connection paths tv

i;

. And one might thus, in this special
situation, use a random connection net.

The two-layer nets here resemble those of the "Perceptron" proposal of
Rosenblatt (1958). In the latter, there is an additional level of connections
coming directly from randomly selected points of a "retina." Here the
properties, the devices which abstract the visual input data, are simple
functions which add some inputs, subtract others, and detect whether the
result exceeds a threshold. Equation (1) , we think, illustrates what is of
value in this scheme. It does seem clear that a maximum-likelihood type
of analysis of the output of the property functions can be handled by such
nets. But these nets, with their simple, randomly generated, connections
can probably never achieve recognition of such patterns as "the class of
figures having two separated parts," and they cannot even achieve the effect
of template recognition without size and position normalization (unless
sample figures have been presented previously in essentially all sizes and
positions). For the chances are extremely small of finding, by random
methods, enough properties usefully correlated with patterns appreciably
more abstract than those of the prototype-derived kind. And these net-
works can really only separate out (by weighting) information in the in-
dividual input properties; they cannot extract further information present
in nonadditive form. The "Perceptron" class of machines have facilities
neither for obtaining better-than-chance properties nor for assembling

'See also Minsky and Selfridge (1960), and Papert (1961).

422 APPROACHES AND ATTITUDES

A.

better-than-additive combinations of those it gets from random construc-
tion. 10

For recognizing normalized printed or hand-printed characters, single-
point properties do surprisingly well (Highleyman and Kamentsky, 1960);
this amounts to just "averaging" many samples. Bledsoe and Browning
(1959) claim good results with point-pair properties. Roberts (1960)
describes a series of experiments in this general area. Doyle (1959) with-
out normalization but with quite sophisticated properties obtains excellent
results; his properties are already substantially size- and position-invariant.
A general review of Doyle's work and other pattern-recognition experi-
ments will be found in Selfridge and Neisser (1960).

For the complex discrimination, e.g., between one and two connected
objects, the property problem is very serious, especially for long wiggly
objects such as are handled by Kirsch (1957). Here somekind of recursive
processing is required and combinations of simple properties would almost
certainly fail even with large nets and long training.

We should not leave the discussion of some decision net models without
noting their important limitations. The hypothesis that, for given j, the pa
represent independent events, is a very strong condition indeed. Without
this hypothesis we could still construct maximum-likelihood nets, but we
would need an additional layer of cells to represent all of the joint events
V; that is, we would need to know all the Pr(F,|F). This gives a general
(but trivial) solution, but requires 2" cells for n properties, which is com-
pletely impractical for large systems. What is required is a system which
computes some sampling of all the joint conditional probabilities, and uses
these to estimate others when needed. The work of Uttley (1956, 1959)
bears on this problem, but his proposed and experimental devices do not
yet clearly show how to avoid exponential growth.11

H. Articulation and Attention—Limitations of theProperty-list Method
Because of its fixed size, the property-list scheme is limited (for any given
set of properties) in the detail of the distinctions it can make. Its ability to

deal with a compound scene containing several objects is critically weak,
and its direct extensions are unwieldy and unnatural. If a machine can
recognize a chair and a table, it surely should be able to tell us that "there
is a chair and a table." To an extent, we can invent properties which allow
some capacity for superposition of object Characters. 12 But there is no way
to escape the information limit.

10 See also Roberts (1960), Papert (1961), and Hawkins (1958). We can find
nothing resembling an analysis [see (1) above] in Rosenblatt (1958) or his sub-
sequent publications.

"See also Papert (1961).
12 Cf. Mooers' techniqueof Zatocoding (1956a, 19566).

423

STEPS

TOWARD ARTIFICIAL INTELLIGENCE

A.

(a) [b) le)

Figure 7. The picture (a) is first described verbally in the text. Then, by introducing
notation for the relations "inside

of,"

"to the left of" and "above," we construct
a symbolic description. Such descriptions can be formed and manipulated by
machines. By abstracting out of the complex relation between the parts of the figure
we can use the same formula to describe the related pictures (b) and (c), changing
only the list of primitive parts. It is up to the programmer to decide at just what

level of complexity a part of a picture should be considered "primitive"; this will
depend on what the description is to be used for. We could further divide the
drawings into vertices, lines, and arcs. Obviously, for some applications the relations

would need more metrical

information,

e.g., specification of lengths or angles.

What is required is clearly (1) a list (of whatever length is necessary)
of the primitive objects in the scene and (2) a statement about the rela-
tions among them. Thus we say of Fig. 7a, "A rectangle (1) contains two

subfigures disposed horizontally. The part on the left is a rectangle (2)

which contains two subfigures disposed vertically; the upper a circle (3) and
the lower a triangle (4). The part on the right . . . etc." Such a descrip-
tion entails an ability to separate or "articulate" the scene into parts. (Note
that in this example the articulation is essentially recursive; the figure is
first divided into two parts; then each part is described using the same
machinery.) We can formalize this kind of description in an expression
language whose fundamental grammatical form is a pair (R,L) whose
first member R names a relation and whose second member L is an ordered
list (xvx2, .. . ,x„) of the objects or subfigures which bear that relation
to one another. We obtain the required flexibilityby allowing the members
of the list L tocontain not only the names of "elementary" figures but also
"subexpressions" of the form (R,L) designating complex subfigures. Then
our scene above may be describedby the expression

[O, (□, (->, {(©, (□, (l (O, A)))), (O, (O, (V, (O, O, O))))}))]

where (©, (x,y)) means that y is contained in x; (-+,(x,y)) means that
yis to the right of x; ([,(x,y)) means that yis below x, and (/\,(x,y,z))

means that y is to the right of x and z is underneath and between them.
The symbols □. o. and A represent the indicated kinds of primitive
geometric objects. This expression-pair description language may be re-
garded as a simple kind of "list-structure" language. Powerful computer
techniques have been developed, originally by Newell, Shaw and Simon,

424 APPROACHES AND ATTITUDES

for manipulating symbolic expressions in such languages for purposes of
heuristic programming. (See the remarks at the end of Sec. IV. If some of
the members of a list are themselves lists, they must be surrounded by
exterior parentheses, and this accounts for the accumulation of paren-
theses.)

It may be desirable to construct descriptions in which the complex
relation is extracted, e.g., so that we have an expression of the form FG
where F is an expression which at once denotes the composite relation be-
tween all the primitive parts listed in G. A complication arises in connec-
tion with the "binding" of variables, i.e., in specifying the manner in
which the elements of G participate in the relation F. This can be handled
in general by the "A" notation (McCarthy, 1960) but here we can just use
integers to order the variables.

For the given example, we could describe the relational part F by an
expression

O (!,-+(©(2,i(3,4)), O (5,V (6,7,8))))

in which we now use a "functional notation"; "(

©,

(x,y))" is replaced by
"O (x,y)" etc., making for better readability. To obtain the desired
description, this expression has to be applied to an ordered list of primitive
objects, which in this case is (rj,rj,0,A,0,0.0,0)- This composite
functional form allows us to abstract the composite relation. By changing
only the object list we can obtain descriptions also of the objects in Fig.
lb and c.

The important thing about such "articular" descriptions is that they can
be obtained by repeated application of a fixed set of pattern-recognition
techniques. Thus we can obtain arbitrarily complex descriptions from a
fixed complexity classification mechanism. The new element required in
the mechanism (beside the capacity to manipulate the list structures) is
the ability to articulate—to "attend fully" to a selected part of the picture
and bring all one's resources to bear on that part. In efficient problem-
solving programs, we will not usually complete such a description in a
single operation. Instead, the depth or detail of description will be under
the control of other processes. These will reach deeper, or look more
carefully, only when they have to, e.g., when the presently available descrip-
tion is inadequate for a current goal. The author, together with L. Hodes,
is working on pattern-recognition schemes using articular descriptions. By
manipulating the formal descriptions we can deal with overlapping and
incomplete figures, and several other problems of the "Gestalt" type.

It seems likely that as machines are turned toward more difficult prob-
lem areas, passive classification systems will become less adequate, and
we may have to turn toward schemes which are based more on internally

[425

STEPS TOWARD ARTIFICIAL INTELLIGENCE

generated hypotheses, perhaps "error-controlled" along the lines proposed
byMacKay (1956).

Space requires us to terminate this discussion of pattern-recognition and
description. Among the important works not reviewed here should be
mentioned those of Bomba (1959) and Grimsdale et al. (1959), which
involve elements of description, Unger (1959) and Holland (1960) for
parallel processing schemes, Hebb (1949) who is concerned with physio-
logical description models, and the work of the Gestalt psychologists,
notably Kohler (1947), who have certainly raised, if not solved, a num-
ber of important questions. Sherman (1959), Haller (1959) and others
have completed programs using line-tracing operations for topological
classification. The papers of Selfridge (1955, 1956) have been a major
influence on work in this generalarea.

See also Kirsch et al. (1957) for discussion of a number of interesting
computer image processing techniques, and see Minot (1959) and Stevens
(1957) for reviews of the reading machine and related problems. One
should also examine some biological work, e.g., Tinbergen (1951) to see
instances in which some discriminations which seem, at first glance very
complicated are explained on the basis of a few apparently simple prop-
erties arrangedin simple decision trees.

///. Learning Systems

In order to solve a new problem, one should first try using methods
similar to those that have worked on similar problems. To implement this
"basic learning heuristic" one must generalize on past experience, and
one way to do this is to use success-reinforced decision models. These
learning systems are shown to be averaging devices. Using devices which
learn also which events are associated with reinforcement, i.e., reward,
we can build more autonomous "secondary reinforcement" systems. In
applying such methods to complex problems, one encounters a serious
difficulty—in distributing credit for success of a complex strategy among
the many decisions that were involved. This problem can be managed by
arranging for local reinforcement of partial goals within a hierarchy, and
by grading the training sequence of problems to parallel a process of
maturation of the machine's resources.

In order to solve a new problem one uses what might be called the basic
learning heuristic—first try using methods similar to those which have
worked, in the past, on similar problems. We want our machines, too, to
benefit from their past experience. Since we cannot expect new situations
to be precisely the same as old ones, any useful learning will have to in-
volve generalization techniques. There are too many notions associated

426

APPROACHES

AND ATTITUDES

i

with "learning" to justify defining the term precisely. But we may be sure
that any useful learning system will have to use records of the past as
evidence for more general propositions; it must thus entail some commit-
ment or other about "inductive inference." (See Sec. Vfl.) Perhaps the
simplest way of generalizing about a set of entities is through constructing
a new one which is an "ideal," or rather, a typical member of that set; the
usual way to do this is to smooth away variation by some sort of averaging
technique. And indeed we find that most of the simple learning devices do
incorporate some averaging technique—often that of averaging some sort
of product, thus obtaining a sort of correlation. We shall discuss this
family of devices here, and some more abstract schemes in Sec. V.

A. Reinforcement

A reinforcement process is one in which some aspects of the behavior of a
system are caused to become more (or less) prominent in the future as
a consequence of the application of a "reinforcement operator" Z. This
operator is required to affect only those aspects of behavior for which
instances have actually occurredrecently.

The analogy is with "reward" or "extinction" (not punishment) in ani-
mal behavior. The important thing about this kind of process is that it is
"operant" [a term of Skinner (1953)]; the reinforcement operator does
not initiate behavior, but merely selects that which the Trainer likes from
that which has occurred. Such a system must then contain a device M
which generates a variety of behavior (say, in interacting with some en-
vironment) and a Trainer who makes critical judgments in applying the
available reinforcement operators. (See Fig. 8.)

Let us consider a very simple reinforcement model. Suppose that on
each presentation of a stimulus 5 an animal has to make a choice, e.g., to

I 1 Response |

r„„:

n

.„

m

... 7 ReinforcementEnvironment stimulus machineI—_j 7\ ■'—i—i
■ ' . A I 2

*| Trainer '
Figure 8. Parts of an "operant reinforcement" learning system. In response to a
stimulus from the environment, the machine makes one of several possible responses.
It remembers what decisions were made in choosing this response. Shortly there-

after,

the Trainer sends to the machine positive or negative reinforcement (reward)
signal; this increases or decreases the tendency to make the same decisions in the
future. Note that the Trainer need not know how to solve problems, but only how
to detect success or

failure,

or relative improvement; his function is selective. The
Trainer might be connected to observe the actual stimulus-response activity, or,
in a more interesting kind of system, just some function of the state of the
environment.

427

STEPS TOWARD ARTIFICIAL INTELLIGENCE

I

turn left or right, and that its probability of turning right, at the nth trial,
is /?„. Suppose that we want it to turn right. Whenever it does this we
might "reward" it by applying the operator Z+ ;

which moves p a fraction (1 — 8) of the way toward unity." If we dislike
what it does we apply negativereinforcement,

moving p the same fraction of the way toward 0. Some theory of such
"linear" learning operators, generalized to several stimuli and responses,
will be found in Bush and Mosteller (1955). We can show that the learn-
ing result is an average weighted by an exponentially-decaying time factor:
Let Z„ be ±1 according to whether the «th event is rewarded or extin-
guished and replace p„ by c„ = 2pn — 1 so that — 1 < c„ < 1, as for a
correlation coefficient. Then (with c0 = 0) we obtain by induction

n

If the term Z; is regarded as a product of (i) how the creatureresponded
and (ii) which kind of reinforcement was given, then encn is a kind of cor-
relation function (with the decay weighting) of the joint behavior of these
quantities. The ordinary, uniformly weighted average has the same general
form but with time-dependent 8:

(2)

In (1) we have again the situation described in Sec. IR71; a small value
of 8 gives fast learning, and the possibility of quick adaptation to a chang-
ing environment. A near-unity value of 8 gives slow learning, but also
smooths away uncertainties due to noise. As noted in Sec. lIGI, the re-
sponse distribution comes to approximate the probabilities of rewards of
the alternative responses. (The importance of this phenomenon has, I
think, been overrated; it is certainly not an especially rational strategy.
One reasonable alternative is that of computing the numbers ptj as mdi

13 Properly, the reinforcement functions should depend both on the p's and on the
previous reaction—reward should decrease p if our animal has just turned to the left.
The notation in the literature is also somewhatconfusing in this regard.

pn+l = Z+(p n) = 6Pn +(1- 8) o<B < 1

Pn+l = Z_(p„) = 8pn

n

c„

+1 =(1- 8) £ fl-%
i-= 0

and since _ « V 8n-{

o

we can write this as c»+i ~-_

■

' (1)

c»+i = ~ #) c » + jv Z"

428 APPROACHES AND ATTITUDES

cated, but actually playing at each trial the "most likely" choice. Except
in the presence of a hostile opponent, there is usually no reason to play a
"mixed" strategy.14)

In Samuel's coefficient-optimizing program (1959ft) [see Sec. lIICI],
there is a most ingenious compromise between the exponential and the
uniform averaging methods: the value of N in (2) above begins at 16 and
so remains until n = 16, then N is 32 until n = 32, and so on until n =
256. Thereafter N remains fixed at 256. This nicely prevents violent fluc-
tuations in

c„

at the start, approaches the uniform weighting for a while,
and finally approaches the exponentially weighted correlation, all in a
manner that requires very little computation effort! Samuel's program is at
present the outstanding example of a game-playing program which matches
average human ability, and its success (in real time) is attributed to a
wealth of such elegancies, both in heuristics and in programming.

The problem of extinction or "unlearning" is especially critical for com-
plex, hierarchical, learning. For, once a generalization about the past has
been made, one is likely to build upon it. Thus, one may come to select
certain properties as important and begin to use them in the characteriza-
tion of experience, perhaps storing one's memories in terms of them. If
later it is discovered that some other properties would serve better, then
one must face the problem of translating, or abandoning, the records based
on the older system. This may be a very high price to pay. One does not
easily give up an old way of looking at things, if the better one demands
much effort and experience to be useful. Thus the training sequences on
which our machines will spend their infancies, so to speak, must be chosen
very shrewdly to insure that early abstractions will provide a good founda-
tion for later difficult problems.

Incidentally, in spite of the space given here for their exposition, I am
not convinced that such "incremental" or "statistical" learning schemes
should play a central role in our models. They will certainly continue to
appear as components of our programs but, I think, mainly by default.
The more intelligent one is, the more often he should be able to learn
from an experience something rather definite; e.g., to reject or accept a
hypothesis, or to change a goal. (The obvious exception is that of a truly
statistical environment in which averaging is inescapable. But the heart of
problem-solving is always, we think, the combinatorial part that gives rise
to searches, and we should usually be able to regard the complexities
caused by "noise" as mere annoyances, however irritating they may be.)
In this connection we can refer to the discussion of memory in Miller,
Galanter and Pribram (I960).15 This seems to be the first major work

"The question of just how often one should play a strategy different from the
estimated optimum, in order to gain

information,

is an underlying problem in many
fields.

See,

e.g., Shubik (1960).

" See especially chap. 10.

429STEPS TOWARD ARTIFICIAL INTELLIGENCE

Iin psychology to show the influence of work in the artificial intelligence
area, and its programme is generally quite sophisticated.

B. Secondary Reinforcement and Expectation Models
The simple reinforcement system is limited by its dependence on the
Trainer. If the Trainer can detect only the solution of a problem, then we
may encounter "mesa" phenomena which will limit performance on diffi-
cult problems. (See Sec. IC.) One way to escape this is to have the ma-
chine learn to generalize on what the Trainer does. Then, in difficult prob-
lems, it may be able to give itself partial reinforcements along the way,
e.g., upon the solution of relevant subproblems. The machine in Fig. 9
has some such ability. The new unit U is a device that learns which exter-
nal stimuli are strongly correlated with the various reinforcement signals,
and responds to such stimuli by reproducing the corresponding reinforce-
ment signals. (The device U is not itself a reinforcement learning device;
it is more like a "Pavlovian" conditioning device, treating the Z signals
as "unconditioned" stimuli and the S signals as conditioned stimuli.) The
heuristic idea is that any signal from the environment which in the past
has been well correlated with (say) positive reinforcement is likely to be
an indication that something good has just happened. If the training on
early problems was such that this is realistic, then the system eventually
should be able to detach itself from the Trainer, and become autonomous.
If we further permit "chaining" of the "secondary reinforcers," e.g., by
admitting the connection shown as a dotted line in Fig. 9, the scheme be-
comes quite powerful, in principle. There are obvious pitfalls in admitting

Figure 9. An additional device U gives the machine of Fig. 8 the ability to learn
which signals from the environment have been associated with reinforcement.
The primary reinforcement signals Z are routed through U. By a Pavlovian
conditioning process (not described here), external signals come to produce rein-
forcement signals like those that have frequently succeeded them in the past.
Such signals might be abstract, e.g., verbal encouragement. If the "secondary
reinforcement" signals are allowed, in turn, to acquire further external associations
(through, e.g., a channel Zv as shown) the machine might come to be able to
handle chains of subproblems. But something must be done to stabilize the system
against the positive symbolic feedback loop formed by the path Zv. The profound
difficulty presented by this stabilization problem may be reflected in the fact that,
in lower animals, it is very difficult to demonstratesuch chaining effects.

430 APPROACHES AND ATTITUDES

»

A.

such a degree of autonomy; the values of the system may drift to a "non-
adaptive" condition.

C. Prediction and Expectation
The evaluation unit U is supposed to acquire an ability to tell whether a
situation is good or bad. This evaluation could be applied to imaginary
situations as well as to real ones. If we could estimate the consequences
of a proposed action (without its actual execution), we could use U to
evaluate the (estimated) resulting situation. This could help in reducing
the effort in search, and we would have in effect a machine with some
ability to look ahead, or plan. In order to do this we need an additional
device P which, given the description of a situation and an action, will pre-
dict a description of the likely result. (We will discuss schemes for doing
this in Sec. IVC.) The device P might be constructed along the lines of
a reinforcement learning device. In such a system the required reinforce-
ment signals would have a very attractive character. For the machine must
reinforce P positively when the actual outcome resembles that which
was predicted—accurate expectations are rewarded. If we could further
add a premium to reinforcement of those predictions which have a novel
aspect, we might expect to discern behavior motivated by a sort of
curiosity. In the reinforcement of mechanisms for confirmed novel
expectations (or new explanations) we may find the key to simulation of
intellectual motivation. 16

SAMUEL'S PROGRAM FOR

CHECKERS

In Samuel's "generalization learning" program for the game of checkers
(1959a) we find a novel heuristic technique which could be regarded as a
simple example of the "expectation reinforcement" notion. Let us review
very briefly the situation in playing two-person board games of this kind.
As noted by Shannon (1956) such games are in principle finite, and a
best strategy can be found by following out all possible continuations—-if
he goes there I can go there, or there, etc.—and then "backing up" or
"minimaxing" from the terminal positions, won, lost, or drawn. But in
practice the full exploration of the resulting colossal "move tree" is out of
the question. No doubt, some exploration will always be necessary for
such games. But the tree must be pruned. We might simply put a limit on
depth of exploration—the number of moves and replies. We might also
limit the number of alternatives exploredfrom each position—this requires
some heuristics for selection of "plausible moves."17 Now, if the backing-up
technique is still to be used (with the incomplete move tree) one has to

M See also chap. 6 of Minsky (1954).
"See the discussion of Bernstein (1958) and the more extensive review and

discussion in the very suggestive paper of Newell, Shaw and Simon (19586).

STEPS TOWARD ARTIFICIAL INTELLIGENCE 431

Mox Mm Max Mm Max
Figure 10. "Backing up" the static evaluations of proposed moves in a game tree.
From the vertex at the

left,

representing the present position in a board game,
radiate three branches, representing the player's proposed moves. Each of these
might be countered by a variety of opponent moves, and so on. According to
some program, a finite tree is generated. Then the worth to the player of each
terminal board position is estimated (see text). If the opponent has the same
values, he will choose to minimize the score, while the player will always try
to maximize. The heavy lines show how this minimaxing process backs up until a
choice is determinedfor the present position.

The full tree for chess has the order of 10"° branches—beyond the reach of any
man or computer. There is a fundamental heuristic exchange between the effectiveness
of the evaluation function and the extent of the tree. A very weak evaluation
(e.g., one which just compares the players' values of pieces) would yield a
devastating game if the machine could explore all continuations out to, say,
20 levels. But only 6 levels, roughly within the range of our presently largest
computers, would probably not give a brilliant game; less exhaustive strategies,
Perhaps along the lines of Newell,

Shaw,

and Simon (19586), would be more
Profitable.

substitute for the absolute "win, lose, or draw. criterion some other
"static" way of evaluating nonterminal positions. 18 (See Fig. 10.) Perhaps
the simplest scheme is to use a weighted sum of some selected set of
"property" functions of the positions—mobility, advancement, center con-
trol, and the like. This is done in Samuel's program, and in most of its
predecessors. Associated with this is a multiple-simultaneous-optimizer
method for discovering a good coefficient assignment (using the correlation
technique noted in Sec. IIL4) . But the source of reinforcement signals in

18In some problems the backing-up process can be handled in closed analytic
form so that one may be able to use such methods as Bellman's "Dynamic Pro-
gramming" (1957). Freimer (1960) gives some examples for which limited "look-
ahead" doesn't work.

432 APPROACHES AND ATTITUDES

I

A.

Samuel (1959a) is novel. One cannot afford to play out one or more
entire games for each single learning step. Samuel measures instead for
each move the difference between what the evaluation function yields di-
rectly of a position and what it predicts on the basis of an extensive con-
tinuation exploration, i.e., backing up. The sign of this error, "Delta," is
used for reinforcement; thus the system may learn something at each
move. 19

D. The Basic Credit-assignment Problem for Complex Reinforcement
Learning Systems
In playing a complex game such as chess or checkers, or in writing a com-
puter program, one has a definite success criterion—the game is won or
lost. But in the course of play, each ultimate success (or failure) is asso-
ciated with a vast number of internal decisions. If the run is

successful,

how can we assign credit for the success among the multitude of decisions?
As Newell noted,

It is extremely doubtful whether there is enough information in "win,
lose, or draw" when referred to the whole play of the game to permit
any learning at all over available time scales. . . . For learning to
take place, each play of the game must yield much more information.
This is . . . achieved by breaking the problem into components.
The unit of success is the goal. If a goal is achieved, its subgoals are
reinforced; if not they are inhibited. (Actually, what is reinforced is
the transformation rule that provided the subgoal.) . . . This also
is true of the other kinds of structure: every tactic that is created
provides information about the success or failure of tactic search
rules; every opponent's action provides information about success or
failure of likelihood inferences; and so on. The amount of informa-
tion relevant to learning increases directly with the number of mecha-
nisms in the chess-playingmachine. 20

We are in complete agreement with Newell on this approach to the
problem. 21

It is my impression that many workers in the area of "self-organizing"
systems and "random neural nets" do not feel the urgency of this prob-

"It should be noted that Samuel (1959a) describes also a rather successful
checker-playing program based on recording and retrieving information about posi-
tions encountered in the past, a less abstract way of exploiting past experience.
Samuel's work is notable in the variety of experiments that were performed, with
and without various heuristics. This gives an unusual opportunity to really find out
how different heuristic methods compare. More workers should choose (other
things being equal) problems for which such variationsarepracticable.

20 See p. 108 of Newell (1955).
21 See also the discussion in Samuel (p. 22, 1959a) on assigning credit for a change

in "Delta."

433STEPS TOWARD ARTIFICIAL INTELLIGENCE

I
!

A

lem. Suppose that one million decisions are involved in a complex task
(such as winning a chess game). Could we assign to each decision element
one-millionth of the credit for the completed task? In certain special situa-
tions we can do just this—e.g., in the machines of Rosenblatt (1958),
Roberts (1960), and Farley and Clark (1954), etc., where the connec-
tions being reinforced are to a sufficient degree independent. But the
problem-solving ability is correspondingly weak.

For more complex problems, with decisions in hierarchies (rather than
summed on the same level) and with increments small enough to assure
probable convergence, the running times would become fantastic. For
complex problems we will have to define "success" in some rich local
sense. Some of the difficulty may be evaded by using carefully graded
"training sequences" as described in the following section.

FRIEDBERG'S PROGRAM-WRITING PROGRAM

An important example of comparative failure in this credit-assignment
matter is provided by the program of Friedberg (1958, 1959) to solve
program-writing problems. The problem here is to write programs for a
(simulated) very simple digital computer. A simple problem is assigned,
e.g., "compute the AND of two bits in storage and put the result in an
assigned location." A generating device produces a random (64-instruc-
tion) program. The program is run and its success or failure is noted.
The success information is used to reinforce individual instructions (in
fixed locations) so that each success tends to increase the chance that the
instructions of successful programs will appear in later trials. (We lack
space for details of how this is done.) Thus the program tries to find
"good" instructions, more or less independently, for each location in pro-
gram memory. The machine did learn to solve some extremely simple
problems. But it took of the order of 1000 times longer than pure chance
would expect. In part II of Friedberg et al. (1959), this failure is dis-
cussed, and attributed in part to what we called (Sec. IC) the "Mesa
phenomena." In changing just one instruction at,a time the machine had
not taken large enough steps in its search through program space.

The second paper goes on to discuss a sequence of modifications in
the program generator and its reinforcement operators. With these, and
with some "priming" (starting the machine off on the right track with
some useful instructions), the system came to be only a little worse than
chance. Friedberg et al. (1959) conclude that with these improvements
"the generally superior performance of those machines with a success-
number reinforcement mechanism over those without does serve to indi-
cate that such a mechanism can provide a basis for constructing a learn-
ing machine." I disagree with this conclusion. It seems to me that each of
the "improvements" can be interpreted as serving only to increase the step

434

APPROACHES

AND ATTITUDES

A.

size of the search, that is, the randomness of the mechanism; this helps to
avoid the Mesa phenomenon and thus approach chance behavior. But it
certainly does not show that the "learning mechanism" is working—one
would want at least to see some better-than-chance results before arguing
this point. The trouble, it seems, is with credit-assignment. The credit for
a working program can only be assigned to functional groups of instruc-
tions, e.g., subroutines, and as these operate in hierarchies we should not
expect individual instruction reinforcement to work well. 22 It seems sur-
prising that it was not recognized in Friedberg et al. (1959) that the
doubts raised earlier were probably justified! In the last section of Fried-
berg et al. (1959) we see some real success obtained by breaking the
problem into parts and solving them sequentially. (This successful demon-
stration using division into subproblems does not use any reinforcement
mechanism at all.) Some experiments of similar nature are reported in
Kilburn, Grimsdale and Sumner (1959).

It is my conviction that no scheme for learning, or for pattern recogni-
tion, can have very general utility unless there are provisions for recursive,
or at least hierarchical, use of previous results. We cannot expect a learn-
ing system to come to handle very hard problems without preparing it
with a reasonably graded sequence of problems of growing difficulty. The
first problem must be one which can be solved in reasonable time with the
initial resources. The next must be capable of solution in reasonable time
by using reasonably simple and accessible combinations of methods de-
veloped in the first, and so on. The only alternatives to this use of an
adequate "training sequence" are (1) advanced resources, given initially,
or (2) the fantastic exploratory processes found perhaps only in the his-
tory of organic evolution.23 And even there, if we accept the general view
of Darlington (1958) who emphasizes the heuristic aspects of genetic
systems, we must have developed early (in, e.g., the phenomena of meiosis
and crossing-over) quite highly specialized mechanisms providing for the
segregation of groupings related to solutions of subproblems. Recently,
much effort has been devoted to the construction of training sequences in
connection with programming "teaching machines." Naturally, the psycho-
logical literature abounds with theories of how complex behavior is built

"See the introduction to Friedberg (1958) for a thoughtful discussion of the
plausibility of the scheme.

J8 It should, however, be possible to construct learning mechanisms which can
select for themselves reasonably good training sequences (from an always complex
environment) by prearranging a relatively slow development (or "maturation") of
the system's facilities. This might be done by prearranging that sequence of goals
attempted by the primary Trainer match reasonably well, at each stage, the com-
plexity of performance mechanically available to the pattern-recognition and other
parts of the system. One might be able to do much of this by simply limiting the
depth of hierarchical activity, perhaps only later permitting limitedrecursive activity.

435STEPS TOWARD ARTIFICIAL INTELLIGENCE

A

up from simpler. In our own area, perhaps the work of Solomonoff
(1957), while overly cryptic, shows the most thorough consideration of
this dependency on training sequences.

IV. Problem-solving and Planning

The solution, by machine, of really complex problems will require a
variety of administration facilities. During the course of solving a problem,
one becomes involved with a large assembly of interrelated subproblems.
From these, at each stage, a very few must be chosen for investigation.
This decision must be based on (1) estimates of relative difficulties and
(2) estimates of centrality of the different candidates for attention. Fol-
lowing subproblem selection (for which several heuristic methods are
proposed), one must choose methods appropriate to the selected problems.
But for really difficult problems, even these step-by-step heuristics for
reducing search will fail, and the machine must have resources for analyz-
ing the problem structure in the large—in short, for "planning." A num-
ber of schemes for planning are discussed, among them the use of models

—analogous, semantic, and abstract. Certain abstract models, "Character-
Algebras," can be constructed by the machine itself, on the basis of ex-
perience or analysis. For concreteness, the discussion begins with a descrip-
tion of a simple but significant system (LT) which encounters some of
these problems.

A. The "Logic Theory" Program of Newell, Shaw and Simon
It is not surprising that the testing grounds for early work on mechanical
problem-solving have usually been areas of mathematics, or games, in
which the rules are defined with absolute clarity. The "Logic Theory"
machine of Newell and Simon (1956a, 1957a), called "LT" below, was a

first attempt to prove theorems in logic, by frankly heuristic methods.
Although the program was not by human standards a brilliant success
(and did not surpass its designers), it stands as a landmark both in
heuristic programming and also in the development of modern automatic
programming.

The problem domain here is that of discovering proofs in the Russell-
Whitehead system for the propositional calculus. That system is given as a

set of (five) axioms and (three) rules of inference; the latter specify how
certain transformations can be applied to produce new theorems from old
theorems and axioms.

The LT program is centered around the idea of "working backward" to
find a proof. Given a theorem T to be proved, LT searches among the
axioms and previously established theorems for one from which T can be
deduced by a single application of one of three simple "Methods" (which

436 APPROACHES AND ATTITUDES

I

A.

embody the given rules of inference). If one is found, the problem is
solved. Or the search might fail completely. But finally, the search may
yield one or more "problems" which are usually propositions from which
T may be deduced directly. If one of these can, in turn, be proved a
theorem the main problem will be solved. (The situation is actually slightly
more complex.) Each such subproblem is adjoined to the "subproblem
list" (after a limited preliminary attempt) and LT works around to it later.
The full power of LT, such as it is, can be applied to each subproblem,
for LT can use itself as a subroutine in arecursive fashion.

The heuristic technique of working backward yields something of a
teleological process, and LT is a forerunner of more complex systems
which construct hierarchies of goals and subgoals. Even so, the basic ad-
ministrative structure of the program is no more than a nested set of
searches through lists in memory. We shall first outline this structure and
then mention a few heuristics that were used in attempts to improve
performance.

1. Take the next problem from problemlist.
(If there are no more problems, EXIT with total failure.)

2. Choose the nextof the three basic Methods.
(If no more methods, go to 1.)

3. Choose the next member of the list of axioms and previous theorems.
(If no more, go to 2.)
Then apply the Method to the problem, using the chosen theorem

or axiom.
If problem is solved, EXIT with complete proof.
If no result, go to 3.
If new subproblem arises, go to 4.

4. Try the special (substitution) Method on the subproblem.
If problem is solved, EXIT with complete proof.
If no result, put the subproblem at the end of the problem list and

go to 3.

Among the heuristics that were studied were (1) a similarity test to
reduce the work in step 4 (which includes another search through the
theorem list), (2) a simplicity test to select apparently easier problems
from the problem list, and (3) a strong nonprovability test to remove from
the problem list expressions which are probably false and hence notprov-
able. In a series of experiments "learning" was used to find which earlier
theorems had been most useful and should be given priority in step 3.
We cannot review theeffects of these changes in detail. Of interest was the
balance between the extra cost for administration of certain heuristics and
the resultant search reduction; this balance was quite delicate in some
cases when computer memory became saturated. The system seemed to be

437STEPS TOWARD ARTIFICIAL INTELLIGENCE f

I

A

quite sensitive to the training sequence—the order in which problems
were given. And some heuristics which gave no significant over-all im-
provement did nevertheless affect the class of solvable problems. Curiously
enough, the general efficiency of LT was not greatly improved by any or
all of these devices. But all this practical experience is reflected in the de-
sign of the much more sophisticated "GPS" system described briefly in
Sec. IV£>2.

Wang (1960) has criticized the LT project on the grounds that there
exist, as he and others have shown, mechanized proof methods which, for
the particular run of problems considered, use far less machine effort than
does LT and which have the advantage that they will ultimately find a
proof for any provable proposition. (LT does not have this exhaustive
"decision procedure" character and can fail ever to find proofs for some
theorems.) The authors of "Empirical Explorations of the Logic Theory
Machine," perhaps unaware of the existence of even moderately efficient
exhaustive methods, supported their arguments by comparison with a par-
ticularly inefficient exhaustive procedure. Nevertheless, I feel that some of
Wang's criticisms are misdirected. He does not seem to recognize that the
authors of LT are not so much interested in proving these theorems as
they are in the general problem of solving difficult problems. The com-
binatorial system of Russell and Whitehead (with which LT deals) is far
less simple and elegant than the system used by Wang. 24 [Note, e.g., the
emphasis in Newell, Shaw and Simon (1958a, 1958ft).] Wang's problems,
while logically equivalent, are formally much simpler. His methods do not
include any facilities for using previous results (hence they are sure to
degrade rapidly at a certain level of problem complexity), while LT is
fundamentally oriented around this problem. Finally, because of the very
effectiveness of Wang's method on the particular set of theorems in ques-
tion, he simply did not have to face the fundamental heuristic problem of
when to decide to give up on a line of attack. Thus the formidable per-
formance of his program (1960) perhaps diverted his attention from
heuristic problems that must again spring up when real mathematics is
ultimately encountered.

This is not meant as a rejection of the importance of Wang's work and
discussion. He and others working on "mechanical mathematics" have dis-
covered that there are proof procedures which are much more efficient
than has been suspected. Such work will unquestionably help in construct-
ing intelligent machines, and these procedures will certainly be preferred,
when available, to "unreliable heuristic methods." Wang, Davis and

"Wang's procedure (1960a), too, works backward, and can be regarded as a
generalization of the method of "falsification" for deciding truth-functional tautology.
In Wang (1960ft) and its unpublished sequel, he introduces more powerful methods
(for much more difficultproblems).

438 APPROACHES AND ATTITUDES

Putnam, and several others are now pushing these new techniques into
the far more challenging domain of theorem proving in the predicate cal-
culus (for which exhaustive decision procedures are no longer available).
We have no space to discuss this area, 25 but it seems clear that a program
to solve real mathematical problems will have to combine the mathemati-
cal sophistication of Wang with the heuristic sophistication of Newell,
Shaw and Simon. 26

B. Heuristics for Subproblem Selection
In designing a problem-solving system, the programmer often comes
equipped with a set of more or less distinct "Methods"—his real task is to
find an efficient way for the program to decide where and when the differ-
ent methods are to be used.

Methods which do not dispose of a problem may still transform it to
create new problems or subproblems. Hence, during the course of solving
one problem we may become involved with a large assembly of interrelated
subproblems. A "parallel" computer, yet to be conceived, might work on
many at a time. But even the parallel machine must have procedures to
allocate its resources because it cannot simultaneously apply all its meth-
ods to all the problems. We shall divide this administrative problem into
two parts: the selection of those subproblem(s) which seem most critical,
attractive, or otherwise immediate, and, in the next section, the choice of
which method to apply to the selectedproblem.

In the basic program for LT (Sec. TVA), subproblem selection is very
simple. New problems are examined briefly and (if not solved at once)
are placed at the end of the (linear) problem list. The main program
proceeds along this list (step 1), attacking the problems in the order of
their generation. More powerful systems will have to be more judicious
(both in generation and selection of problems) for only thus can excessive
branching be restrained. 27 In more complex systems we can expect to
consider for each subproblem, at least these two aspects: (1) its apparent
"centrality"—how will its solution promote the main goal, and (2) its
apparent "difficulty"—how much effort is it liable to consume. We need
heuristic methods to estimate each of these quantities and, further, to

25 See Davis and Putnam (1960), and Wang (19606).
M All these efforts are directed toward the reduction of search effort. In that sense

they are all heuristic programs. Since practically no one still uses "heuristic" in a
sense opposed to "algorithmic," serious workers might do well to avoid pointless
argument on this score. The real problem is to find methods which significantly delay
the apparently inevitable exponentialgrowth of search trees.

* Note that the simple scheme of LT has the property that each generated problem
will eventually get attention, even if several are created in a step 3. If one were to
turn full attention to each problem, as generated, one might never return to alternate
branches.

(

STEPS TOWARD ARTIFICIAL INTELLIGENCE 439

I

A.

select accordingly one of the problems and allocate to it some reasonable
quantity of effort. 28 Little enough is known about these matters, and so it
is not entirely for lack of space that the following remarks are somewhat
cryptic.

Imagine that the problems and their relations are arranged to form some
kind of directed-graph structure (Minsky, 1956ft; Newell and Simon,
1956ft; Gelernter and Rochester, 1958). The main problem is to establish

a "valid" path between two initially distinguished nodes. Generation of
new problems is represented by the addition of new, not-yet-valid paths,
or by the insertion of new nodes in old paths. Then problems are repre-
sented by not-yet-valid paths, and "centrality" by location in the structure.
Associate with each connection, quantities describing its current validity
state (solved, plausible, doubtful, etc.) and its current estimated difficulty.

1. GLOBAL METHODS

The most general problem-selection methods are "global"—at each step
they look over the entire structure. There is one such simple scheme
which works well on at least one rather degenerate interpretation of our
problem graph. This is based on an electrical analogy suggested to us by
a machine designed by Shannon [related to one described in Shannon
(1955) which describes quite a variety of interesting game-playing and
learning machines] to play a variant of the game marketed as "Hex" (and
known among mathematicians as "Nash"). The initial board position can
be represented as a certain network of resistors. (See Fig. 11.) One play-
er's goal is to construct a short-circuit path between two given boundaries;
the opponent tries to open the circuit between them. Each move consists
of shorting (or opening), irreversibly, one of the remaining resistors.
Shannon's machine applies a potential between the boundaries and selects
that resistor which carries the largest current. Very roughly speaking, this
resistor is likely to be most critical because changing it will have the largest
effect on the resistance of the net and, hence, in the goal direction of
shorting (or opening) the circuit. And although this argument is not per-
fect, nor is this a perfect model of the real combinatorial situation, the
machine does play extremely well. (It can make unsound moves in certain
artificial situations, but no one seems to have been able to force this during
a game.)

The use of such a global method for problem selection requires that
the available "difficulty estimates" for related subproblems be arranged to

28 One will want to see if the considered problem is the same as one already con-
sidered, or very similar. See the discussion in Gelernter and Rochester (1958). This
problem might be handled more generally by simply remembering the (Characters
of) problems that have been attacked, and checking new ones against this memory,
e.g., by methods of Mooers (1956), looking more closely if there seems to be a
match.

440 APPROACHES AND ATTITUDES

A.

Figure 11. This board game (due to C. E. Shannon) is played on a network
of equal resistors. The first player's goal is to open the circuit between the end
points; the second player's goal is to short the circuit. A move consists of opening
or shortening a resistor. If the first player begins by opening resistor 1, the second
player might counter by shorting resistor 4, following the strategy described in
the text. The remaining move pairs (if both players use that strategy) would be
(5, 8) (9, 13) (12, 10 or 2) (2 or 10 win). In this game the first player should
be able to force a win, and the maximum-current strategy seems always to do so,
even on larger networks.

combine in roughly the manner of resistance values. Also, we could re-
gard this machine as using an "analog model" for "planning." (See Sec.
IV£>.)29

2.

LOCAL,

AND "HEREDITARY," METHODS
The prospect of having to study at each step the whole problem structure
is discouraging, especially since the structure usually changes only slightly
after each attempt. One naturally looks for methods which merely update
or modify a small fragment of the stored record. Between the extremes of
the "first-come-first-served" problem-list method and the full global-survey
methods, lie a variety of compromise techniques. Perhaps the most attrac-
tive of these are what we will call the Inheritance methods—essentially
recursive devices.

In an Inheritance method, the effort assigned to a subproblem is deter-
mined only by its immediate ancestry; at the time each problem is created
it is assigned a certain total quantity Q of time or effort. When a problem
is later split into subproblems, such quantities are assigned to them by
some local process which depends onlyon their relative merits and on what
remains of Q. Thus the centrality problem is managed implicitly. Such
schemes are quite easy to program, especially with the new programming
systems such as IPL (Newell and Tonge, 1960c) and LISP (McCarthy,
1960) (which are themselves based on certain hereditary or recursive op-
erations). Special cases of the Inheritance method arise when one can get
along with a simple all-or-none Q, e.g., a "stop condition"—this yields the

" A variety of combinatorialmethods will be matched against the network-analogy
opponent in a program being completed by R.

Silver,

Lincoln Laboratory, MIT,
I exington, Mass.

STEPS TOWARD ARTIFICIAL INTELLIGENCE 441

4

exploratory method called "backtracking" by Golumb (1961). The decod-
ing procedure of Wozencraft (1961) is another important variety of In-
heritance method.

In the complex exploration process proposed for chess by Newell, Shaw,
and Simon (1958ft) we have a form of Inheritance method with a non-
numerical stop condition. Here, the subproblems inherit sets of goals to be
achieved. This teleological control has to be administered by an additional
goal-selection system and is further complicated by a global (but reason-
ably simple) stop rule of the back-up variety (Sec. IIIC). (Note: we are
identifying here the move-tree-limitation problem with that of problem
selection.) Even though extensive experimental results are not yet avail-
able, we feel that the scheme of Newell, Shaw, and Simon (1958ft) de-
serves careful study by anyone planning serious work in this area. It
shows only the beginning of the complexity sure to come in our develop-
ment of intelligentmachines. 30

C. "Character-Method"Machines
Once a problem is selected, we must decide which method to try first. This
depends on our ability to classify or characterize problems. We first com-
pute the Character of our problem (by using some pattern recognition
technique) and then consult a "Character-Method" table or other device
which is supposed to tell us which method(s) are most effective on prob-
lems of that Character. This information might be built up from experi-
ence, given initially by the programmer, deduced from "advice" (Mc-
Carthy, 1959), or obtained as the solution to some other problem, as
suggested in the GPS proposal (Newell, Shaw and Simon, 1959a). In any
case, this part of the machine's behavior, regarded from the outside, can
be treated as a sort of stimulus-response, or "table look-up," activity.

If the Characters (or descriptions) have too wide a variety of values,
there will be a serious problem of filling a Character-Method table. One
might then have to reduce the detail of information, e.g., by using only a
few important properties. Thus the Differences of GPS (see Sec. IVD2)
describe no more than is necessary to define a single goal, and a priority
scheme selects just one of these to characterize the situation. Gelernter
and Rochester (1958) suggest using a property-weighting scheme, a spe-
cial case of the "Bayes net" described in Sec. HG.

D. Planning
Ordinarily one can solve a complicated problem only by dividing it into a
number of parts, each of which can be attacked by a smaller search (or
be further divided). Generally speaking, a successful division will reduce

"Some further discussion of this question may be found in Slagle (1961).

442 APPROACHES AND ATTITUDES

the search time not by a mere fraction, but by a fractional exponent. In
a graph with 10 branches descending from each node, a 20-step search
might involve 1020 trials, which is out of the question, while the insertion
of just four lemmas or sequentialsubgoals might reduce the search to only
5 X 104 trials, which is within reason for machine exploration. Thus it will
be worth a relatively enormous effort to find such "islands" in the solution
of complex problems.31 Note that even if one encountered, say, 106 fail-
ures of such procedures before success, one would still have gained a fac-
tor of perhaps 1010 in over-all trial reduction! Thus practically any ability
at all to "plan," or "analyze," a problem will be profitable, if the problem
is difficult. It is safe to say that all simple, unitary, notions of how to
build an intelligent machine will fail, rather sharply, for some modest level
of problem difficulty. Only schemes which actively pursue an analysis
toward obtaining a set of sequential goals can be expected to extend
smoothly into increasingly complex problem domains.

Perhaps the most straightforward concept of planning is that of using a
simplified model of the problem situation. Suppose that there is available,
for a given problem, some other problem of "essentially the same char-
acter" but with less detail and complexity. Then we could proceed first
to solve the simpler problem. Suppose, also, that this is done using a sec-
ond set of methods, which are also simpler, but in some correspondence
with those for the original. The solution to the simpler problem can then
be used as a "plan" for the harder one. Perhaps each step will have to be
expanded in detail. But the multiple searches will add, not multiply, in the
total search time. The situation would be ideal if the model were, mathe-
matically, a homomorphism of the original. But even without such per-
fection the model solution should be a valuable guide. In mathematics
one's proof procedures usually run along these lines: one first assumes,
e.g., that integrals and limits always converge, in the planning stage. Once
the outline is completed, in this simpleminded model of mathematics, then
one goes back to try to "make rigorous" the steps of the proof, i.e., to
replace them by chains of argument using genuine rules of inference. And
even if the plan fails, it may be possible to patch it by replacing just a few
of its steps.

Another aid to planning is the semantic, as opposed to the homomor-
phic, model (Minsky, 1956a, 1959a). Here we may have an interpretation
of the current problem within another system, not necessarily simpler, but
with which we are more familiar and have already more powerful methods.
Thus, in connection with a plan for the proof of a theorem, we will want
to know whether the proposed lemmas, or islands in the proof, are ac-
tually true; if not, the plan will surely fail. We can often easily tell if a
proposition is true by looking at an interpretation. Thus the truth of a

"See sec. 10 of Ashby (1956).

i

f443STEPS TOWARD ARTIFICIAL INTELLIGENCE

proposition from plane geometry can be supposed, at least with great re-
liability, by actual measurement of a few constructed drawings (or the
analytic geometry equivalent). The geometry machine of Gelernter and
Rochester (1958, 1959) uses such a semantic model with excellent re-
sults; it follows closely the lines proposed in Minsky (1956a

).

1. THE "CHARACTER-ALGEBRA"

MODEL

Planning with the aid of a model is of the greatest value in reducing search.
Can we construct machines which find their own models? I believe the
following will provide a general, straightforward way to construct certain
kinds of useful, abstract models. The critical requirement is that we be
able to compile a "Character-Method Matrix" (in addition to the simple
Character-Method table in Sec. IVC). The CM matrix is an array of en-
tries which predict with some reliability what will happen when methods
are applied to problems. Both of the matrix dimensions are indexed by
problem Characters; if there is a method which usually transforms prob-
lems of character d into problems of character Cs then let the matrix
entry d, be the name of that method (or a list of such methods). If
there is no such method the corresponding entry is null.

Now suppose that there is no entry for C

i;

-—meaning that we have no
direct way to transform a problem of type d into one of type C,-. Multiply
the matrix by itself. If the new matrix has a non-null (/,/) entry then there
must be a sequence of two methods which effects the desired transforma-
tion. If that fails, we may try higher powers. Note that [if we put unity
for the (/,/) terms] we can reach the 2" matrix power with just n multipli-
cations. We don't need to define the symbolic multiplication operation;
one may instead use arithmetic entries—putting unity for any non-null
entry and zero for any null entry in the original matrix. This yields a sim-
ple connection, or flow diagram, matrix, and its wth power tells us some-
thing about its set of paths of length 2n .32 [Once a non-null entry is dis-
covered, there exist efficient ways to find the corresponding sequences of
methods. The problem is really just that of finding paths through a maze,
and the method of Moore (1959) would be quite efficient. Almost any
problem can be converted into a problem of finding a chain between two
terminal expressions in some formal system.] If the Characters are taken
to be abstract representations of the problem expressions, this "Character-
Algebra" model can be as abstract as are the available pattern-recognition
facilities. See Minsky (1956a, 1959a).

The critical problem in using the Character-Algebra model for plan-
ning is, of course, the prediction reliability of the matrix entries. One can-
not expect the Character of a result to be strictly determined by the Char-
acter of the original and the method used. And the reliability of the pre-

"See,

e.g., Hohn,

Seshu,

and Aufenkamp (1957).

444 APPROACHES AND ATTITUDES

dictions will, in any case, deteriorate rapidly as the matrix power is raised.
But, as we have noted, any plan at all is so much better than none that
the system should do very much better than exhaustive search, even with
quite poor prediction quality.

This matrix formulation is obviously only a special case of the char-
acter planning idea. More generally, one will have descriptions, rather than
fixed characters, and one must then have more general methods to calcu-
late from a description what is likely to happen when a method is applied.

2. CHARACTERS AND DIFFERENCES

In the GPS (General Problem Solver) proposal of Newell, Shaw, and
Simon (1959a, 1960a) we find a slightly different framework: they use a
notion of Difference between two problems (or expressions) where we
speak of the Character of a single problem. These views are equivalent
if we take our problems to be links or connections between expressions.
But this notion of Difference (as the Character of a pair) does lend itself
more smoothly to teleological reasoning. For what is the goal defined by
a problem but to reduce the "difference" between the present state and the
desired state? The underlying structure of GPS is precisely what we have
called a "Character-Method Machine" in which each kind of Difference
is associated in a table with one or more methods which are known to
"reduce" that Difference. Since the characterization here depends always
on (1) the current problem expression and (2) the desired end result,
it is reasonable to think, as its authors suggest, of GPS as using "means-
end" analysis.

To illustrate the use of Differences, we shall review an example (Newell,
Shaw, and Simon, 1960a). The problem, in elementary propositional cal-
culus, is to prove that from S A (— f D Q) we can deduce (Q V P) AS.
The program looks at both of these expressions with a recursive matching
process which branches out from the main connectives. The first Differ-
ence it encounters is that S occurs on different sides of the main connective
"A." It therefore looks in the Difference-Method table under the heading
"change position." It discovers there a method which uses the theorem
(A A B) == (B A A) which is obviously useful for removing, or "reduc-
ing," differences of position. GPS applies this method, obtaining
(-PD Q) AS. GPS now asks what is the Difference between this new
expression and the goal. This time the matching procedure gets down into
the connectives inside the left-hand members and finds a Difference be-
tween the connectives "D" and "V." It now looks in the CM table under
the heading "Change Connective" and discovers the appropriate method
using (— ADB)^(AVB). It applies this method, obtaining
(P v Q) A 5. In the final cycle, the difference-evaluatingprocedure discov-
ers the need for a "change position" inside the left member, and applies a

f

fSTEPS TOWARD ARTIFICIAL INTELLIGENCE 445
!
I

1

method using (AVB)-(BVA). This completes the solution of the
problem.33

Evidently, the success of this "means-end" analysis in reducing general
search will depend on the degree of specificity that can be written into the
Difference-Method table—basically the same requirement for an effective
Character-Algebra.

It may be possible to plan using Differences, as well. One might imag-
ine a "Difference-Algebra" in which the predictions have the form D =
D' D. One must construct accordingly a difference-factorization algebra
for discovering longer chains D = D^ " " " D„ and corresponding method
plans. We should note that one cannot expect to use such planning meth-
ods with such primitive Differences as are discussed in Newell, Shaw, and
Simon (1960a); for these cannot form an adequate Difference-Algebra (or
Character-Algebra). Unless the characterizing expressions have many
levels of descriptive detail, the matrix powers will too swiftly become de-
generate. This degeneracy will ultimately limit the capacity of any formal
planning device.

One may think of the general planning heuristic as embodied in a re-
cursive process of the following form. Suppose we have a problem P:

1 . Form a plan for problem P.
2. Select first (next) step of the plan.

(If no more steps, exit with "success.")
3. Try the suggested method(s):

Success: return to (ft), i.e., try next step in theplan.
Failure: return to (a), i.e., form new plan, or perhaps change cur-

rent plan to avoid this step.
Problem judged too difficult: Apply this entire procedure to the

problem of the current step.

Observe that such a program schema is essentially recursive; it uses itself
as a subroutine (explicitly, in the last step) in such a way that its current
state has to be stored, and restored when it returns control to itself. 34

33 Compare this with the "matching" process described in Newell and Simon
(1956). The notions of "Character," "Character-Algebra," etc., originate in Minsky
(1956) but seem useful in describing parts of the "GPS" system of Newell and Simon
(1956) and Newell,

Shaw,

and Simon (1960a). The latter contains much additional
material we cannot survey here. Essentially, GPS is to be self-applied to theproblem
of discovering sets of Differences appropriatefor given problem areas. This notion of
"bootstrapping"—applying a problem-solving system to the task of improving some
of its own methods—is old and

familiar,

but in Newell,

Shaw,

and Simon (1960a)
we find perhaps the first specific proposal about how such an advance might be
realized.

34 This violates, for example, the restrictions on "DO loops" in programming sys-
tems such as FORTRAN. Convenient techniques for programming such processes
were developed by Newell, Shaw and Simon (19606); the program state variables

446 APPROACHES AND ATTITUDES

'

Miller, Galanter and Pribram35 discuss possible analogies between hu-
man problem-solving and some heuristic planning schemes. It seems cer-
tain that, for at least a few years, there will be a close association be-
tween theories of human behavior and attempts to increase the intellectual
capacities of machines. But, in the long run, we must be prepared to dis-
cover profitable lines of heuristic programming which do not deliberately
imitate human characteristics. 36

V. Induction and Models

A. Intelligence
In all of this discussion we have not come to grips with anything we can
isolate as "intelligence." We have discussed only heuristics, shortcuts, and
classification techniques. Is there something missing? I am confident that
sooner or later we will be able to assemble programs of great problem-
solving ability from complex combinations of heuristic devices—multiple
optimizers, pattern-recognition tricks, planning algebras, recursive ad-
ministration procedures, and the like. In no one of these will we find the

are stored in "pushdown lists" and both the program and the data are stored in the
form of "list structures." Gelernter (1959) extended FORTRAN to manage some
of this. McCarthy has extended these notions in LISP (1960) to permit explicit
recursive definitions of programs in a language based on recursive functions of
symbolic expressions; here the management of program state variables is fully
automatic. See also Orchard-Hays (1960).

M See chaps. 12 and 13 of Miller,

Galanter,

and Pribram (1960).
36 Limitations of space preclude detailed discussion here of theories of self-organiz-

ing neural nets, and other models based on brain analogies. [Several of these are
described or cited in Proceedings of a Symposium on Mechanisation of Thought
Processes, London: H. M. Stationery

Office,

1959, and Self Organizing Systems,
M. T. Yovitts and S. Cameron (eds.), New York: Pergamon Press, 1960.] This
omission is not too serious, I

feel,

in connection with the subject of heuristic pro-
gramming, because the motivation and methods of the two areas seem so different.
Up to the present time, at least, research on neural-net models has been concerned
mainly with the attempt to show that certain rather simple heuristic processes, e.g.,
reinforcement learning, or property-list pattern recognition, can be realized or evolved
by collections of simple elements without very highly organized interconnections.
Work on heuristic programming is characterized quite differently by the search for
new, more powerful heuristics for solving very complex problems, and by very little
concern for what hardware (neuronal or otherwise) would minimally suffice for its
realization. In short, the work on "nets" is concerned with how far one can get with
a small initial endowment; the work on "artificial intelligence" is concerned with
using all we know to build the most powerful systems thatwe can. It is my expecta-
tion that, in problem-solving power, the (allegedly brainlike) minimal-structure
systems will never threaten to compete with theirmore deliberately designed contem-
poraries; nevertheless, their study should prove profitable in the development of
component elements and subsystems to be used in the construction of the more
systematically conceived machines.

j

I;

447 j

STEPS TOWARD ARTIFICIAL INTELLIGENCE

i

A.

seat of intelligence. Should we ask what intelligence "really is"? My own
view is that this is more of an aesthetic question, or one of sense of dignity,
than a technical matter! To me "intelligence" seems to denote little more
than the complex of performances which we happen to respect, but do
not understand. So it is, usually, with the question of "depth" in mathe-
matics. Once the proof of a theorem is really understood its content seems
to become trivial. (Still, there may remain a sense of wonder about how
the proof was discovered.)

Programmers, too, know that there is never any "heart" in a program.
There are high-level routines in each program, but all they do is dictate
that "if such and such, then transfer to such and such a subroutine." And
when we look at the low-level subroutines, which "actually do the work,"
we find senseless loops and sequences of trivial operations, merely carry-
ing out the dictates of their superiors. The intelligence in such a system
seems to be as intangible as becomes the meaning of a single common
word when it is thoughtfully pronounced over and over again.

But we should not let our inability to discern a locus of intelligencelead
us to conclude that programmed computers therefore cannot think. For it
may be so with man, as with machine, that, when we understand finally
the structure and program, the feeling of mystery (and self-approbation)
will weaken.3' We find similar views concerning "creativity" in Newell,
Shaw, and Simon (1958c). The view expressed by Rosenbloom (1951)
that minds (or brains) can transcend machines is based, apparently, on an
erroneous interpretation of the meaning of the "unsolvability theorems" of
Godel.38

37 See Minsky (1956, 1959). ,, nl/1A
38 On problems of volition we are in general agreement with McCulloch (1954)

that our freedom of will "presumably means no more than that we can disunguish

between what we intend (i.e., our plan), and some intervention in our action.' See
also MacKay (1959) and [the] references; we are, however, unconvinced by his

eulogization of "analog" devices. Concerning the "mind-brain"problem, one should
consider the arguments of Craik (1952), Hayek (1952), and Pask (1959). Among

the active leaders in modern heuristic programming, perhaps only Samuel (19606)

has taken a strong position against the idea of machines thinking. His argument,
based on the fact that reliable computers do only that which they are instructed to

do, has a basic

flaw;

it does not follow that the programmer therefore has full

knowledge (and therefore full responsibility and credit for) what will ensue. For

certainly the programmer may set up an evolutionary system whose limitations are
for him unclear and possibly incomprehensible. No better does the mathematician
know all the consequences of a proposed set of axioms. Surely a machine has to be
in order to perform. But we cannot assign all the credit to its programmer if the
operation of a system comes to reveal structures not recognizable or anticipated

by the programmer. While we have not yet seen much in the way of intelligent

activity in machines, Samuel's arguments (circular in that they are based on the
presumption that machines do not have minds) do not assure us against this. Turing

(1956) gives a very knowledgeable discussion of such matters.

448 APPROACHES AND ATTITUDES

!i

B. Inductive Inference
Let us pose now for our machines, a variety of problems more challenging
than any ordinary game or mathematical puzzle. Suppose that we want
a machine which, when embedded for a time in a complex environment or
"universe," will essay to produce a description of that world—to dis-
cover its regularities or laws of nature. We might ask it to predict what
will happen next. We might ask it to predict what would be the likely
consequences of a certain action or experiment. Or we might ask it to
formulate the laws governing some class of events. In any case, our task
is to equip our machine with inductive ability—with methods which it can
use to construct general statements about events beyond its recorded ex-
perience. Now, there can be no system for inductive inference that will
work well in all possible universes. But given a universe, or an ensemble
of universes, and a criterion of success, this (epistemological) problem
for machines becomes technical rather than philosophical. There is quite
a literature concerning this subject, but we shall discuss only one ap-
proach which currently seems to us the most promising; this is what
we might call the "grammatical induction" schemes of Solomonoff (1957.
1958, 1959a), based partly on work of Chomsky and Miller (1957ft,
1958).

We will take languageto mean the set of expressions formed from some
given set of primitive symbols or expressions, by the repeated application
of some given set of rules; the primitive expressions plus the rules is
the grammar of the language. Most induction problems can be framed
as problems in the discovery of grammars. Suppose, for instance, that a
machine's prior experience is summarized by a large collection of state-
ments, some labelled "good" and some "bad" by some critical device. How
could we generate selectively more good statements? The trick is to find
some relatively simple (formal) language in which the good statements
are grammatical, and in which the bad ones are not. Given such a language,
we can use it to generate more statements, and presumably these will tend
to be more like the good ones. The heuristic argument is that if we can
find a relatively simple way to separate the two sets, the discovered rule
is likely to be useful beyond the immediate experience. If the extension
fails to be consistent with new data, one might be able to make small
changes in the rules and, generally, one may be able to use many or-
dinary problem-solving methods for this task.

The problem of finding an efficient grammar is much the same as that
of finding efficient encodings, or programs, for machines; in each case, one
needs to discover the important regularities in the data, and exploit the
regularities by making shrewd abbreviations. The possible importance of
Solomonoff's work (1960) is that, despite some obvious defects, it may

STEPS TOWARD ARTIFICIAL INTELLIGENCE 449
i
I

A.

point the way toward systematic mathematical ways to explore this dis-
covery problem. He considers the class of all programs (for a given gen-
eral-purpose computer) which will produce a certain given output (the
body of data in question). Most such programs, if allowed to continue,
will add to that body of data. By properly weighting these programs, per-
haps by length, we can obtain corresponding weights for the different
possible continuations, and thus a basis for prediction. If this prediction
is to be of any interest, it will be necessary to show some independence
of the given computer; it is not yet clear precisely what form such a result
will take.

C. Models of Oneself
If a creature can answer a question about a hypothetical experiment,
without actually performing that experiment, then the answer must have
been obtained from some submachine inside the creature. The output of
that submachine (representing a correct answer) as well as the input (rep-
resenting the question) must be coded descriptions of the corresponding
external events or event classes. Seen through this pair of encoding and
decoding channels, the internal submachine acts like the environment, and
so it has the character of a "model." The inductive inference problem may
thenbe regarded as theproblem of constructing such a model.

To the extent that the creature's actions affect the environment, this
internal model of the world will need to include some representation of the
creature itself. If one asks the creature "why did you decide to do such
and such" (or if it asks this of itself), any answer must come from the
internal model. Thus the evidence of introspection itself is liable to be based
ultimately on the processes used in constructing one's image of one's
self. Speculation on the form of such a model leads to the amusing pre-
diction that intelligent machines may be reluctant to believe that they are
just machines. The argument is this: our own self -models have a substan-
tially "dual" character; there is a part concerned with the physical or me-
chanical environment—with the behavior of inanimate objects—and there
is a part concerned with social and psychological matters. It is pre-
cisely because we have not yet developed a satisfactory mechanical
theory of mental activity that we have to keep these areas apart. We could
not give up this division even if we wished to—until wefind a unified model
to replace it. Now, when we ask such a creature what sort of being it is, it
cannot simply answer "directly"; it must inspect its model(s). And it
must answer by saying that it seems to be a dual thing—which appears
to have two parts—a "mind" and a "body." Thus, even the robot, unless
equipped with a satisfactory theory of artificial intelligence, would have to
maintain a dualistic opinion on this matter.39

"There is a certain problem of infinite regression in the notion of a machine

450 APPROACHES AND ATTITUDES

Conclusion

In attempting to combine a survey of work on "artificial intelligence"
with a summary of our own views, we could not mention every relevant
project and publication. Some important omissions are in the area of
"brain models"; the early work of Farley and Clark (1954) [also Farley's
paper in Yovitts and Cameron (1960), often unknowingly duplicated,
and the work of Rochester (1956) and Milner (1960)]. The work of
Lettvin et al. (1959) is related to the theories in Selfridge (1959). We
did not touch at all on the problems of logic and language, and of in-
formation retrieval, which must be faced when action is to be based on the
contents of large memories; see, e.g., McCarthy (1959). We have not
discussed the basic results in mathematical logic which bear on the question
of what can be done by machines. There are entire literatures we have
hardly even sampled—the bold pioneering work of Rashevsky (c. 1929)
and his later co-workers (Rashevsky, 1960); Theories of Learning,
e.g., Gorn (1959); Theory of Games, e.g., Shubik (1960); and Psy-
chology, e.g., Bruner et al. (1956). And everyone should know the
work of Polya (1945, 1954) on how to solve problems. We can hope
only to have transmitted the flavor of some of the more ambitious
projects directly concerned with getting machines to take over a larger
portion of problem-solving tasks.

One last remark: we have discussed here only work concerned with
more or less self-contained problem-solving programs. But as this is
written, we are at last beginning to see vigorous activity in the direction of
constructing usable time-sharing or multiprogramming computing systems.
With these systems, it will at last become economical to match human
beings in real time with really large machines. This means that we can
work toward programming what will be, in effect, "thinking aids." In the
years to come, we expect that these man-machine systems will share, and
perhaps for a time be dominant, in our advance toward the development
of "artificial intelligence."

having a good model of itself: of course, the nested models must lose detail and
finally vanish. But the argument, e.g., of Hayek (see 8.69 and 8.79, 1952) that we
cannot "fully comprehend the unitary order" (of our own minds) ignores the power
of recursive description as well as Turing's demonstration that (with sufficient
external writing space) a "general-purpose" machine can answer any question about
a description of itself that any larger machine could answer.

f

part 4 I
I

Bibliography

I

A.

A SELECTED DESCRIPTOR-
INDEXED BIBLIOGRAPHY TO

THE LITERATURE ON

ARTIFICIAL INTELLIGENCE

Marvin Minsky

This listing is intended as an introduction to the literature on Artificial
Intelligence—i.e., to the literature dealing with the problem of making

machines behave intelligently. We have divided this area into categories

and cross-indexed the references accordingly. Large bibliographies with-
out some classification facility are next to useless. This particular field is

still young, but there are already many instances in which workers have
wasted much time in rediscovering (for better or for worse) schemes
already reported. In the last year or two this problem has become worse,
and in such a situation just about any information is better than none.

This bibliography is intended to serve just that purpose-to present
some information about this literature. The selection was confined mainly

to publications directly concerned with construction of artificial problem-

solving systems. Many peripheral areas are omitted completely or repre-

sented only by a few citations. The classification system ,s not particularly
accurate. The descriptive categories that we have selected do not always

permit very sharp distinctions and not always useful ones. There are surely

many errors in the assignments of papers to the categories,both for^ those

I have not read, and for those which I did not fully understand^ I have

seen, or discussed with the authors, about half of the papers Of abou

half the remainder, I felt qualified to guess about the contents on other
grounds. On most of the remainder I guessed anyway and may have missed

The meanings of the descriptors-the names of the
f

categories-are

not given here in any detail, because the present state of the art.will not

bear standardization. The terms do assume understanding of the main

453

454 BIBLIOGRAPHY

points discussed in my paper (1961a), which is readily available. Ob-
viously, there is much ambiguity in the assignments, e.g., between learning
and inductive inference. In most cases I did not assign papers to all compet-
ing categories, so that the searcher may have to look in several reasonable
listings to find full coverage. Not all of the original papers were retrieved
for bibliographic checking. This bibliography should therefore not be used
as a base for other compilations without checking all the references care-
fully. Our purpose was to make available a guide, and not to do all the
work necessary for inclusiveness or accuracy. Many erroneous citations,
propagated from one bibliography to another over the years, are corrected
here, but others have surely been introduced; I have noticed this already in
pirated editions of this compilation.

The selection was made on two bases. Papers directly concerned with
design, construction, and use of problem-solving machinery were admitted
more or less indiscriminately; papers in relevant mathematical, psycho-
logical and physiological domains were selected more critically to represent
entry points to those literatures. A number of clearly relevant areas were
omitted almost entirely, and a few remarks on this selection follow. No
attempt was made to be comprehensive; in most cases we give only a
recent sample for each author. There is very little on the foreign literature;
except for England, the foreign literature has been weak until very recently,
probably because this field simply does not develop without the testing of
models by digital computation. I might remark, at this point, that I do
not regard the literature in this field as a substantial source of buried
treasures of good ideas; the major problems have not yet been generally
recognized and challenged. But there are certainly a great many bad ideas
about, and it will pay the worker to be able to recognize them quickly.
My own preferences are outlined clearly enough in Minsky, 1961a.
Automata Theory, Switching Theory, Recursive Function Theory, Logic
We have included only a few, fairly basic papers. What is needed is a
theory of computation and a theory of hierarchies within the computable
functions. Neither is available today in satisfactoryform. We have included
quite a few papers concerned with the problem of proving theorems by
machine; these are all concerned with heuristic problems, although the
authors may not always choose so to look at things. We have also included
several references to the question of reliable computation with unreliable
elements (stemmingfrom Yon Neumann, 1956); while this question is not
directly connected with the artificial intelligence problem, it will surely
be important in the realization of these ideas. Similarly with theory of
probabilistic machines; here the literature is still rather thin. We neglect
the very large literature on minimization of automataand switching circuits,
although there are many useful heuristic methods therein.

455 fA SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY

Language, Mechanical Translation
A number of references to natural and formal languages are included; this
area is highly relevant and much more could be adjoined. No references
at all are included for Mechanical Translation, even though we feel that
this work is important; Oettinger's compilation 1 with 645 entries will serve
the purpose.

Information Theory, Coding Theory, Statistical Decision Theory

Only a few references are given. Although coding and decision problems

are fundamental to us, we cannot yet say what is relevant.

Neurophysiology and Physiological Psychology

These will someday show how the brain works, and already quite a bit is

known about the Psychology of Problem-solving; we have tried to include
a good many citations of outstanding work in these areas. We have not

included much on learning in lower animals; it is our conviction that it

one's goal is to build machines to solve difficult problems, it will not help

for one to become preoccupied with the mechanics of systems which do

not solve very difficult problems. We have omitted the entire area of Adap-

tive Servomechanisms as being similar in nature, but our omission ot

Operations Research is due only to unfamiliarity;we are sure that this is a
valuable source of heuristic analysis and technique; likewise for Informa-
tion Retrieval. One area which certainly deserves a larger representation
is that of theories of Inductive Inference; the philosophical literature con-
tains a greatdeal on this subject.

The present collection is a revision of the document listed below as
Minsky, 1961c. The original collection was based on my own files, the

collection of Alice M. Pierce/ a listing by Allen Newell,3 and listings of

Russell Kirsch,* Simmons and

Simmons,

5 and the afore-mentioned collec-

* A. G. Oettinger, Bibliography of Mathematical Linguistics and Automatic Trans-

lation, Cambridge, Mass., Computation Laboratory, Department of L'"^1"'Division of Engineering and Applied Physics, Harvard University, September, 1959.

645 entries, many Soviet. ..fi „-„i T„f»ii;<,.»nrf.
2 A. M. Pierce, A Concise Bibliography of the Literature on Artificial Intelligence,

Bedford,

Mass.: Communication Sciences Laboratory, Electronic Research Directorate

AFCRC-TN-59-773,ARDC, USAF,

September, 1959.
3 Allen Newell Bibliography

GI-506,

March, 1958. Unpublished.
<R. A. S, BibHography for NBS Graduate Course 204-204 Washmg.on,

D.C: Data Processing Systems Division, National Bureau of Standards September.
1959-April, 1960. Effective computational processes with finite and mfinite mach nes

"P. L Simmons and R. F. Simmons, The Simulation of Cognitive Recesses: An

Annotated Bibliography, Santa Monica,

Calif.,

'S
Transactions on Electronic Computers, September, 1962 EC-10: 462-483 498

references with informative annotations and subject index. Many Soviet references.

456 BIBLIOGRAPHY

tion of Oettinger.6 I expect to publish one more revision; the relevant
literature now numbers perhaps 2000 papers. A bibliography of that size,
without descriptors, would be completely useless, and even our type of
index is approaching its limit of practical application. The "citation-index"
method appears to be useless here. The only hope is that as the most
profitable lines of thought emerge more clearly, we will be able to become
more selective.

" Op. cit.

I

DESCRIPTOR INDEX

A descriptor is represented by a capital letter and a subscript. The
letters indicate main divisions, and the subscripts represent a further break-
down. Following each descriptor, we list those citations in the Bibliography
which are associated with that particular descriptor.

A : Mathematical Theory of Computers andAutomata

Berkeley 1949

Aj Finite-state Machines; Mathematical Theory
Ashby 1952a, 1956a, 1959; Babcock 19606; Burks and Wang 1957; Burks
1959; Culbertson 1952, 1956; Hohn,

Seshu,

and Aufenkamp 1957; Holland
1959; Keller 1961; Kleene 1956; McCulloch and Pitts 1943; McNaughton
1961; Minsky 19596; Moore 1956a; Mullin 1959; Murray 1955; Yon Neu-
mann 1951, 1956; Rabin and Scott 1959; Shannon 1954; Unger 1958

A 2 Logical Network Theory
Babcock 19606; Burks 1959; Copi, Elgot, and Wright 1958; George 1956;
Gill 1960; Holland 1958; Kleene 1956; McCulloch and Pitts 1943; Mc-
Naughton 1961; Minsky 1954a, 1956a, 19596; Mullin 1959; Shannon 19496;
Tarjan 1958; Yon Foerster 1959

A3 Switching Theory
Calderwood and Porter 1958; McNaughton 1961; Moore and Shannon
19566; Mullin 1959;Shannon 19496

A, Infinite Memory (Turing) Machines
Burks and Wang 1957; Chomsky 19596; Davis 1958; Kleene 1952; De
Leeuw, Moore,

Shannon,

and Shapiro 1956; Lofgren 1958; McNaughton
1961; Minsky 1961a"; Yon Neumann 1951; Rabin and Scott 1959; Rogers
1959; Shannon 1956; Solomonoff 1960; Turing 1936; Wang 1957

As Infinite Structure (Growing) Machines
Burks and Wang 1957; Burks 1959, 1960; Holland 1959, 1960, 1962;
McNaughton 1961; Yon Neumann 1951

A 6 Probabilistic Machine Theory
Ashby 1951; Blum and McCulloch 1960a; Cowan 1960a, 19606; Culbertson
1952, 1956; Good 1959; Householder and Landahl 1945; Landahl, Mo

457

458 BIBLIOGRAPHY

l

A

Culloch,

and Pitts 1943; De Leeuw, Moore,

Shannon,

and Shapiro 1956;
Mackay 1949; McCulloch 19576, 1959a, 1960; McNaughton 1961; Minsky
1954a, 1962; Moore and Shannon 19566; Yon Neumann 1951; Solomonoff
1960; Verbeek 1960a, 19606; Wang 1957

A 7 Computability and Recursive Function Theory
Church 1936; Davis 1958; Davis and Putnam 1959; Godel 1931; Holland
1959; Kleene 1935, 1952; De Leeuw, Moore,

Shannon,

and Shapiro 1956;
McCarthy 1956, 1960; McNaughton 1961; Minsky 1961a"; Post 1943; Rabin
and Scott 1959; Rogers 1959, 1960;Turing 1936

A 8 Theory of Computation
Bledsoe 19616; Burks 1960; Carr 1958; McCarthy 1960, 1961; McNaughton
1961

B: Computer Structures
Berkeley 1949

B, Conventional Digital Computers
Andree 1958; Babbage (see appendixes in Bowden 1953); Oettinger 1952;
Prywes and Gray 1962; Shannon 1954; Shoulders 1960; Ware 1960

Bo Parallel Computers
Babcock 19606, 1961; Blum and McCulloch 1960a; Burks 1959, 1960;
Chow 1957; Cowan 19606; Holland 1960, 1962; McCulloch 19516; Nash
1954; Newell 19606; Selfridge 1959; Shoulders 1960; Unger 1958, 1959;
Uttley 1956a, 19596; Verbeek 1960a, 19606; Yon Foerster 1959

B , Reliability through Redundancy of Components
Allanson 19566; Blum and McCulloch 1960a; Blum 19606; Cowan 1960a,
19606; Elias 1958; Kochen 1959; Landahl,

McCulloch,

and Pitts 1943;
Lofgren 1958, 1962; McCulloch 19576, 1959a, 1960; Moore and Shannon
19566; YonNeumann 1951, 1956, 1958; Verbeek 1960a, 19606

B4 Random "Neural Nets"
Allanson 1956a; Ashby 1950a; Babcock 19606; Barus 1959; Cadwallader-
Cohen et al. 1961; Clark and Farley 1955; Farley and Clark 1954; Good
1959; Hawkins 1961; Hebb 1949; Keller 1961; Milner 1957, 1960, 1961a;

Minsky 1954a, 1959a; Minsky and Selfridge 1960; Pask 1959, 19606;
Rapoport 1948; Rochester, Holland, Haibt, and Duda 1956; Rosenblatt
1958a, 19586, 19596, 1960a; Uttley 1954, 1955, 19596; Yon Foerster 1959

B , Allegedly Brainlike Computers
Angyan 1959; Babcock 1960a; Balescu 1956; Coupling 1950; Crichton and
Holland 1959; Harmon 1959; Harmon, Levinson, and Van Bergeijk 1962a:

f459DESCRIPTOR INDEX

A

Hebb 1949; Keller 1961; Milner 1957; Minsky 1954a, 19566; Rashevsky
1940, 1960; Rosenblatt 1958a, 19586, 19596, 1960a, 1962; Russell 1957;
Uttley 1954, 19596

B6 Neural Nets, Not NecessarilyRandom in Structure
Allanson 19566; Babcock 1960a, 19606, 1961; Barus 1959; Van Bergeijk
and Harmon 1960; Bledsoe and Browning 1959; Bledsoe 1961a; Blum
19606; Burks 1959, 1960; Copi, Elgot, and Wright 1958; Cowan 1960a,
19606; Culbertson 1950, 1952, 1956; Farley and Clark 1954, 19606; George
1956; Good 1958; Greene 1959a; Harmon 1959; Harmon, Levinson and
Van Bergeijk 1962a; Harmon 19626; Hawkins 1961; Holland 1958, 1959;
Householder and Landahl 1945; Kamentsky 1959; Kleene 1956; Kudielka
and Lucas 1961;Landahl,

McCulloch,

and Pitts 1943; Landahl 1962; Levin-
son and Harmon 1962; Mackay 19566; Malm 1961; McCulloch and Pitts
1943; McCulloch 1945, 19576, 1959a, 1960; Milner 1957, 1960, 1961a;
Minsky 1954a, 1956a, 19566, 19596, 1962; Mullin 1959; Yon Neumann
1956; Rapoport 1948; Rapoport and Shimbel 1949; Rashevsky 1940, 1960;
Rochester, Holland, Haibt, and Duda 1956; Selfridge 1948; Sholl and Utt-
ley 1953; Swallow and Weston 1959; Tarjan 1958; Uttley 1954, 1956a,
19596; Yon Foerster 1959; Yon Foerster and Zopf 1961; Walter 1954;

Wiener and Rosenbleuth 1946; Willis 1959

C: Search Problems7

Ashby 1945, 1948, 1956a, 19586; Bledsoe 1961c, 1961a"; Bremermann 1958;
Coupling 1950; Holland 1962; Martens 1959; Minsky 19546, 1961a; Newell
19606; Polanyi 1957; Russell 1957; Yon Foerster and Zopf 1961

C, Enumerative Algorithms, Decision Procedures
Ashby 1952a; Bellman 1957; Chomsky 19596; Davis 1958; Dunham, Frid-
shal, and Sward 1959; Highleyman 19616; McCarthy 1956; Minsky 1962;
Newell,

Shaw,

and Simon 19586, 1958c; Pervin 1959; Prawitz, Prawitz, and
Vogera 1960;Pringle 1951; Quine 1955;Wang 1960 a

C 2 Imperfect Searches Involving Failure, as Opposed to Decision Pro-
cedures

Davis and Putnam 1959, 1960; Gilmore 1959, 1960; Newell and Simon
1956a; Newell,

Shaw,

and Simon 1957a, 19586, 1958c; Wang 1960 a
C, Discussion of Efficiency Problems for Large Searches

Arnold 1959; Ashby 1952a, 19566; Bledsoe 1961c; Davis and Putnam
1959, 1960; Friedberg 1958; Friedberg, Dunham, and North 1959; Howland,
Minsky, and Selfridge 1959; Mackay 19616; McCarthy 1956; Minsky and
Selfridge 1960; Newell,

Shaw,

and Simon 1957a; Papert 1961; Prywes and
Gray 1962;Samuel 1959a; Willis 1960

7 These categories are particularly hard to separate.

460 BIBLIOGRAPHY

C 4 Heuristics for Reducing Search Magnitude
Arnold 1959; Ashby 1952a, 19566; Bellman 1957; Mackay 19566; Tonge
1960

C 5 Partition of Problems into Subproblems
Arnold 1959; Ashby 1952a, 19566; Bellman 1957; Bledsoe 1961c; Darling-
ton 1958; Friedberg, Dunham, and North 1959; Holland 1962; Spiegelthal
1960; Tonge 1960; Wang 1960a; Willis 1960

C 6 Sequential Improvement Schemes
Andrew 1958, 1959a; Ashby 19566, 1959; Barus 1959; Bellman 1957;
Darlington 1958; Gabor, Wilby, and Woodcock 1961; Holland 1962; Mac-
kay 1959a; Minsky 19546; Minsky and Selfridge 1960; Prywes and Gray
1962; Selfridge 1956; Tonge 1960

C 7 Problems of Local Peaks, and the MesaPhenomenon
Campaigne 1959; Darlington 1958; Friedberg 1958; Friedberg, Dunham,
and North 1959; Howland, Minsky, and Selfridge 1959; Minsky 19546;
Minsky and Selfridge 1960

C 8 Hill-climbing; Multiple Simultaneous Optimization
Andrew 1958, 1959a; Arnold 1959; Eykhoff 1960; Friedberg 1958; Fried-
berg, Dunham, and North 1959; Gabor, Wilby, and Woodcock 1961; High-
leyman 19616; Howland, Minsky, and Selfridge 1959; Kailath 1961; Kil-
burn, Grimsdale, and Summer 1959; Loveland 1958; Minsky 19546; Minsky
and Selfridge 1960; Selfridge 1956, 1959;Widrow 1959

C 9 Discussion of Randomness and Creativity
Cadwallader-Cohen et al, 1961; Campbell 1956, 1960; Cohen 1962; Cou-
pling 1950; Kilburn, Grimsdale, and Summer 1959; Mackay 1949- Minsky
19566

D: Pattern Recognition andPerception

Van Bergeijk and Harmon 1960; Deutsch 1955; Householder and Landahl
1945; Miller and Chomsky 1957a; Pierce 1961; Rashevsky 19456; Shepard
and Chang 1961a; Sholl and Uttley 1953; Singer 1961; Taylor 1959a;
Uhr and Vossler 1961a; Uhr 19616; Wiener 19496

Di General Discussion, Reviews
Attneave 1954; Babcock 19606, 1961; Barlow 1959; Clark and Farley 1955;
Culbertson 1948; Dineen 1955; Estavan 1959; Farley, Frishkopf,

Clark,

and

I
J

461DESCRIPTOR INDEX

Gilmore 1957; Farley 1960a; Gold 1959; Green 1957; Greene 1959a; Hebb
1958; Kalin 1960;Kirsch,

Cahn,

Ray, and Urban 1957; Koffka 1935;Kohler
1929; Mackay 19566; Marill and Green 1960; Marill 19616; Minot 1959;
Minsky 1959a, 1961a; Pitts 1955; Rashevsky 1940, 1960; Selfridge 1955,
1956; Selfridge and Neisser 1960; Sperry 1952; Stevens 1957, 1961a; Suther-
land 1959; Unger 1959; Uttley 1954, 19566; Yon Foerster 1959; Wulfeck
and Taylor 1957

D

2,

D 3 Discussion of Matching Criteria
Attneave 1954; Clark and Farley 1955; Denes and Mathews 1960; Duncker
1945; Estes 1960; Farley 1960a; Frankel 1959; Fry and Denes 1959; Glantz
1960; Highleyman 1961a, 1962; Hughes and Halle 1959; Jakowatz,Shuey,
and White 1960; Mattson 1959; McLachlan 1958; Papert 1961; Selfridge
1955, 1956; Selfridge and Neisser 1960; Sprick and Ganzhorn 1959; Stein-
buch 1958a; Stevens 1957; Taylor 1959; Wada et al. 1959

D 4 Property-list or Character-vector Schemes
Babcock 1961; Bledsoe and Browning 1959; Bledsoe 1961a; Dimond 1957;
Dineen 1955; Doyle 1960; Duncker 1945; Feigenbaum and Simon 19616;
Frishkopf and Harmon 1961; Lewis 1962; McLachlan 1958; Minot 1959;
Minsky 19566; Papert 1961; Samuel 1959a; Selfridge 1955, 1956; Slagle
1961; Steinbuch 1958a; Stevens 1961 a

D 5 Schemes Involving Articulation, Recursion, Attention; Division into
Parts

Attneave 1954; Balescu 1956; Banerji 1960; Barnett 1958; Bomba 1959;
Canaday 1962; Eden and Halle 1961; Frishkopf and Harmon 1961; Grims-
dale,

Sumner,

Tunis, and Kilburn 1959a; Haller 1959; Harris 1951; Hebb
1949, 1958; Hughes and Halle 1959; Ladefoged 1959; Mackay 1950; Mil-
ler 1962; Minsky 1959a, 19616; Mooers 1951a; Sherman 1959; Stevens
1961a; Uhr 1959a; Unger 1959

Dc Human Visual Perception
Adrian 1946; Allport 1955; Attneave 1954, 1955; Broadbent 1958; Camp-
bell 1958; Farley 1960a; Freiberger and Murphy 1961; Gibson 1929, 1950;
Green 1959; Hake and Hyman 1953; Harmon, Levinson, and Van Bergeijk
1962a; Hayek 1952; Hebb 1949; Householder 1943; Julesz 1960a, 19606,
1962a; Koffka 1935; Kohler 1929, 1951; Lawrence and Coles 1954;
Lawrence and La Berge 1956; Mackay 19606, 1961c; Marshall and Talbot
1942; Miller 19566; Neisser 1959a, 19596, 1960; Pitts and McCulloch
1947; Roberts 1962; Scott and Williams 1959; Selfridge and Neisser 1960;
Stevens 1951; Sutherland 1959; Uhr 1960

D 7 Nonvisual Perception, Especially Speech Recognition Machines
Bauman and Licklider 1954; Byrnes,

Gold,

and Kemball 1958; David 1955,
1958a; David, Matthews, and McDonald 19586; David 1961; Davis, Bid-

462 BIBLIOGRAPHY

U.

dulph, and Balashek 1953; Denes and Mathews 1960; Fatehchand 1960;
Forgie and Forgie 1959; Fry and Denes 1953, 1959; Harmon 1959;
Harmon, Levinson, and Van Bergeijk 1962a; Hughes and Halle 1959;
Ladefoged 1959; Marill 19616; Miller 1958; Petrick 1961a; Pierce and
David 1958; Shultz 1957; Steinbuch 19586; Stevens 1951; Wiener 19506

D, Picture Transformations, Especially Local Homogeneous (Kernel)
Attneave 1954; Babcock 19606; Bomba 1959; Buell 1961; David 1961;
Dineen 1955; Elias et al. 1952; Kalin 1960; Kirsch,

Cahn,

Ray, and Urban
1957; Landahl 1962; Minot 1959; Selfridge 1955, 1956; Sherman 1959;
Stevens 1961a, 19616; Unger 1958, 1959

D 9 Pattern Recognition as a Statistical Decision Problem
Chow 1957; Doyle 1960; Estes 1960; Farley 1960a; Frankel 1959; Hawkins
1961; Highleyman 19616; Marill and Green 1960; Minsky and Selfridge
1960; Papert 1961; Rosenblatt 1958a, 19586, 1959a, 19596, 1960a, 1962;
Sebestyen 1960, 1961; Stevens 1961a; Uhr 19616; Unger 1958; Uttley 1954,
1956a, 19566, 1956c, 1959a, 19596; Wiener 1949 a

DlO Character-reading Machines, Printed Text or Handwritten
Bailey and Norrie 1957; Baran and Estrin 1960; Barus 1959; Bledsoe and
Browning 1959; Bledsoe 1961a; Bomba 1959; Broido 1958; Chow 1957;
Dimond 1957; Doyle 1960; Eden 1962; Eldredge 1957; Flores 1958;
Frankel 1959; Freiberger and Murphy 1961; Frishkopf and Harmon 1961;
Glauberman 1959; Greanias, Hoppel, Cloomok, and Osborn 1957a; Greanias
and Hill 19576;

Grimsdale, Sumner,

Tunis, andKilburn 1959a; Haller 1959;
Heasly 1959; Highleyman and Kamentsky 1959a, 19596, 1960; Highleyman
1961a, 1962;Kamentsky 1959;Kazmierczak 1959; Leimer 1962;Marill and
Green 1960; Mattson 1959; Minot 1959; Pahl and Johnson 1959; Roberts
1960; Rosenblatt 1958a; Selfridge and Neisser 1960; Sherman 1959; Sprick
and Ganzhorn 1959; Steinbuch 1958a; Stevens 1957, 1961a; Taylor 1959;
Uhr 1959a; Unger 1959; Wada et al. 1959

Dn Discovery of Useful Properties for Distinguishing Patterns
Babcock 19606, 1961; Banerji 1960; Bruner,

Goodnow,

and Austin 1956;
Buell 1961; David 1961; Denes and Mathews 1960; Deutsch 1955; Frei-
berger and Murphy 1961; Gill 1959; Glantz 1960; Golomb 1960; Heasly
1959; Hubel and Wiesel 1959, 1962; Hughes and Halle 1959; Julesz 1962a;

Kazmierczak 1959;Kirsch,

Cahn,

Ray, and Urban 1957;Lettvin, Maturana,
McCulloch, and Pitts 1959; Mackay 19566; Marill 19616; Mattson 1959;
McLachlan 1958; Minot 1959; Minsky 19566, 1959a; Minsky and Selfridge
1960; Newell,

Shaw,

and Simon 1960a; Papert 1961; Sebestyen 1960, 1961;
Selfridge 1955, 1956, 1959; Solomonoff 1957; Sprick and Ganzhorn 1959;
Stevens 19616; Uhr 1959a, 1960; Uhr and Vossler 1961c; Yon Foerster and
Zopf 1961; Watson 1959

f

463DESCRIPTOR INDEX I

I

v.

Dl 2 Transformation-invariant Properties Not Requiring Prenormalization
Babcock 19606, 1961; Bomba 1959;Buell 1961;Deutsch 1955; Doyle 1960;
Harmon 1960a, 19606; Hu 1962; Hubel and Wiesel 1959, 1962; Kalin 1960;
Lettvin, Maturana,

McCulloch,

and Pitts, 1959; McCulloch 19516; Minot
1960; Pitts and McCulloch 1947; Roberts 1960; Rosenblatt 1960a; Selfridge
and Neisser 1960;Stevens 1961a, 19616; Wiener 1948

Dl 3 Discrimination by Use of Weighted Sums of Relatively Simple
Properties

Bledsoe and Browning 1959; Bledsoe 1961a; Braverman 1959; Chow 1957;
Denes and Mathews 1960;Doyle 1960; Gamba 1961; Hawkins 1961; Joseph
1960; Keller 1961; Marill and Green 1960; Mattson 1959; Minsky and
Selfridge 1960; Murray 1959, 1961;Roberts 1960; Rosenblatt 1958a, 19586,
1959a, 19596, 1960a, 1962; Selfridge 1959; Taylor 1959; Turing 1953;
Uttley 1954, 1956c, 19596; Wada et al. 1959; Willis 1959

Dl 4 Systems Using Hierarchies of Recognition Devices
Canaday 1962; Denes and Mathews 1960; Hubel and Wiesel 1959, 1962;
Ladefoged 1959; Lettvin, Maturana,

McCulloch,

and Pitts 1959; Miller,

Galanter,

and Pribram 1960; Miller 1962; Minsky 1962; Neisser 1959a,
19596, 1960; Rosenblatt 1962; Russell 1957; Selfridge 1959; Selfridge and

Neisser 1960; Tinbergen 1951; Uttley 1954, 19566, 1956c, 19596

E: Learning Systems

General discussion: Andrew 1959a, 19596; Ashby 1948, 1956a; Bledsoe
1961a"; Carr 1958; Chomsky and Miller 19576; Culbertson 1950; Deutsch
1956; Eldredge 1957; Estavan 1959; Feigenbaum and Simon 19616;
Feigenbaum 1961c; George 19596; Greene 19596; Gyr 1960; Holland 1962;
Hull 1943, 1952; Kochen and Levy 1956; Mackay 19616; Minsky 1961a;
Newell and Simon 1962; Pask 1959, 19606, 1961; Richards 1951, 1952;
Rosenblatt 1962; Russell 1957; Shimbel 1950; Singer 1961; Sluckin 1954;
Stevens 1951; Turing 1950; Yon Foerster arid Zopf 1961; Weir 1958;
Wyckoff 1954

E, Animal Learning Behavior
Deese 1952; Hebb 1958, 1961; Hilgard 1956; Hull 1935; Landahl 1962;
Minsky 19566; Skinner 1961; Sutherland 1959; Thorpe 1956; Tinbergen
1951;Watson 1959; Zemanek,Kretz, and Angyan 1960

E2 Human Learning Behavior
Allport 1955; Bush and Estes 1959; Chomsky 1959a; Deese 1952; Feigen-
baum and Simon 19616; Gibson 1940; Green 1959; Hebb 1958, 1961;
Hilgard 1956; Kochen 1958a; Miller,

Galanter,

and Pribram 1960; Newell

464 BIBLIOGRAPHY

A

and Simon 1962; Pask and Yon Foerster 1960c; Shepard and Chang 1961a;
Simon 19616; Skinner 1953, 1957, 1961

E3 Reinforcement (Reward, Extinction)
Barus 1959; Bush and Mosteller 1955; Bush and Estes 1959; Campaigne
1959; Chomsky 1959a; Clark and Farley 1955; Coupling 1950;Estes 1950;
Farley and Clark 1954; Friedberg 1958; Friedberg, Dunham, and North
1959; George 1957; Good 1958; Gorn 1959; Keller 1961; Kilburn, Grims-
dale, and Summer 1959; Kirsch 1954; Landahl 1962; Loveland 1958;
Mattson 1959; Milner 1957, 1960; Minsky 1954a, 19566; Minsky and
Selfridge 1960; Oettinger 1952; Papert 1961; Roberts 1960; Rosenblatt
1958a, 19586, 1959a; Samuel 1959a; Selfridge 1959; Skinner 1957, 1961;
Wiener 1948; Willis 1959

E4 Correlation Computations
Arnold 1959; Eykhoff 1960; Friedberg 1958;Friedberg, Dunham, and North
1959; Jakowatz, Shuey, and White 1960; Kac 1962; Kailath 1961;Kilburn,

Grimsdale,

and Summer 1959; Mattson 1959; McLachlan 1958; Minsky and
Selfridge 1960; Newell 1955; Rosenblatt 1959a; Samuel 1959a; Steinbuch
1961; Watson 1959

E5 Association, Nonreinforcement Learning Ideas
Barus 1959; Feigenbaum 1959, 1961a; Feigenbaum and Simon 19616;Furst
1949; Hayek 1952; Hebb 1949, 1958; Lashley 1951; Milner 1957, 1960;
Prywes and Gray 1962; Stevens 1959; Uttley 1956a, 19566, 1956c, 1959a,
19596

E 6 Confirmation of Internally Generated Hypotheses
Banerji 1960; Bledsoe and Browning 1959; Bledsoe 1961a; Chomsky 1959a;
Feldman 1959, 1961a; Feldman, Tonge, and Kanter 19616; Koffka 1935;
Kohler 1929; Mackay 19616; Minsky 19616; Newell 1955; Newell, Shaw,
and Simon 1960a; Papert 1961; Solomonoff 1957, 1959 a

E7 "Adaptation," Adjustment of Internal Parameters
Angyan 1959; Ashby 1947a, 1952a, 1959; Bellman and Kalaba 1958;
Cadwallader-Cohenet al. 1961; Campbell 1956; Coupling 1950; Darlington
1958; Eykhoff 1960; Kac 1962; Pask and Yon Foerster 1960c; Stevens
1961a; Uhr and Vossler 1961 a

E8 "Conditioning"
Angyan 1959; Braines, Napalkov, and Shreider 1959a; Householder and
Landahl 1945; Landahl 1962; Yon Neumann 1956; Pitts 1943; Rashevsky
1940, 1960; Walter 1950, 1951; Zemanek,Kretz, and Angyan 1960

E ;, Statistical Learning Theories
Ashby 1945; Atkinson 1954; Bemer 1959; Bush and Mosteller 1955; Bush
and Estes 1959; Estes 1950; Farley 1960a; Foulkes 1959; Galanter and

465DESCRIPTOR INDEX

I

A

Miller 1960; Gamba 1961; George 1957; Gorn 1959; Joseph 1960; Landahl
1962; Minsky 1962; Murray 1959, 1961; Oettinger 1952; Pask and Yon
Foerster 1960a; Rapoport 1956; Selfridge 1955, 1956; Uttley 1956a, 19566,
1959a; White 1959;Widrow 1959

ElO "Rote Learning," Literal Storage of Records
Feigenbaum and Simon 19616; Martens 1959; Samuel 1959a; Shannon
1952, 1955; Tinbergen 1951; Wallace 1952

F: Planning Schemes

General discussion: Galanter and Gerstenhaber 1956; Galton 1883; Gyr
1960; Kochen and Levy 1956; Minsky 1961a, 19616; Newell 1955; Pask
1961; Rosenblatt 1960 a

F, Internal Models of the World
Bremermann 1958; Craik 1952; Mackay 1956a, 19566, 19616; Minsky
1954a, 19566

F2 Prediction of Effects of Contemplated Action
George 1956; Koffka 1935; Kohler 1929; Mackay 1956a, 19566, 1960a;
Milner 1960; Minsky 1954a, 19566

F3 Use of Semantic Models
Gelernter and Rochester 1958; Gelernter 19596;

Gelernter,

Hansen, and
Loveland 1960a; Mackay 1949, 1959a; Minsky 19566, 1956c, 1959a, 19616

F4 Use of Simplified, Possibly Homomorphic, Models
Ashby 19566;Bremermann 1958; Hartmanis 1961; Kochen and Levy 1956;
Minsky 19566, 1959a; Newell,

Shaw,

and Simon 1960a; Shannon 1955;
Tonge 1960

F5 Construction of Internal Abstract Models
Mackay 19616; Minsky 19566, 1959a, 19616; Newell,

Shaw,

and Simon
1960a

F6 Human Planning Strategies
Cohen 1962; De Groot 1946; Greene 1959c; Luce and Raiffa 1957; Miller,

Galanter,

and Pribram 1960; Yon Neumann and Morgenstern 1947; Pask
and Yon Foerster 1960a; Polya 1954, 1954a; Shannon 1950a, 19506; Simon
1957

G: Problem-solving

Ashby 1956a; Bartlett 1958; Boring 1946; Feigenbaum 1961c; Feldman
1962; Galanter and Gerstenhaber 1956; Galton 1883; Greene 19596; Gyr

466 BIBLIOGRAPHY

1960; Minsky 1961a; Newell 19606; Newell and Simon 19616, 1961c,
1961a", 1962; Pask and Yon Foerster 1960c; Pask 1961; Polanyi 1957;
Simon 1961a; Stevens 1951;Tonge 1960

d Administration Problem for Heuristic Programming

Bellman and Brock 19606; Gelernter 1959a; Minsky 19566, 1956c, 1959a,
1962; Newell,

Shaw,

and Simon 1957a, 1959a, 1960a; Reitman 1959, 1961;
Slagle 1961

G2 Search-tree Termination with Static Evaluation Function (Game
Playing)

Bellman 1957;Bernstein et al. 1958a; Bernstein and Roberts 19586; Freimer
1960; Kister,

Stein,

Ulam, Walden, and Wells 1957; Newell 1955; Newell,

Shaw,

and Simon 19586; Samuel 1959a; Shannon 1950a, 19506; Stein and
Ulam 1957;Turing 1953; Wiener 1948

G3 Explicit Use of Goals and Subgoals
Bellman 1957; Berstein et al. 1958a; Bernstein and Roberts 19586; Church-
man and Ackoff 1950a; De Groot 1946; Gelernter 1959a; McCarthy 1959;

McCulloch 1955c; Miller,

Galanter,

and Pribram 1960; Minsky 1954a,
19566; Newell 1955; Newell,

Shaw,

and Simon 1958a, 19586, 1958c; Newell
and Simon 19616, 1961c, 1961a"; Selfridge 1956; Shannon 1950a, 19506;
Simon 19616; Spiegelthal 1960

G,

Human Problem-solving (Psychological Literature)

Boring 1955; Bruner,

Goodnow,

and Austin 1956; Campbell 1958; Chomsky

1959a; Clarkson and Simon 1960; De Groot 1946; Duncan 1959; Feldman
1959, 1961a; Feldman, Tonge, and Kanter 19616; Galanter and Miller
1960'; Ghiselin 1952; Hadamard 1945; Hebb 1958; Heidbreder 1924;

Hovland 1952; Humphrey 1951; John and Miller 1957; Johnson 1955;
Katona 1940; Kochen and Levy 1956; Koffka 1935; Kohler 1929;Licklider
1960; Linsky 1952; Luchins 1942;Miller 19566; Miller and Chomsky 1957a;
Moore and Anderson 1954a, 19546; Newell,

Shaw,

and Simon 1957a, 1958a,
19586, 1958c, 1959a, 1960a; Newell and Simon 19616, 1961c, 1961a", 1962;
Piaget' 1926, 1950, 1954; Poincare 1954; Polya 1954, 1954a; Rappaport
1951; Robinson 1957; Simon and Newell 1956a; Simon 1957, 1961a, 19616;

Vinacke 1962; Wertheimer 1945

G5 The Effect of Different Training Sequences

Birch 1945; Boring 1955; Friedberg 1958; Friedberg, Dunham, and North
1959; Galanter 1959; Katona 1940; Kochen 1958a; Luchins 1942; Minsky

1959a; Newell,

Shaw,

and Simon 1958a, 19586, 1958c; Piaget 1926; Polya

1954, 1954a; Russell 1956; Simon 19566; Skinner 1953, 1961; Solomonoff
1957

467DESCRIPTOR INDEX

A

G6 Reasoning and Discovery, Human

Birch 1945; Boring 1955; Bruner,

Goodnow,

and Austin 1956; Campbell
1960; Deutsch 1954, 1956; Ghiselin 1952; Hebb 1949, 1958; Hovland 1952

Luchins 1942; Miller,

Galanter,

and Pribram 1960; Newel Shaw and
Simon 1958a, 1958c, 1959a, 1960a; Newell and Simon 19616, 1961c, 19610,

Polanyi 1957;Rashevsky 19456, 1946; Robinson 1957

G7 Theorem Proving by Machine
Copi and Beard 1959; Davis and Putnam 1959, 1960; Dunham, Fridsh,al,

and Sward 1959; Gelernter and Rochester 1958; Gelernter 1959a, 19596

Gelernter,

Hansen, and Loveland 1960a; Gilmore 1959, 1960; Kleene 952
McCarthy 1961; Minsky 19566, 1956c, 1959a, 1962; Newel 1 an Simon

1956a; Newell,

Shaw,

and Simon 1957a, 1959a, 1960a; Newell andl Simon

19616, 1961c, 19610; Poincare 1954; Polya 1954a; Prawitz and

Vogera 1960; Quine 1955;Robinson 1957; Slagle 1961; Wang 1960a, 19606,

1961

G8 Use of DeductiveLogic in Problem-solving

Church 1956; Copi and Beard 1959; Dunham FridshaL and Sward 1959^
Gardner 1952, 1958; Gilmore 1959, 1960; Malm 1961; McCaUun,^ and

Smith 1951; McCarthy 1959; Minsky 19616; Moore and Anderson 954a,
Newell and Simon 1956a; Newell,

Shaw,

and Simon 1957a, 1959a, 1960a,

Peirce 1887; Rashevsky 19456, 1946

G9 Program-writing or Sequential-action Problems

Amarel 1960; Campaigne 1959; Friedberg 1958;
9?*

North 1959; Kilburn,

Grimsdale,

and Summer 1959, McCarthy lso*.

Newell,

Shaw,

and Simon 1960a; Simon 1961 c
GlO Character-Method Selection Machines

Gelernter and Rochester 1958; Gelernter 19596;

Gelernter,

§
Hansen and

Loveland 1960a; Minsky 19566, 1959a; Newell,

Shaw,

and Simon 1959a,

1960a; Slagle 1961

H: Languages

Ashby 1956a; Feigenbaum 1961c; Stevens 1951

H, Natural Languages

Bar-HHle, 1960, 1962; Bloomfield 1933; Ceccato ,956; Chomsky 1953

,955, 1956, 1957a; Chomsky and M«,„ "57* 958

Chorns,

95

SaiSSK Ne-£Sin^i
1962; Ogden 1933; Pendergraft 1961; Pierce and David 1958, Sapir 1939,

468 BIBLIOGRAPHY

Shannon and Weaver 1949a; Skinner 1957, 1961, 1961; Wiener 19506; Wil-
liams 1956; Yngve 1956, 1961

H2 Formal Languages
Carr 1958; Chomsky 1953, 1955, 1956, 1957a; Chomsky and Miller 19576,
1958; Chomsky 19596, 1959c; Copi, Elgot, and Wright 1958; Davis 1958;
Gibson 1929; Green 1961a; Harris 1951; Kleene 1952, 1956; Levien 1962;
Miller 1951; Newell and Simon 1956a; Newell and Shaw 19576; Newell,
Shaw, and Simon 1959a, 1960a; Ogden 1933; Post 1943; Prywes and Gray
1962; Rosenbloom 1950; Solomonoff 1958, 1959a, 19596; Wang 1960a;
Williams 1956; Yngve 1961

H3 Programming Language Systems

Andree 1958; Backus 1959; Bemer 1959; Carr 1958; David 1961; Ernst
1962; Gorn 1957; Green 1961a; Holland 1960; Mathews 1961; McCarthy
1960; Newell and Shaw 19576; Newell,

Shaw,

and Simon 1958a, 1959a,
1960a; Newell 19606; Newell and Tonge 1960c; Orchard-Hays 1961;
Petrick 19616; Reitman 1961; Rochester 1953; Rochester, Goldberg, and
Edwards 1959;

Shaw,

Newell, Simon, and Ellis 1958; Unger 1958, 1959

H 4 Symbol-manipulation Programming Systems
Carr 1958; Craik 1952; Eden and Halle 1961; Fredkin 1960; Gelernter and
Rochester 1958; Gelernter 1959a;

Gelernter,

Hansen, and Gerberich 19606;
Green 1959, 1961a, 19616; Hiller and Isaacson 1959a; Kahrimanian 1953;
McCarthy 1959, 1960; Miller, Minker, Reed, and Shindle 1960; Newell
and Simon 1956a; Newell and Shaw 19576; Newell,

Shaw,

and Simon
1958a, 19586, 1958c, 1959a, 1960a; Newell and Tonge 1960c; Newell
1961e; Orchard-Hays 1961; Petrick 19616; Rochester, Goldberg, and
Edwards 1959;

Shaw,

Newell,

Simon,

and Ellis 1958; Slagle 1961; Strachey
1952;Tonge 1960; Williams 1956; Yngve 1956

Hs Role of Language in Thinking and Communication
Bar-Hillel and Carnap 1953a, 19536; Bar-Hillel 1955a, 19556; Bloomfield
1933;Broadbent 1958; Campbell 1958; Cherry 1952, 1957; Chomsky 1959a;

Hoviland 1952; Koffka 1935;Kohler 1929; Lashley 1951; Lenneberg 1956;
Linsky 1952; Mackay 1954a, 1956c, 1961a; Miller 1951; Miller and Sel-
fridge 1956a; Minsky 19616; Mooers 1956a, 19566, 1959; Mowrer 1954;
Newell 1955; Osgood,

Suci,

and Tannenbaum 1957; Pask 19606; Pierce
1961; Rothstein 1954; Ryle 1949; Sapir 1939; Selfridge 1956; Skinner 1957

H(i Language and Coding for Models
Burks 1960; Chomsky and Miller 19576; Craik 1952; Lindsay 1960, 1961,
1962a, 19626; Mackay 1949, 1961a; Mandelbrot 1953; Mooers 1956a,
19566; Yon Neumann 1958; Newell 1955; Newell, Shaw, and Simon 1960a;
Newman 1959

I

469DESCRIPTOR INDEX

r

,#

H7 Information Theory and Coding Theory

Alluisi 1957; Attneave 1954, 1955; Bar-Hillel and Carnap 1953a, 19536;
Bar-Hillel 1955a, 19556; Barlow 1959; Brillouin 1951; Cherry 1952, 1957;
Cohen 1962; Cowan 1960a, 19606; Elias 1958; Frankel 1959; Heasly 1959;
Jackson 1950; Jacobson 1959; Mackay 1950, 1953, 1956c, 1959a, 1961a,
19616; Mandelbrot 1953; Miller 1956a, 19566, 1956c; Pierce 1961; Rapo-

port 1956; Rothstein 1954; Scott and Williams 1959; Shannon and Weaver
1949a; Shannon 19496; Sluckin 1958; Wiener 1948; Wozencraft and Hor-
stein 1960

/.- Inductive Inference Machines
Ashby 1956a; Gyr 1960;Russell 1957

It Conditional Probability
Andrew 1959a, 19596, 1961;Barlow 1959;Brooks, Hopkins, Neumann, and
Wright 1957; Cohen 1962; Foulkes 1959; Fry and Denes 1959; Good

1961a; Hagelbarger 1955; Hake and Hyman 1953; Hiller and Isaacson
1959a; Jakowatz, Shuey, and White 1960; Kemeny 19556; Kudielka and
Lucas 1961; Luce and Raiffa 1957; Mackay 19566, 1959a; Minsky 19566,
1962; Polya 1954, 1954a; Popper 1960; Selfridge 1955, 1956; Shannon
1955; Sluckin 1958; Solomonoff 1960; Uttley 1956a, 19566, 1956c, 1959a,
19596; Watanabe 1960; White 1959; Wiener 1949a; Zemanek, Kretz, and
Angyan 1960

I 2 Grammatical Induction; Abstracting the Form of a Set of Formal
Expressions

Brooks, Hopkins, Neumann, and Wright 1957; Chomsky 1959a; Miller and
Chomsky 1957a; Minsky 19566, 1959a, 1961a, 1962; Newell and Simon

1956a; Newman 1959; Selfridge 1955, 1956; Solomonoff 1958, 1959a,
19596, 1960;Uhr and Vossler 1961 c

I 3 Abbreviative Encoding
Andrew 1961; Martens 1959; Pierce 1961; Rosenblatt 1960a; Selfridge
1956; Shannon and Weaver 1949a; Solomonoff 1958, 1959 a

I 4 Hypothesis Formation and Confirmation
Amarel 1960; Bruner,

Goodnow,

and Austin 1956; Chomsky and Miller
19576; Good 1958; Hovland and Hunt 1960, 1961; Hunt 1960a; Hunt and
Hovland 19606; Kochen 1958a; Mackay 1956a, 19566, 19616; Miller and

Chomsky 1957a; Neisser 1960; Newell,

Shaw,

and Simon 1960a; Popper

1960; Solomonoff 1958, 1959a; Uhr and Vossler 1961c; Watanabe 1960;

Weir 1958

470 BIBLIOGRAPHY

I 5 Theories of Inductive Inference
Good 1961a; Hayek 1952; Luce and Raiffa 1957; Minsky 1962;Polya 1954,
1954a; Popper 1960; Ryle 1949; Solomonoff 1960; Somenzi 1956; Watanabe
1960

L Simplicity and Induction
Burge 1958; Good 1961a; Goodman 1951, 1958; Kemeny 1953, 1955c;
McCarthy 1956; McCulloch 19516; Minsky 1959a, 1962; Popper I960;
Shannon 19496; Solomonoff 1957, 1959a, 1960

/: Heuristics

Darlington 1958;Feigenbaum 1961c; Friedberg 1958; Gyr 1960; Malm 1961

ix Discussion of Heuristics for Machine Solution of Problems
Ashby 19566; Berstein et al. 1958a; Bernstein and Roberts 19586;Bouricius
and Keller 1959; Friedberg, Dunham, and North 1959; Gelernter 19596;
Gelernter, Hansen, and Loveland 1960a; Gilmore 1959, 1960; Holland 1959;
Kister,

Stein,

Ulam, Walden, and Wells 1957; Miller,

Galanter,

and Pribram
1960; Minsky 19566, 1956c, 1961a, 19616, 1962; Newell 1955; Newell and
Simon 1956a; Newell,

Shaw,

and Simon 1957a, 1958a, 19586, 1958c, 1959a,
1960a; Newell 19606; Reitman 1959, 1961; Selfridge 1956; Simon 1961a;
Slagle 1961; Solomonoff 1957; Stein and Ulam 1957; Tonge 1960; Turing
1953; Wang 1960a; Wozencraft and Horstein 1960; Martens 1959

J2 Discussion of Human Problem-solving Heuristics
Ashby 19566; Bernstein et al. 1958a; Bouricius and Keller 1959; Campbell
1960; Chomsky 1959a; De Groot 1946; Duncan 1959; Good 1958; Greene
1959c; Hadamard 1945; Humphrey 1951; Johnson 1955; Kochen 1958a;
McCarthy 1956; McCulloch 1955c; Miller,

Galanter,

and Pribram I960;
Newell 1955; Newell and Simon 1956a; Newell,

Shaw,

and Simon 1957a,
1958a, 19586, 1958c, 1959a, 1960a; Newell 19606;Newell and Simon 19616,
1961c, 1961a", 1962; Poincare 1954; Polanyi 1957; Polya 1954, 1954a;
Reitman 1959, 1961; Simon 1961a, 19616; Slagle 1961; Tonge 1960; Vi-
nacke 1962; Wang 1960 a
X: Theories of Brain Function

Eccles 1953; Householder 1943; Pask 1961; Uhr and Vossler 1961a; Wiener
1948; Young 1956

K\ Connection or Path Reinforcement, SynapticFacilitation
Andrew 1959a; Babcock 1960a; Barus 1959; Farley and Clark 1954; Good
1962; Hebb 1949, 1958; Landahl 1962; Minsky 1954a; Rosenblatt 1958a,
19586, 1962; Willis 1959

471DESCRIPTOR INDEX

a

A.

K2 Cell-Assembly Theories
Barus 1959; Clark and Farley 1955; Good 1962; Hebb 1949, 1958; Milner
1957, 1960, 1961a, 19616; Minsky 1954a; Minsky and Selfridge 1960;
Rochester, Holland, Haibt, and Duda 1956; Selfridge 1959

X) Other Neurophysiological Models
Angyan 1959; Ashby 1946; Babcock 1960a; Barlow 1959; Coburn 1951,
1952; Culbertson 1948; Goldstein 1960; Harmon 1959; Harmon, Levinson,
and Van Bergeijk 1962a; Hartline 1938; Hebb 1949; Hubel and Wiesel 1959,
1962; Kalin 1960; Kohler 1951; Kubie 1930, 1941; Landahl 1962; Lashley
1942, 1951; Lettvin, Maturana, McCulloch, and Pitts 1959; Marshall and
Talbot 1942; McCulloch 1960; Milner 1957, 1960, 1961a, 19616; Minsky
1954a; Penfield and Rasmussen 1950; Pfeiffer 1955;Pierce and David 1958;
Pitts and McCulloch 1947; Precker 1954; Pribram 1959; Rashevsky 1940,
1945a, 1946, 1960; Reitman 1959; Rosenblatt 1962; Shimbel 1950; Sholl
and Uttley 1953; Sholl 1956; Sperry 1951; Sutherland 1959; Taylor 1956;
Uttley 1954, 1955, 19596; Yon Foerster 1949; Wall and Melzak 1962;
Walter 1953; Wechsler 1960; Young 1956; Zemanek, Kretz, and Angyan
1960

K 4 Comparing Machines and Brains
Ashby 1947a; Bremermann 1958; Broadbent 1954; Crozier 1951; Good
1959, 1962; Mackay 1949, 1951, 1952, 19546, 19606, 1962; McCulloch
1949a; McCulloch and Pfeiffer 19496; McCulloch 19516, 1955a, 1957a;
Miller,

Galanter,

and Pribram 1960; Milligan 1959; Yon Neumann 1951,
1958; Newell and Simon 19616, 1961c, 1961a"; Pfeiffer 1955; Pitts 1955;
Quastler 1957; Sperry 1952; Spilsbury 1952;Taube 1961; Walter 1950, 1951

L: Epistemological Questions
Boring 1946; Craik 1952; Culbertson 1950; Deutsch 1951; Good 19616;
Kattsoff 1954; Kemeny 1955a; Mackay 1951, 1952, 19546; McCulloch
1945; McCulloch and Pfeiffer 19496; McCulloch 19516, 1955a, 1957a;
Minsky 1961a; Newell and Simon 19616, 1961c, 1961a"; Pask 19606; Pask
and Yon Foerster 1960c; Pask 1961; Pitts 1955; Popper 1960; Rosenblueth,
Wiener, and Bigelow 1943; Rosenblueth and Wiener 1950; Ryle 1949;
Scriben 1953; Turing 1950; Wiener 1948; Wisdom 1952; Young 1956

Li What Can a Machine Know?
Booth 1960; Hayek 1952; McCulloch and Pitts 1943; McCulloch 1954;
Pask 1959; Skinner 1961;Taube 1961; Turing 1936

L 2 Can Machines Think? Nature of Intelligence
Armer 1961; Ashby 1961a; Balescu 1956; Coupling 1950; Good 1959; Kelly
and Selfridge 1962; Laing 1962; Lionnais 1957; Mackay 1949, 1962; Mc-

472 BIBLIOGRAPHY

I

Culloch 1954, 1955c; Minsky 1959a; Moiseyev 1960; Newell,

Shaw,

and
Simon 1957a; Reitman 1962; Rogers 1960; Rosenbloom 1950; Ross 1933;
Samuel 19606; Simon 19616; Somenzi 1956; Taube 1960; Troll 1954;
Turing 1950; Wang 1957, 1960a; Wechsler 1958, 1960; Wilkes 1953, 1956;
Williams 1960; Wright 1959

L 3 Free Will in Man and Machines
Boring 1957; Mackay 1960a, 1962; McCulloch 1954; Russell 1940;
Samuel 19606;Skinner 1961; Turing 1950

L 4 The Mind-Brain Problem
Adrian 1946; Brain 1959; Eccles 1953; Feigl 1959; Gerard 1946; Good
1962; Hayek 1952; Laslett 1950; Mackay 1960a, 1962; Mays 1952;
Meszar 1953; Ryle 1949; Skinner 1961; Sperry 1952; Thomson and Sluckin
19546; Turing 1950

M: Memory and Information Retrieval

Ashby and Riguet 19616; Fredkin 1960; Newell,

Shaw,

and Simon 1958c;
Rosenblatt 19586; Stevens 1951; Wechsler 1960; Young 1956

Mi Retrieval of Relevant Information
Attneave 1954; Bar-Hillel 1962; Brillouin 1951; Bush 1945; Feigenbaum
1959, 1961a; Feigenbaum and Simon 19616; Furst 1949; Green 1961a;
Kehl, Horty, Bacon, and Mitchell 1961;Luhn 1958, 1959; Miller, Galanter,
and Pribram 1960; Minsky 19616; Mooers 1956a, 19566, 1959; Newell,
Shaw, and Simon 1957a; Paycha 1959; Prywes and Gray 1962; Ray and
Kirsch 1957; Samuel 1959a, 19596; Simmons 1940; Solomonoff 19596;
Stevens 1959; Willis 1959

M, Reasoning about Stored Information
Green 1961a; Lindsay 1961, 1962a, 19626; Luhn 1957; McCallum and
Smith 1951; McCarthy 1959; Minsky 19616; Mooers 19516, 19566, 1959;
Newell,

Shaw,

and Simon 1958a, 19586; Paycha 1959; Stevens 1959;
Watanabe 1960

M 3 Human Memory, Psychological Literature
Attneave 1954, 1955;Broadbent 1954; Campbell 1958; Duncan 1959; Ernst
1962; Estes 1960; Feigenbaum and Simon 19616, 1962; Furst 1949; Gibson
1929; Good 1958; Hebb 1958; Kitona 1940; Kochen 1958a; Kubie 1930,
1941; Lawrence and Coles 1954; Lawrence and La Berge 1956; McCulloch
1954; Miller 1956a, 19566, 19576; Miller, Galanter, and Pribram I960;
Spilsbury 1952; Yon Foerster 1949

DESCRIPTOR INDEX 473

I

A,

N: Servomechanisms and StabilityMechanisms, Cybernetics

Ashby 1948, 1956a; Belenesku 1958;Berkeley 1949;Braines, Napalkov, and
Svechinskii 19596; Bremermann 1958; Couffignal 1959; Feigenbaum 1961c;
Gabor 1954; Kemeny 1955a; Kolman 1960; De Latil 1953;Lyapunov 1960;
Mays 1956; Moiseyev 1960; Newman 1958; Pask 1958; Pask and Yon
Foerster 1960c; Pask 1961; Rapoport and Shimbel 1949; Rashevsky 1940,
1960; Rothstein 1954; Russell 1957; Shaginyan 1959; Sluckin 1954;

Sobolev,

Kitor, and Lyapunov 1958; Sutherland, Mugglin, and Sutherland 1958;
Tsien 1954; Weber 1949; Wiener 1958;Wisdom 1951

Ni Adaptive Control Systems

Andrew 1961; Ashby 19586; Bellman and Kalaba 1958, 1959a, 1960a;
Braines, Napalkov, and Shreider 1959a; Eykhoff 1960; Freimer 1959;
George 1959a; Jakowatz, Shuey, and White 1960; De Latil 1956; Pitts and
McCulloch 1947; Reich and Ernst 1960; Russell 1957; Widrow 1959;
Wiener 1948

N2 TeleologicalMechanisms
Andrew 1959a; Ashby 1952a, 1959; Churchman and Ackoff 1950a; Deutsch
1951; Elsasser 1958; Klaus 1961; Mackay 19606; Rosenblueth, Wiener, and
Bigelow 1943; Rosenblueth and Wiener 1950; Schutzenberger 1954; Wiener
1948

N3 Automation, Machines, and Society
Ackoff 1955; Beer 19566; Diebold 1952; George 1959a; Hugh-Jones 1956;
De Latil 1956; Mehl 1959; Merriman, Wass, and Gill 1959; Shubik 19606;
Wiener 1948, 1950a, 1960

N4 Cyberneticsand Psychiatry, Society, etc.
Ashby 1954; Berg 1960; Kochen and Levy 1956;Kubie 1930, 1941;Lettvin
and Pitts 1943; McCulloch 1953; Sutro 1959; Thomson and Sluckin 1954a;
Weinberg 1951; Wiener 1948

N5 "Self-organizing"Systems

Ashby 19476, 1952a; Babcock 19606; Braines and Napalkov 1960; Pask
1959; Pask and Yon Foerster 1960a; Pask 19606, 1962; Yon Foerster 1949,
1959, 1960

N,; Homeostasis and Stability
Ashby 1946, 1947a, 1950a, 1952a, 1953, 19566, 19586, 1959, 1962;
Cadwallader-Cohen et al. 1961; Elsasser 1958; George 1957; De Latil 1956;
Pask and Yon Foerster 1960a; Verbeek 1960a; Yon Foerster 1949; Wall and
Melzak 1962; Weber 1949; Wiener 1948

474 BIBLIOGRAPHY

N7 Social Organizations
Ackoff 1959; Asch 1952; Beer 19566, 1957, 1961; Blau 1955; Cohen and
Cyert 1961; Cyert, Feigenbaum, and March 1959; Davis 1958; Gullahorn
and Gullahorn 1962; Homans 1961;Rome and Rome 1959

P: Some Special Categories

Kudielka and Lucas 1961

Pi Theory of Games (after Yon Neumann, 1947)
Ackoff 1959; Blackwell and Girshick 1954; Galanter and Gerstenhaber
1956; George 1957; Luce and Raiffa 1957; Yon Neumann and Morgen-
stern 1947; Pask and Yon Foerster 1960a, 1960c; Shubik 1960a, 19606;
White 1959

P2 Statistical Decision Theory
Ackoff 1959, 1962; Adey 1959;Blackwell and Girshick 1954; Galanter and
Gerstenhaber 1956; Gold 1959; Highleyman 19616; Kochen 1958a; Luce
and Raiffa 1957; Marill and Green 1960; Shubik 1960a, 19606; Simon
19566;Wald 1950

P3 Man-Machine Interaction
Bemer 1959; Bush 1945; Craik 1947; Estavan 1959; Galanter 1959; Lick-
lider 1960; Pask and Yon Foerster 1960c; Taube 1959; Yntema and Torger-
son 1961

P4 Self-reproducing Machines
Burks 1959, 1960; Holland 1962; Jacobson 1958; Kemeny 1955a; Lofgren
1958, 1961, 1962; Moore 1956c; Yon Neumann 1951, 1958; Penrose 1959a,
19596

P5 Game Playing
Ashby 19526; Bernstein et al. 1958a; Bernstein and Roberts 19586; Byard
1950; De Groot 1946; Good 1959; Hagelbarger 1955; Haldane 1952; Jack-
son 1960; Kirsch 1954;Kister, Stein, Ulam, Walden, and Wells 1957; Kop-
pel 1952; Luce and Raiffa 1957; Martens 1959; McCulloch 1955c; Michie
1961; Newell 1955; Newell, Shaw, and Simon 19586, 1959c; Pask and Yon
Foerster 1960a; Pervin 1959; Prinz 1952; Richards 1951, 1952; Samuel
1959a, 1960a; Selfridge 1956; Shannon 1950a, 19506, 1955; Stein and
Ulam 1957; Strachey 1952;Turing 1953; White 1959; Wiener 1948

P6 Music Writing
Brooks, Hopkins, Neumann, and Wright 1957; David 1961; Hiller and
Isaacson 1959a; Hiller 19596; Kassler 1961; Mathews 1961; Reitman 1961

475DESCRIPTOR INDEX

P7 Maze Learning
Coupling 1950; Minsky 19546; Moore 1959; Pfeiffer 1952; Shannon 1952;
Wallace 1952

Ps Industrial Applications
Beer 1956a, 19566;Blau 1955; Clarkson and Meltzer 1960; Clarkson 1962;
Cohen 1960; Cyert, Feigenbaum, and March 1959; Helgeson and Kwo 1956;
Jackson 1956; Mitchell 1957; Shubik 1960a, 19606

Further Categories

An attempt was made to classify the papers by broader types. This was done
hastily and is particularly subject to error. These categories are designated by
two-digit numbers.

1. Program status:
11. No machine experiment involved.
12. Program for general-purpose computer.
13. Experiment involvingspecial-purposehardware.
14. Uses special programming system.
15. For practical application.
16. Psychological experiment,

2. Technical domain:
21. Mathematical.
22. Psychological.
23. (Neuro) Physiological.
24. Philosophical.

3. Paper type:
31. Review article.
32. With extensive bibliography.
33. Proposed experiment.
34. Reportof experiment.
35. Tutorial.
36. General discussion.

A

BIBLIOGRAPHY

The citations are given in the conventional form except for the inclusion
of additional information (e.g., volume and number) where it might be use-
ful. Following the citations is the list of descriptors, sometimes in order of im-
portance, but not always. Following the descriptors are occasionally found lists
of citations, indicating other papers reporting closely related work. The refer-
ences to the future are particularly

useful,

and we regret not including more
of this ancestral structure.

When several citations occur in the same published volume, the volume is
cited only as one or two bracketed letters, e.g., "in [AD]." The listing of such
volumes, useful in

itself,

is found at the end of the Bibliography. That collec-
tion would serve well as a beginning for a library on artificial intelligence.
Ackoff, R. L., 1955. Automatic management: A forecast and its educational

implications, Management

Science,

2(1) : 55-60. N3.—, 1959.

Games,

decisions and organizations, General Systems, 4: 145-
-150. P,, P,, N,.
—, 1962. Scientific Method: Optimizing Applied Research Decisions,
New York: Wiley. P=.

Adey, W. R., 1959. "Instrumentation of Nervous System for Studies of
Behavior," presented at the 14th Annual Meeting of the American
Rocket Society. P*.

Adrian, E. D., 1946. The physicial background of perception, The Wayneflete
Lectures, New York: Oxford. Do, X, L<.

Allanson, J. T., 1956a. Some properties of a randomly connected neural net-
work, in [I], chap. 30. 84.

-, 19566. The reliabilityof neurons, in [F]. Be, Bs.
Allport, F. H., 1955. Theories of Perception and the Concept of

Structure,

New York: Wiley. De, E>, X; 31, 36.
Alluisi, E. A., 1957. Conditions affecting the amount of information in ab-

solute judgments,PsychologicalReview, 64: 97-103. Hi.
Amarel,

S.,

1960. An approach to automatic theory formation, in [W]. I«,

Gs, G«,

Andree, R. V., 1958. Programming the IBM 650 Magnetic Drum Computer
andData Processing Machine, New York: Holt.

Andrew, A. M., 1958. Machines which learn,New

Scientist,

Nov. 27, 4: 1383.

Cc,

CsJ 36.—, 1959a. Learning machines, in [N], pp. 475-505.

C., C,

E, L, Xi,
Ny, 13, 36.—, 19596. Conditional probability computer, in [N], pp. 945-946.
E, h; 34.

477

478 BIBLIOGRAPHY

",

1960. Learning in a non-digitalenvironment, in [AG].
■, 1961. A self-optimizingsystem of coding, in fX]. 1,, h, N,; 13, 34.

Angyan, A. J., 1959. Machina reproductrix, an analoguemodel to demonstrate
some aspects of neural adaptation, in [N], 2:933-943. B=, Et, Es, K>;
13, 22, 34, 36.

Arm, E. I. See Feigenbaum, 1961c.
Armer, P., 1961. Attitudes toward intelligentmachines, in [S]. L=; 32.
Arnold, R. F., 1959. A compiler capable of learning, in [Q], pp. 137-143.

G, G, G, G,

E4; 12, 33.
Asch, S. E., 1952. Social Psychology, New York: Prentice-Hall. N,.
Ashby, W. R., 1945. The physical origin of adaptation by trial and error,

Journalof General Psychology, 32:13-25.

C,

E».— , 1946. The behavioral properties of systems in equilibrium, dynamics
of the cerebral cortex, American Journal of Psychology, 59:682-686.
Ka, Ne.
—, 1947a. The nervous system as a physical machine: with special refer-
ence to the origin of adaptivebehavior,Mind, 56:1-16. K<, Et, N«.—, 19476. Principles of the self-organizing dynamic system, Journal of
GeneralPsychology, 37:125-128. N».—, 1948. Design for a brain, Electronic Engineering, 20:379-383.

C,

N, E.—, 1950a. The stability of a randomly assembled nerve network, Electro-
encephalographyand Clinical Neurophysiology, 2:471-482. Bi, Nn.—, 19506. The cerebral mechanisms of intelligent behavior, in Per-
spectives in Neuropsychiatry (D. Richter, cd.), London.

-, 1951. Statisticalmachinery, Thales, 7(1) :l-3. A„.
—, 1952a. Design for a Brain, New York: Wiley (rev. cd. 1960). N»,
Ai,

C, G,

d,

C.,

Et, N., N2

;

21, 35, 13, 34.—, 1952b. Can a mechanical chess player outplay its designer? British
Journalof Philosophy of

Science,

3:44-57. Pa.—, 1953. Homeostasis, in [B], 9th

Conference,

pp. 73-108. No.—, 1954. The application of cybernetics to psychiatry, Journal of Mental

Science,

100:114-124. N<.—, 1956a. An Introduction to Cybernetics, New York: Wiley. At,

C,

E,

G,

H, I, N; 35.—, 19566. Design for an intelligence amplifier, in [G], pp. 215-234.

G, G, G, G,

N«, F,, Ji, h; 13 ("Homeostat").
-, 1958a. Cybernetics,Recent Progress in Psychiatry, 3:94-117.
-, 19586. Requisite variety and its implications for the control of com-

plex systems, Cybernetica, 1:83-99.

C,

Ni, No.—, 1959. The mechanism of habituation, in [N], pp. 95-113. Ai,

C«,

E>,
N., N«; 21.

", 1960a. The brain as regulator, Nature, 186:413.
", 19606. Computers and decision making, New

Scientist,

7:746.
-, 1961a. What is an intelligentmachine? in [Z], pp. 278-280. U.
■ and Riguet, J., 19616. The avoidance of over-writing in self-organizing

systems, Journalof Theoretical Biology, 1:431-439. M.

479BIBLIOGRAPHY

1962. Principles of the self-organizing system, in [W], pp. 255-278.
No.

Atkinson, R.

G,

1954. An Analysis of Rote Serial Learning in Terms of a

Statistical Model, doctoral dissertation, Indiana University. En.
Attneave, F., 1954. Some informational aspects of visual perception, Psycho-

logical Review, November, 61(3) : 183-193. D«, D„ D,, Do, D», H,, M., M>;

16.
, 1955. Symmetry,

information,

and memory for patterns, American
Journal of Psychology, 68:209-222. Do, Hi, Ms.

Babbage, C. See appendixes in Bowden 1953.
Babcock, M. L., 1960a. Reorganization by Adaptive Automation, Technical Re-

port 1, Contract Nonr 1834(21), Electrical Engineering Research Lab-
oratory, Engineering Experiment

Station,

University of Illinois, Urbana,
111. B=, B«, X,, X,; 13, 34, 23, 36.

et al., 19606. Some Principles of Pre-organization in Self-organizing
Systems, Technical Report 2, Contract Nonr 1834(21), Electrical Engi-
neering Research Laboratory, Engineering Experiment

Station,

University

of Illinois, Urbana, 111. D,, A,, 80, Do, D», Di=, B=,

A*,

8., N.; 21.
—, 1961. Some physiology of automata, in [Z], pp. 291-293. 82,B2, B«, D,,

Di, Dn, D,2

;

13, 34.
Backus, J. W., 1959. Automatic programming: properties and performance

of FORTRAN systems I and 11, in [N], pp. 233-248. Ho; 15.
Bailey, C. E.

G.,

and Norrie, G 0., 1957. Automatic reading of typed or
printed characters, British Institute of Radio Engineering Convention
on Electronics in Automation.Dm.

Bales, R. F., 1959. Small-group theory and research, in Sociology Today

(Merton, Broom, and

Cottrell,

eds.), New York: Basic Books.
Balescu, 1., 1956. Future possibilities and limitations in reproducing brain

mechanism by electronic machines, Review of Science and Sociology

(Bucharest), 1(2) :45. 80, L*.
Banerji, R. 8., 1960. An Information-processing Program for Object Recog-

nition, Department of Engineering Administration, Case Institute of
Technology,

Cleveland, Ohio,

unpublished. Do, D«, Eo.
Baran, P., and Estrin,

G.,

1960. An adaptive character reader, IRE Wescon,

Convention Records, 4(4):29-41. Dm.
Bar-Hillel, V., and Carnap, R., 1953a. Semantic

information,

British Journal
of Philosophyof

Science,

4:127. Ht, Ho.— and , 19536. An Outline of the Theory of Semantic Information,
Technical Report 247, Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge,Mass. Ho, Ht.
—, 1955a. An examination of information theory, Philosophy of Science,

22:86-105. Ho, Ht.
—, 19556. Semantic information and its measures, Transactions of the
10th Macy Conference on Cybernetics (Yon Foerster, cd.) in [B], pp.
33-48. Ho, H,.

1960. The present status of automatic translation of languages, in

480 BIBLIOGRAPHY

i

Advances in Computers, (F. L. Alt, cd.), vol. 1, New York: Academic
Press.—, 1962. Theoretical aspects of the mechanization of literature search-
ing, in Digitate Informationswandler (W. Hoffman, cd.), pp. 406-443,
Brunswick, Germany: Friedr. Vieweg & Zohn. Hi.

Barlow, H. 8., 1959. Sensory mechanisms, the reduction of redundancy and
intelligence,in [N], 2:537-574. Ht, D,, K»; 13, (L) 34, 36.

Barnett, M. P., 1958. Digitized Description Processing; Part I: Elementary

Considerations,

N.R.L., Department of Chemistry, University of Wis-
consin, Madison, ASTIA Document AD 153312. Do.

Bartlett, F.

C,

1958. Thinking, New York: Basic Books. G.
Barus,

C,

1959. Machine Learning and Pattern Recognition, Progress Report,
National Science Foundation Grant

G-5945,

Swarthmore College, Swarth-
more, Pa.

G,

Xi, 84,B4 , 80, Eo, Dm, Eo, Xi; 21, 33, 36.—, 1961. A Scheme for Recognizing Patterns from an Unspecified

Class,

Progress Report, National Science Foundation, Grant

G-5945,

Swarth-
more College,

Swarthmore,

Pa.
Bauman, R. H., and Licklider, J. C. R., 1954. An electronic word recognizer,

Journal of the Acoustical Society of America, 26:137. Dt.
Beer,

S.,

1956. Operational research and cybernetics, in [F], pp. 29-45. N, P»-
—, 19566. The impact of cybernetics on the concept of industrial or-
ganization,in [F], pp. 535-554. No, Nt, Ps.—, 1957. The scope for operationalresearch in industry, Institutefor Pro-
duction Engineers Journal, May, 16(2). Nt.— , 1961. Cybernetics and Management, London: English Universities
Press, 1957, 1960; New York: Wiley, 1961. N,.

Belenesku, I. N., 1958. Cybernetics and some problems of physiology and
psychology, Voprosy Filos., 11:153, 1957; Psyshological Abstracta 3472.
N; 22, 23.

Bellman, R., 1957. Dynamic Programming, Princeton, N.J.: Princeton Uni-
versityPress.

G, G, Co,Co,

Gj,

Go;

21.— and Kalaba, R., 1958. On communication processes involving learning

and random duration, IRE National Convention Record, (4)6:16-21-
Et, Ni.— and , 1959a. On adaptivecontrol processes, IRE National Con-
vention Record, (4)7:3-11; also in IRE Transactions on Automatic Con-
trol,

AC-4:l-9,

1959. N..— and , 1960a. Dynamic programming and adaptive processes:
mathematical foundations, IRE Transactions on Automatic Control,
AC-5:5-10. Ni.— and Brock, P., 19606. On the concepts of a problem and problem-
solving, American MathematicalMonthly, February, 67(2) : 119-134. &.

Bemer, R. W., 1959. A checklist of intelligence for programming systems,
Communications of the

ACM,

March, 2(3) :B—l3. E., Ho, Pi.
Berg, A. 1., 1960. Cybernetics and society, Economic

Gazette;

translated m
The Soviet Review, New York: International Arts and Sciences Press,

1960. N«.

481BIBLIOGRAPHY

van Bergeijk, W. A., and Harmon, L. D., 1960. What good are artificial
neurons? in [S], pp. 395-406. 8., D.

Berkeley, E.

C,

1949. Giant Brains, or Machines That Think, New York:
Wiley. A, B, N; 35.

Bernstein, A. et al., 1958a. A chess-playing program for the IBM 704 com-
puter, Proceedings of the Western Joint Computer Conference (WJCC),
pp. 157-159. Po,

&, Go,

Ji, J2

;

12, 34, 36. (Kister, 1957; Newell, 19586).

and Roberts, M. deV. 19586. Computer vs. chess-player, Scientific
American, June, 198:96-105. Po,

G>,Go,

J., L; 12, 34, 36.
Birch, H.

G.,

1945. The relation of previous experience to insightful problem
solving, Journal of ComparativePsychology, 38:367. Go, Ge.

Blackwell, D., and

Girshick,

M. A., 1954. Theory of Games and Statistical
Decisions, New York: Wiley. Pi, P*.

Blau, P. M., 1955. The Dynamics of Bureaucracy, Chicago: University of
Chicago Press. Nt, Pe.

Bledsoe, W. W., and Browning, 1., 1959. Pattern recognition and reading by
machine, in [Q], pp. 225-232. D.o, Di», D<, 8., E 6; 12, 34. (Highleyman,
1960, 1961a, 1962;Bledsoe, 1961a.)

—, 1961a. Further results on the N-tuple character recognition method,
IRE Transactions on Electronic Computers, March, EC-10(1):96.
Dio, Dio, D4, B«, Eo; 34.
—, 19616. A basic limitation on the speed of digital computers, IRE
Transactions on Electronic Computers, September, EC-10(3). AB.
(Bremermann, 1962.)

, 1961c. Lethally Dependent Genes Using Instant Selection, Pano-
ramic Research Publication, Palo Alto,

Calif.,

PRI-2.

C,

E.
, 1961a*. The Use of Biological Concepts in the Analytical Study of

Systems, Panoramic Research Publication, Palo Alto,

Calif.,

PRI-2.

C,

E.

Bloomfield,

L., 1933. Language, New York: Holt. Hi, Ho; 36.
Blum, G.

S.,

1961. A Modelof the Mind, New York: Wiley.
Blum, M., and

McCulloch,

W.

S.,

1960a. On parallel computation, Research
Laboratory of Electronics, Massachusetts Institute of Technology,

Quarterly Progress Report, January, (56) : 194-195. 82, 80, Ao.
, 19606. Properties of a neuronwith many inputs, in [S]. 80, 80. See also

paper in [W].
Bomba, J.

S.,

1959. Alpha-numeric character recognition using local operations,
in [Q], pp. 218-224. D», D,o, D«, Do; 12, 34.

Booth, A. D., 1960. How much can machines learn? Automatic Data Process-
ing, February, 2(2):22-26. Li.

Boring, E.

G.,

1946. Mind and mechanism, American Journal of Psychology,
59(2) : 173-192. L, G.—, 1955. Dual role of the Zeitgeist in scientific creativity, Scientific
Monthly, February, 80(2) : 101-106.

Gi, Go,

Go.
-, 1957. When is human behavior predetermined? Scientific Monthly,

April, 84(4): 189-196. Lo.
Borko, H., 1962. Computer Applications in the Social

Sciences,

Englewood
Cliffs. N.J. : Prentice Hall.

482 BIBLIOGRAPHY

Bouricius, W.

G.,

and Keller, J. M., 1959. Simulation of human problem-
solving, in [P], pp. 116-119. J>, L; 12, 34, 36.

Bowden, B. V. (cd.), 1953. Faster than Thought, New York: Pitman. A, 8.,
Ps, Po (chap. 25), Chapter 1 and appendix have historical material on
Babbage's computers.

Brain, W. R., 1951. Mind, Perception, and

Science,

Oxford: Blackwell
Scientific Publications. L,.

Braines, S. N., Napalkov, A. V., and Shreider, lv. A., 1959a. Analysis of the
working principles of some self-adjusting systems in engineering and
biology, in [R]. Ni, Eo.

', , and Svechinskii, V. 8., 19596. Problems of Neuro-cybernetics,
published in the

USSR,

1959. Available from the U.S. Joint Publications
Research

Service,

Office of Technical

Services,

Department of

Commerce,

Washington, D.C. N.— and , 1960. Certain Problems in the Theory of Self-organizing
Systems, Joint Publications Research Service Report 2177-N, U.S. De-
partment of Commerce, Washington, D.C. No.

and

Braverman, E. M., 1959. Certain problems in the design of machines which
classify objects according to an identifying feature which is not specified
a priori, Automatica Telemekhanika, October, 21(10) : 1375-1386. D.o.
(Rosenblatt 1958a).

Bremermann, H. J., 1958. The Evolution of Intelligence: The Nervous System
as a Model of its Environment, Technical Report 1, (July), Contract
Nonr All(11), Project NR-043-200, Mathematics Department, University
of California, Berkeley, Calif. F., Fi,

C,

X., N; 21.
Brenner, W.

G,

Schinzinger, R., and

Suarez,

R. M., 1956. Applicationof high
speed electronic computers to generatordesign problems, AIEE Conference
Paper 56-940. 15.

Brillouin, L., 1951. Information theory and most efficient codings for com-
munication or memory devices, Journal of Applied Physics, 22:1808-
-1811. M,, H,.

Broadbent, D. E., 1954. A mechanical model for human attention and im-
mediate memory, Psychological Review, 64:205. Ms, X«.—, 1958. Perception and

Communication,

London: Pergamon Press. Do,
Ho.

Broido, D., 1958. Recent workon reading machines for data processing, Auto-
mation Progress, 4:183-224. D,«; 31.

Brooks, F. P., Hopkins, A. L., Neumann, P.

G.,

and Wright, W. V., 1957. An
experiment in musical composition, IRE Transactions on Electronic
Computers, September, EC-2 (3), 175-182. P«, L, h; 12, 34.

Bruner, J.

S., Goodnow,

J. J., and Austin, G. A., 1956. A Study of Thinking,
New York: Wiley.

G,, G«,

D„, L; 16, 34, 36.— et al., 1957. Contemporary Approaches to Cognition, Cambridge,
Mass.: Harvard. 22, 35, 36.

Bryton, 8., 1954. Balancing of a Continuous Production Line, unpublished
master of science thesis, Northwestern University, Evanston, 111. (Tonge,
1960.)

483BIBLIOGRAPHY

Buell, D. N., 1961. Chrysler optical processing scanner (COPS), Proceedings
of the 1961 Eastern Joint Computer Conference (EJCC), 20:352-370,
published as Computers, a Key to Total Systems Control. Do, Dn, Du.

Burge, W. H., 1958. Sorting, trees, and measures of order, Information and

Control,

1:181-197. h.
Burks, A. W., and Wang, H., 1957. The logic of automata, Journal of the

Association for Computing Machinery, April, July, (1,2) 4:193-218,
279-292. A,, A., A.; 21, 31, 36.—, 1959. Logic of fixed and growing automata, Proceedings of an Inter-
national Symposium on the Theory of Switching, in Annals of the Compu-
tation Laboratory, vol. 29, pp. 147, Cambridge, Mass: Harvard.
Ai, A, A, Ba, 80, P,; 21, 35, 36.—, 1960. Computation, behavior, and structure, in [U], pp. 282-311. Ao,
Ao, 82, Be, Ho, P4; 36.

Bush, R. R., and Mosteller, F., 1955. Stochastic Models for Learning, New
York: Wiley. Eo, E„; 21, 35, 36.— and Estes, W. K. (eds.), 1959. Studies in Mathematical Learning
Theory, Stanford, Calif.: Stanford. E», Eo, E,; 16, 31, 35, 36.

Bush, V., 1945. As we may think, Atlantic Monthly, July, 176: 101. M,,
Po.

Butler,

S.,

1865. Erewhon, chaps. 23-25, The Book of the Machines, London.
, 1933. Erewhon and Erewhon Revisited, Modern Library No. 136,

New York: Random House.
Byard,

S.,

1950. Robots which play games, Penguin Scientific News, 20:82.
P..

Byrnes, 8., Gold, 8., and Kemball,

G,

1958. Some Results of the MAUDE
Program, Lincoln Laboratory GroupReport 34-72, Massachusetts Institute
of Technology; hand keyed Morse Code machine (Gold, 1959; Selfridge,
1960.) Dt.

Cadwallader-Cohen et al., 1961 (V. A. Vyssotsky). The Chaostron: an
important advance in learning machines, IRE Professional Group in In-
formation Theory Newsletter 19, April. No, B«,

G,

Et; 11, 12, 13, 32
(hoax).

Calderwood, J. H., and Porter, A., 1958. Pattern recognition in the synthesis
of complex switching systems, Journal of Electronics and

Control,

May,
4:466-480.

A*;

15.
Campaigne, H., 1959. Some experiments in machine learning, in [P], pp. 173-

-175.

Go,G,

Eo; 12, 34.
Campbell, D. T., 1956. Adaptive behavior from random response, Behavioral

Science,

1:105-110.

Co,

Et.—, 1958. Systematic error on the part of human links in communication
systems, Information and

Control,

September, 1(4) :334-369.

Gi,

Mo, D«,
Ho; 22, 31, 32, 36.
—, 1960. Blind variation and selective survival as a general strategy in
knowledge-processes, in [U], pp. 205-231.

G,

h,

Go;

32, 36.
Canaday, R. H., 1962. The Description of Overlapping Figures, unpublished

484 BIBLIOGRAPHY

i

♦

master-of-science thesis in Electrical Engineering, Massachusetts Institute
of Technology.D., D»; 14 (LISP), 12, 34.

Carr,

J. W., 111, 1958. Languages, logic, learning, and computers, Computers
and Automation,April, 7(4) :21-26. As,

ft,

Ho,

ft,

E; 35.
— et al., 1959. A visit to computation centers in the Soviet Union, Com-
municationsof the Association for Computing Machinery.

Ceccato, S.,

1956. La machine gui pense et gui parte, in [F], pp. 288-299. Hi.
Cherry, C.

C,

1952. The communication of

information,

American

Scientist,

40:640-664. Ht, Ho.—, 1957. On Human

Communication,

New York: Wiley. Ho, Ht; 21, 22,
31,35, 36.

Chomsky, A. N., 1953. Systems of syntactic analysis, Journal of Symbolic
Logic, 18(3): 242-265. H,, ft.—, 1955. Logical syntax and semantics: their linguistic relevance,
Language, 31:36-45. Hi, Hi.
—, 1956. Three Models for the Descriptionof Language, Proceedings of a
Symposium on Information Theory, IRE Transactions on Information
Theory, September, IT-2(3) : 113-124.

ft,

H..—, 1957a. Syntactic

Structures,

The Hague, The Netherlands: Uitgverij
Mouton,

ft,

H.; 36.— and Miller, G. A., 19576. Pattern Conception,

AFCRC,

Technical Note
Report

AFCRCRTN-57-57,

Astia Document 110076,

Bedford,

Mass. E,
L, H2, Ho, Hi; 34.— and Miller, G. A., 1958. Finite state languages, Information and

Control,

1(3) :91-112.

ft,

H,.—, 1959a. Review of B. F. Skinner's "Verbal Behavior," Language, 35:
26-58. L,

ft,

E*. Eo, E«,

G«, G»,

Ho, J2

;

31, 32, 36 (Skinner, 1957).—, 19596. On certain formal properties of grammars, Information and

Control,

June, 2:137.

G,

A,,

ft;

21.— , 1959c. A note on phrase structure grammars, Information and

Control,

December, 2:393-395. ft.
Chow, C. X., 1957. Optimum character recognition system using decision func-

tions, IRE WESCON Convention Record, pt. 4, pp. 121-129; also in
IRE Transactions on Electronic Computers, EC-6(4) :247-254. Dio, Dm,
D», B 2

;

21, 36 (Flores, 1958).—, 1959. Comments on optimum character recognition system, IRE
Transactions, June, PGEC-8:230. (Chow, 1957).

Church,

A., 1936. An unsolvable problem of elementary number theory, Ameri-
can Journalof Mathematics, 58:345-363. At.
—, 1956. Introduction to Mathematical Logic, I, Princeton, N.J.: Prince-
ton University Press. G».

Churchman, C. W., and

Ackoff,

R. L., 1950a. Purposive behavior and cyber-
netics, SocialForces, 29:32-39.

Go,

N*.— and , 19506. Methods of Inquiry, St. Louis: Educational
Publishers.

Clark, W. A., and Farley, B.

G.,

1955. Generalization of pattern-recognition

BIBLIOGRAPHY 485

♦

in a self-organizing system, in [E], p. 86. B<(D.(D*, Eo, K>; 12, 24, 36
(Farley, 1954).

Clarkson, G. P. E., and

Simon,

H. A., 1960. Simulation of individual and
group behavior, American Economic Review, 50:920-932. G«.— and Meltzer, A.

ft,

1960. Portfolio selection: a heuristic approach,
Journal of Finance, 15(4). P8

;

34.—, 1962. Portfolio Selection: A Simulation of Trust Investment, Engle-
wood Cliffs, N.J.: Prentice-Hall. Po.

Coburn, H. E., 1951. The brain analogy,PsychologicalReview, 58:155-178. K>., 1952. The brain analogy:A discussion, Psychological Review, 59:453.
Ko.

Cohen, J., 1962. Information theory and music, Behavioral

Science,

April, 7(2).

ft,

1,, Fo, G;22, 31,32, 36.
Cohen, K. J., 1960. Computer Models of the

Shoe,

Leather, Hide Sequence,
Englewood

Cliffs,

N.J.: Prentice-Hall, Ps.
and Cyert, R. M., 1961. Computer models and dynamic economics,

Quarterly Journalof Economics, 75(1). Nr.
Colby, K. M., 1960. Experiments on the effects of an observer's presence on

the Imago System during psychoanalytic

free-association,

Behavioral

Science,

5:216-232.
Copi, I. M., Elgot, C.

C,

and Wright, J. 8., 1958. Realization of events by
logical nets, Journal of Association for Computing Machinery, 5:181-196.
A*, 80,

ft;

21 (Kleene, 1956).
and Beard, R. W., 1959. Programming an Idealized General-purpose

Computer to Decide Questions of Truth and Falsehood, Report 2144-
-402-T. Willow Run Laboratories, University of Michigan, Ypsilanti.

Gt,

Go.
Couffignal, L., 1959. Les machines semantiques, in [F], pp. 129-138. N.
Coupling, J. J., 1950. (J. R. Pierce, 1950) How to build a thinking machine,

AstoundingScience Fiction, August. Eo, Et, 80, C, G,

L*,

Pt.

Cowan,

J., 1960a. Many-valued logics and reliable automata, in [W]. Ao, 80,
80, Ht.

, 19606. Towards aproper logic for parallel computationin the presence
of noise, in [S]. A«, 80, Be,

ft,

B*.
Craik, K. J. W., 1947. Theory of the human operator in control systems,

British Journal of Psychology, 38:56. Po., 1952. The Nature of Explanation, New York: Cambridge. Fi,

ft, ft,

L; 24, 36 (preface dated 1943).
Crichton, J. W., and Holland, J.

ft,

1959. A New Method of Simulating the
Central Nervous System Using an Automatic Digital Computer, Report
2144-1 195-M, Willow Run Laboratories, University of Michigan,
Ypsilanti. B»; 14.

Crozier, W. J., 1951. Physiology and computation devices, Proceedings of the
Second Symposium on Large-scale Digital Calculating Machines, Cam-
bridge, Mass.: Harvard. X,.

Culbertson, J. T., 1948. A device for optic nerve conduction and form percep-
tion, Bulletin of Mathematical Biophysics, 10:31, 97. Di, Ks.

486 BIBLIOGRAPHY

—, 1950. Consciousness and Behavior, Dubuque, Iowa: Wm. C. Brown.
L, E. A, 80.—, 1952. HypotheticalRobots and the Problemof Neuroeconomy, Report
P-296, RAND Corporation, Santa Monica, Calif, a Ai, Ao, 80.

-, 1956. Some uneconomical robots, in [G], pp. 99-116. Ai, A«, 80.—, 1957. Robots and automata: A short history, Computers and Automa-
tion. 6:32. 31, 32.

Cyert, R. M., Feigenbaum, E. A., and March, J.

G.,

1959. Models in a be-
havioral theoryof the

firm,

Behavioral

Science,

April, 4:81-95. Nt, Po.
Darlington, C. D., 1958. The Evolution of

Genetics,

New York: Basic Books.

Co,Co,Ct,

Et, J.
David, E. E., 1955. Ears for computers, Scientific American, February, 192:

92. D,; 13, 34, 36.
—, 1958a. Artificial auditory recognition in telephony, IBM Journal of
Research and Development,

October,

2:294. Dt.
—, Matthews, M. V., and McDonald, H.

S.,

19586. Description and results
of experiments with speech using digital computer simulation, IRE
WESCON Convention Record, (7)2:3-10. D,; 12, 34.
—, 1961. Digital simulation in research on human communication, Pro-
ceedings of the IRE, January, 49:319-328. Dt, Do, P«,

ft,

D.i.
Davies, D. W., 1959. Mechanization of thought processes, Nature, January,

183:225-226. (Review of [N].)
Davis, K. H., Biddulph, R., and Balashek,

S.,

1953. Automatic recognition of
spoken digits, in [X]. D 7; 13 ("Audrey"), 34.

Davis, M., 1958. Computability and Unsolvability, New York: McGraw-Hill.
A,, A4,

G, ft;

21, 31, 32, 35, 36.— and Putnam,

ft,

1959. A Computational Proof Procedure, AFOSR
TR 59-124, Rensselaer Polytechnical Institution, Troy, N.Y.

G, Co,

At,

Gt;

12,21, 32, 33.
— and , 1960. A computing procedure for qualification, Journal
of the Association for Computing Machinery, July, 7(2).

Co,Co, G<;

12,
32, 33. (Less complete version of [1959].)

Davis, R.

C,

1958. The domain of homeostasis, PsychologicalReview, 62:8-
-13. 31 [No], 36.

Deese, J., 1952. The Psychology of Learning, New York: McGraw-Hill. Ei,
E 2

;

22, 35, 36, 32, 31.
DeGroot, A. D., 1946. Het Denken van den Schaker, Amsterdam, The Nether-

lands. Fo,

Go,

G4 (chess), Po, J=.
Denes, P., and Mathews, M. V., 1960. Spoken digit recognition using time-

frequency pattern matching, Journal of the Acoustical Society of America,
November, 32(11) : 1450-1455. Do, Do, Dt, D„, D.o, D„,

Deutsch, J. A., 1953. A new type of behavior theory. British Journal of
Psychology, 44:304.
—, 1954. A machine with insight, Quarterly Journal of Experimental
Psychology, February 6:6-11. Go.—, 1955. A theory of shape recognition, British Journal of Psychology,
February, (lj 46:30-37. D, D„, D» (Stevens 19616).

BIBLIOGRAPHY 487

fl

, 1956. A theory of insight, reasoning, and latent learning, British
Journal of Psychology, 47:1 15.

G„,

E.
Deutsch, K. W., 1951. Mechanism, teleology, and mind, Philosophical and

PhenomenologicalResearch, 12:185-222. No, L.
Diebold, J., 1952. Automation: The Advent of the Automatic Factory, Prince-

ton, N.J.: Van Nostrand. No.
Dimond, T. L., 1957. Devices for reading handwritten characters, Proceedings

of the Eastern Joint Computer Conference (EJCC), pp. 232-237. D,„, D<;
13.

Dinneen, G. P., 1955. Programming pattern recognition, in [E], pp. 94-100.
D,, D,, Ds

;

12, 34 (Selfridge 1955).
Doyle, W., 1960. Recognition of sloppy hand-printed characters, in [V], pp.

133-142. D„, D,o, D,o, D

4,

D,; 12, 34 (Selfridge 1960).
Duncan, C. P., 1959. Recent research on human problem solving, Psychological

Bulletin, November, 56(6) :397-429. G,, h, M

3;

22, 31, 32, 36.
Duncker, X., 1945. On problem solving, Psychological Monographs, 58(270).

D<, Do; 16, 22, 34, 36.
Dunham, 8., Fridshal, R., and Sward, G. L„ 1959. A nonheuristic program

for proving elementary logical theorems, in [R], pp. 282-285.

G, Gt, Go;

12, 21, 34.
Eccles, J. C, 1953. The NeurophysiologicalBasis of the Mind: The Principles

of Neurophysiology,New York: Oxford. X,L<; 23, 36.
Eden, M., and Halle, M., 1961. Characterization of cursive writing, in [X].

D»,

ft;

34.
, 1962. Handwriting and pattern recognition, in [AA], pp. 160-166. DM.

Eldredge, X., 1957. Teaching machines how toread, Stanford Research Institute
Journal, May, 1. D,o, E.

Elias, P. et al., 1952. Fourier treatment of optical processes, Journal of the
OpticalSociety of America, February,42:127. D«; 21, 35, 36., 1958. Computation in the presence of noise, IBM Journal of Research
and Development,May, October, 2:346.

ft,

B s

;

21.
Elsasser, W. H., 1958. Physical Foundations of Biology, New York: Pergamon

Press. N2, No.
Ernst, H. A., 1962. MH-1. A Computer-operatedMechanical Hand, dissertation

Ph.D., E. E. Massachusetts Institute of Technology, 1961; presented at
the Western Joint Computer Conference (WJCC), May, 1962. Ho, M»;
13, 12, 34.

Estavan, D., 1959. Pattern Recognition, Machine Learning, and Automated
Teaching, Report SP-70, System DevelopmentCorporation, Santa Monica,
Calif. D,, E, Po.

Estes, W. X., 1950. Toward a statistical theory of learning, PsychologicalRe-
view, 57:94-107. Eo, Eo; 21.

, 1960. Statistical models for recognition and recall of stimulus patterns
by human observers, in [U]. Mo, Do, D»; 16, 34, 36.

Eykhoff, P., 1960. Optimizing Control and Process Parameter Estimation, un-
published dissertation, University of

California,

Berkeley. Ni, R, E7 , Co.
Farley, B.

G.,

and Clark, W. A., 1954. Simulation of self-organizing system by

488 BIBLIOGRAPHY

a digital computer, IRE Transactions on Information Theory, September,
PGIT-4:76-84. 80, 8,, Eo, Xi; 21, 34 (Clark 1955).

—, Frishkopf, L.

S., Clark,

W. A., and

Gilmore,

J. T., 1957. Computer

Techniques for the Study of Patterns in the Electroencephalogram,Tech-
nical Report 165, Lincoln Laboratory, Massachusetts Institute of Tech-
nology,Lexington, Mass. Dr, 12, 34, 36.—, 1960a. Self-organizing models for learned perception, in [U]. Di, Do,
Do, D., E»; 36.— and

Clark,

W. A., 19606. Activity in networks of neuronlike elements,
in [X]. Bo; 12, 34.

Fatechand, R., 1960. Machine recognition of spoken words, Advances in
Computers, 1:193-229 (F. Alt, cd.), New York: Academic. Dt.

Feigenbaum, E., 1959. An Information Processing Theory of Verbal Learning,
P-1817,

October,

Santa Monica, Calif. RAND Corporation, Mi, Eo.
, 1961a. The simulation of verbal learning behavior. Proceedings of the

Western Joint Computer Conference (WJCC), 19:121-132. M,, E».— and

Simon,

H. A., 19616. Forgetting in an associative memory, Pro-

ceedings of the Association Computing Machinery National Conference
(ACM), 16:2C2-2C5. Di, E, Eo, E.o, Mi, Mo, Eo.
—, 1961c. Soviet cybernetics and computer sciences, 1960, Communica-
tions of the Association for Computing Machinery (ACM), December, 4:
566-579. (Note: This is an outstanding summary of the status of artificial
intelligencein the USSR as seen by a visitor. It contains a detailed report
of the work of Arm, E. I. See also

Carr,

1959.) E,

G,

H, J, N; 31.
— and

Simon,

H. A., 1962. A theory of the serial position

effect,

British
Journal of Psychology, August, 53:307-320. (CIP Working Paper 14,
Graduate School of Industrial Administration, Carnegie Institute of Tech-
nology, Pittsburgh.) Mo.

Feigl,

ft,

1959. Philosophical embarrassments of psychology, American
Psychologist, March, 14:115-128. L«.

Feldman, J., 1959. An Analysis of Predictive Behavior in a Two-choice Situa-
tion, unpublished doctoral dissertation, Carnegie Institute of Technology,
Pittsburgh, Pa. Eo, G<.—, 1961a. Simulation of behavior in the binary choice experiment, in
[Z], pp. 133-144. Eo, G«.—, Tonge, F., and Kanter,

ft,

19616. Empirical Explorationsof a Hypo-
thesis-testing Model of Binary Choice Behavior,

SP-546,

System Develop-
ment Corporation. Eo, G<.— , 1962. Computer simulation of cognitive processes, in Computer

Applications in the Behavioral Sciences (H. Borko, cd.), Englewood

Cliffs,

N.J.: Prentice-Hall. G.
Flores, 1., 1958. An optimum character-recognition system using decision

functions,

IRE Transactions on Electronic Computers, June, EC-7:180.
(Chow, 1957). D.o.

Foerster, See Yon Foerster.
Forgie, J. W., and Forgie, C. D., 1959. Results obtained from an auditory-

489BIBLIOGRAPHY

recognition computer program, Journal of the Acoustical Society of
America, November,31:1480-1484. D,; 12, 34.

Foulkes, J. D., 1959. A class of machineswhich determine the statistical struc-

ture of a sequence of characters, WESCON Convention Record, (4)3:66-
-73. L, E=.

Frankel,

S.,

1959. Information-theoretic aspects of character reading, in [R],
pp. 248-251. Do, D.o, Do, ft.

Fredkin, E., 1960. Trie memory, in IT],

ft,

M.
Freiberger,

ft,

and Murphy, E., 1961. Reading machines for the blind, IRE
Transactions on Human Factors in Electronics, March, 2(l):8-20. Dio,
Do, Di.; 31,32.

Freimer, M., 1959. A dynamic programming approach to adaptivecontrol proc-
esses, IRE Transactions on Automatic

Control,

November,AC-4:10-15. N>.
, 1960. Topics in Dynamic Programming, 11,Lincoln Laboratory Report

52-G-0020,

Massachusetts Institute of Technology, Lexington, Mass.;

Massachusetts Institute of Technology Hayden Library No. H-82. See
especiallySees. I-E.

Go;

21.
Friedberg, R. M., 1958. A learning machine, part I, IBM Journal of Research

and Development, January, 2:2-13. Eo,

E*, Co, G, Co, G», Go,

J; 12, 34
(Arnold, 1959; Campaigne, 1959;Kilburn, 1959).

, Dunham, 8., and North, J.

ft,

1959. A learning machine, part 11,
IBM Journalof Research and Development, June, 3:282-287. Eo, E4,

Co,Co,

G, G,

Go,

G»,

L; 21, 34, 36.
Frishkopf, L.

S.,

and Harmon, L. D., 1961. Machine reading of cursive script,

in [X], pp. 300-316. Di, Do, DM

;

12, 13, 34, 33, 36.
Fry, D. 8., and Denes, P., 1953. Experimentsin mechanical speechrecognition,

in [X], pp. 206-212; in [I]. D,; 34.— and , 1959. An analogueof the speech recognition process, in

[N], 1:377-395. D,, D

2,

Do, L; 33.
Furst, 8., 1949. Stop Forgetting! New York: Garden City. M,, Mo, Eo; 22, 35.

Gabor,

D., 1954. Communication theory and cybernetics, IRE Transactions on
Circuit Theory, December, CT-1: 19-31. N.—, Wilby, W. P., and Woodcock, R., 1961. A self-optimizing nonlinear

filter,

predictor and simulator, in [X].

G, Co;

13.
Gagne, R. M., and

Smith,

E.

C,

Jr. A study, of the effects of verbaliza-
tion on problem solving, Journalof ExperimentalPsychology, 63:218-227.

Galanter, E., and

Gerstenhaber,

M., 1956. On thought: The extrinsic theory,

PsychologicalReview, 63:218-227. F,

G,

Pi,

P*;

22, 36.
(cd.), 1959. Automatic Teaching, New York: Wiley. P», Go.
and Miller, G. A., 1960. Some comments,on stochastic models and

psychological theories, Mathematical Methods in the Social Sciences,

1959 (Arrow, Karlin, and Suppes, eds.), Stanford: Stanford University

Press. Et, d.

Galton,

F., 1883. Inquiries into Human Faculty and Development, N.Y.:
Macmillan. F,

G;

16, 22, 34, 36.
Gamba, A., 1961. Optimum performance of learning machines, in [V], P- 349

(letter) . D,o, Eo.

490 BIBLIOGRAPHY

!

Gardner,

M., 1952. Logic machines, Scientific American, 186(3) :68.

Go;

13,
31, 35.—, 1958. Logic Machines and Diagrams, New York: McGraw-Hill.

G.;

13, 31, 35.

Gelernter, ft,

and Rochester, N., 1958. Intelligent behavior in problem-solving
machines, IBM Journal of Research and Development, 2(4):336-345. Gt
(Geometry),

G.»,

Fo,

ft,

L; 14, 33, 36 (Minsky, 1956).
, 1959a. A note on syntactic symmetry and the manipulation of formal

systems by machine, Information and

Control,

April, 2:80-89.

Gi, Go,

Hi,
Gt (Geometry); 21, 36.— , 19596. Realization of a geometry theorem-proving machine, in [R],
pp. 273-282. Gt (Geometry),

G,o,

Fo, J.; 14, 15, 34, 36 (Minsky, 1956).

—, Hansen, J. R., and Loveland,D. W., 1960a. Empirical explorationof
the geometry theorem machine, in [V], pp. 143-147. G7 (Geometry),

G.o,

Fo, L; 14, 34, 36.
and

Gerberich,

C. L., 19606. A FORTRAN-compiled list-
processing language, Journal of the Association for Computing Machinery
(ACM), April, 7:87-101. ft (FLPL),

ft;

14, 15, 34 (Newell, 19576;
McCarthy, 1960;

Green,

19616).
George, F.

ft,

1956. Logical networks and behavior, Bulletin of Mathematical
Biophysics, 18:337. A., 80, Fo.

, 1957. Logical networks and probability, Bulletin of Mathematical
Biophysics, 19:187. Eo, Eo, No, P..—, 1959a. Automation,Cybernetics, and Society, New York: Philosophical
Library. Ni, No; 35.—, 19596. Inductive machines and the problem of learning, Cybernetica,
2:109-126. I, E.

Gerard,

R. W., 1946. The biological basis of imagination, Scientific Monthly,
June, 62:477. L,.

Ghiselin,

K. (cd.), 1952. The Creative Process, Berkeley, Calif.: University of
California Press. G.,

Go,

22.

Gibson,

E. J., 1940. A systematic application of the concepts of generalization
and differentiation to verbal learning, Psychological Review, 47:196-229.
E*.

Gibson,

J. J., 1929. The reproduction of visually perceived

forms,

Journal of
ExperimentalPsychology, 12:1-39. Do,

ft,

M

3;

16, 22, 34.
, 1950. The Perception of the Visual World, Boston: Houghton Mifflin.

D.; 35.

Gill,

A., 1959. Minimum-scan pattern recognition, IRE Transactions on In-
formation Theory, June, IT-5(1) :52-58. D..; 21.

, 1960. Analysis of nets by numerical methods, Journal of the Associa-
tionfor Computing Machinery (ACM), July, 7(2) :251-254. Ao; 21.

Gilmore,

P.

C,

1959. A program for the production of proofs for theorems
derivable within the first order predicate calculus from axioms, in [R], pp-
-265-273.

Gt, Go,G,

J,; 33a, 34.
-, 1960. A proof method for quantification theory: its justification and

491BIBLIOGRAPHY

realization, IBM Journal of Research and Development, January, 4(1):
28-35.

Gt, G», G,

J,; 21, 34, 38 (176).

Glantz,

H. T., 1960. On the recognition of information with a digital computer,
Journal of the Association for Computing Machinery (ACM), April, 4
(2): 178-188. Do, D„.

Glauberman,

M.

ft,

1959. Character recognition for business machines, Elec-
tronics, February, 29:132-136. Dio.

Godel,

X., 1931. Über formal unentscheidbare Satze der Principia Mathematica
und verwandter Systeme, I, Monatshefte fur Mathematica und Physics,
pp. 173-189. At.

Gold, 8., 1959. Machine recognition of hand-sent Morse code, IRE Trans-
actions on Information Theory, March, IT-5:17-24. Di, P=, Hi; 12, 13, 34
(Brynes, 1958; Selfridge, 1960).

Goldstein,

M.

ft,

1960. A statistical model for interpreting neuroelectric
responses, Information and

Control,

3:1-17. Ko.
Golomb, S., 1960. A mathematical theory of discrete classification, in [X]

D„;21, 35.
Good, I. J., 1958. How much science can you have at your finger-tips? IBM

Journal of Research and Development,

October,

2(4) :282-288. Mo, Jo, 80,
Eo, h.
—, 1959. Could a machine make probability judgments? Computers and
Automation, 8(1) : 14-16,(2) :24-26. Lo, A«, Po, B<, K4.
—, 1961a. Weight of evidence and false target probabilities, in [X]. L,
L, le.
—, 19616. A causal calculus, British Journalof Philosophy of

Science,

11,
12:305-318, 43-51. L.
—, 1962. The mind-body problem, or could an android feel pain? Theories
of the Mind, Urbana: Glencoe Free Press. Li, K=, Xi, Ki.

Goodman,

N., 1951. The Structure of Appearance, Cambridge,Mass.: Harvard.
I.; 24.

, 1954. Fact, Fiction and Forecast, Cambridge, Mass.: Harvard.

",

1958. The test of simplicity,

Science,

128:1064-1069. I«.

Goodwin,

G. L., 1958. Digitalcomputers tap out designs for large motors . . .

fast,

Power, April. 12, 15.
, 1959. Machine recognition of hand sent Morse code, IRE Trans-

actions on Information Theory.

Gorn, S.,

1957. Standardized programming methods and universal coding,
Journal of the Association for Computing Machinery (ACM), July, 4:
254. ft.
—, 1959. On the mechanical simulation of learning and habit-forming,
Information and

Control,

2(3) :226-259. Eo, Eo, 21, 36.
Grant, D. A., 1962. Testing the Null Hypothesis and the strategy and tactics of

investigating theoretical models, Psychological Review, 69:54.
Greanias, E.

C,

Hoppel, C. J.,

Cloomok,

M., and

Osborn,

J.

S.,

1957a. Design
of logic for recognition of printed characters by simulation, IBM Journal
of Research and Development, 1(1) :B—lB. D»; 12, 34.

and Hill, J. Y. M., 19576. Considerations in the design of charactel

492 BIBLIOGRAPHY

1

recognition devices, 7957 IRE National Convention Record, pt. 4 pp.
119-126. Dio.

Green,

B. F., 1957. The use of high-speed digital computers in studies on form
recognition, in Wolfeck, 1957. D.; 31, 32.—, 1959. Non-computationaluses of digital computers, Behavioral

Science,

4:164-167. Do, Eo,

ft;

31.—, 1961a. Baseball: an automatic question-answerer, in [Z]. Mi, Hi Ms,

ft, ft, ft;

12, 14 (IPL), 34.—, 19616. Computer languages for symbol manipulation, in [AF], pp.
3-8; reprinted in IRE Transactions on Elec. Computer, Oct. 10 (no. 4)
729-735.

ft,

ft (Newell, 19576, 1960c; Gelernter, 19606; McCarthy,
1960).

Greene, P.

ft,

1959a. Networks for pattern perception, Proceedings of the
NationalElectronics

Conference,

15. D,, 80., 19596. Problem-solving and learning machines, Behavioral

Science,

4:249-250. E, G.—, 1959c. An approach to computers that perceive, learn, and reason, in
[P], pp. 181-186. Fo, J,; 22, 24, 32, 36.

, 1960. A suggested model for information representation in a computer
that perceives, learns and reasons, in [V], pp. 151-164. Do, D„, D», Do, F.

Grimsdale, R. L., Sumner, F.

ft,

Tunis, C. J., and Kilburn, T., 1959a. A sys-
tem for the automatic recognition of patterns, Proceedings of the Institute
of Electrical Engineers, March, (B) 106(26) :215. D=, D,»; 12, 34., 19596. Automatic pattern recognition, Wireless World, November,
65:499-501. 38(199).

Gullahorn, J., and Gullahorn, J., 1962. Homunculus: A Simulation of Social
Interaction, Michigan State University, EastLansing, Mich. Nt.Gutenmacher, L. 1., 1959. The information machine problem, Izvestiia, Apr. 1.

Gyr, J. W., 1960. An investigation into, and speculations about, the formal
nature of a problem-solving process, Behavioral

Science,

January 5(1):
39-59. E, F,

G,

I, J.
Hadamard, J., 1945. The Psychology of Invention in the Mathematical Field,

Princeton, N.J.: Princeton University Press. G4 , Jo.
Hagelbarger, D. W., 1955.

SEER,

a sequence extrapolationrobot, IRE Trans-
actions on Electronic Computers, March, EC-5(l):l-7. Po, L; 13 (Kirsch,
1954; Shannon, 1955).

Hake, H. W., and Hyman, R., 1953. Perception of the statistical structure of a
random series of binary symbols, Journal of Experimental Psychology,
45:64. 1,, D„.

Haldane, J. B.

S.,

1952. The mechanical chess player, British Journal of Phil-
osophy of

Science,

3:189. Po.
Halle, M., and Stevens, X., 1962. Speech recognition: A model and a program

for research, in [AA], pp. 155-159.
Haller, N., 1959. Line Tracing for Character Recognition, MSEE thesis, Mas-

sachusetts Institute of Technology, Cambridge, Mass. Do, D.o.Harmon, L. D., 1959. Artificial neuron,

Science,

Apr. 10, 129:962-963 80,
80, Ko, D,; 13, 34, 23.

BIBLIOGRAPHY 493

-, 1960a. A line-drawingrecognizer, in [V], pp. 351-364. Dn,

Di*;

13.
", 19606. Line-drawing pattern recognizer, Electronics, Sept. 2, pp.

39-43.
■, 1961a. Neural analogs, Proceedings of the IRE, 49(8) : 1316-1317.
-, Levinson, J., and van Bergeijk, W. A., 1962a. Analog modelsof neural

mechanisms, in [AA], pp. 107-112. 80, 80, D«, Dt, Ko, Bib.—, 19626. Studies with artificial neurons, I: Properties and functions of
an artificial neuron,Kybernetik, in press. 80.

Harris, Z.

S.,

1951. Methods in Structural Linguistics, Chicago: University
of Chicago Press,

ft, ft,

Do.—, 1960. Project summary, in Current Research and Development in
Scientific Documentation, No. 6, National Science Foundation, May, pp.
52-53. ft.

Hartline, H. X., 1938. The response of single optic nerve fibers of the verte-
brate eye to illumination of the retina, American Journal of Physiology,
121:400-415. Ko.

Hartmanis, J., 1961. Task simplification and learning devices, in [X]. F4 .
Hartree, D. R., 1949. Calculating Instruments and Machines, Urbana, 111.:

University of Illinois Press.
Hawkins, J. X., 1961. Self-organizing systems—a review and commentary, in

[V], pp. 31-48. Be, Bi, Dio, Do; 31, 32, 35.
Hayek, F. A., 1952. The Sensory

Order,

Chicago: University of Chicago Press.
L,, Li, L, Do, Eo; 24, 22, 36.

Heasly, C.

G,

Jr., 1959. Some communications aspects of character-sensing
systems, in [P], pp. 176-180. Dm, Dn, ft.

Hebb, D. 0., 1949. The Organization of Behavior, New York: Wiley. B<, 80,
Do, Eo, Do,

G«,

X,, Ko, Ko; 11, 22, 23, 36, 31 (Milner, 1957; Rochester,
1956; Allport, 1955).—, 1958. Textbook of Psychology, Philadelphia: Saunders. Di, Do, Ei, Eo,

E»,

Gi,

X,, Ko, Mo.—, 1961. Distinctive features of learning in the higher animal, in [AG].
E., Eo.

Heidbreder, E., 1924. An experimental study of thinking, Archives of Psychol-
ogy, 11(13) :5-115. Gi.

Helgeson, W. 8., and Kwo, T. T., 1956. Letter to the Editor, Management

Science,

3.
Heymann,

ft,

Jr., 1959. The USSR in the technological race, RAND Corpo-
ration Paper P-1754, Santa Monica, Calif.

Highleyman, W. X., and Kamentsky, L. A., 1959a. Pattern recognition (per-
ception) machine, Behavioral

Science,

4:248. Dk>; 13, 34.
— and , 19596. A generalized scanner for pattern and character
recognition studies, in [P], pp. 291-294. Dio; 13, 15, 34.— and , 1960. Comments on a character recognition method of
Bledsoe and Browning, IRE Transactions on Electronic Computers, June,
BC-9:163. D,o, Do; 12, 34.

1961a. Further comments on the N-tuple pattern recognition method,

494 BIBLIOGRAPHY

IRE Transactions on Electronic Computers, March, EC-10(1):97. Do, D«
(Bledsoe, 1959; Highleyman, 1960).—, 19616. Linear Decision Functions with Application to Pattern Recog-
nition, unpublished doctoral dissertation, Brooklyn Polytechnic Institute.
Do, P2

;

12, 15, 21, 34; GG.—, 1962. The design and analysis of pattern recognition experiments, Bell
System Technical Journal, March, 41(2) :723-744. Do, D,«. (Discusses
Bledsoe, 1959; Bomba, 1959; Doyle, 1960; Frischkopf, 1960; Marill,
1960; Sebestyen, 1961, and others.)

Hilgard, E. R., 1956. Theories of Learning, New York: Appleton-Century-
Crofts. E. E2;31, 32,35.

Hiller, L. A., Jr., and Isaacson, L. M., 1959a. Experimental Music, New York:
McGraw-Hill. Pc, L,

ft;

12, 34, 36.—, 19596. Computer music, Scientific American, December, 201:109-
-120. Po.

Hohn, F. E.,

Seshu,S.,

and Aufenkamp, D. D., 1957. The theory of nets, IRE
Transactions on Electronic Computers, September, EC-3(3) : 154-161.
A,; 21, 32.

Holland, J.

ft,

1958. Cycles and automaton behavior, notes from course, Ad-
vanced Theory of the Logical Design of Digital Computers, Summer Ses-
sion, University of Michigan, Ann Arbor. Ao, Be.—, 1959. Survey of Automata Theory, Report 2900-52-R, 1959, Willow
Run Laboratories, University of Michigan, Ypsilanti. At, A., 80, Ao, J.; 21,
32, 35, 36.—, 1960. Iterative circuit computers, in [V], pp. 259-266. 80, A=,

ft;

21,
36.
—, 1962. Outline for a logical theory of adaptive systems. Journal of the
Association for Computing Machinery (ACM), July, (3):297-314. P<>
Ao, 82,

C, Co,Co,

E.
Homans, G. C, 1961. Social Behavior: Its Elementary Forms, New York

Harcourt, Brace & World. Ni.
Householder, A.

S.,

1943. A theory of the induced size effect, Bulletin of
Mathematical Biophysics, 5:155. Do, K.— and Landahl, H. D., 1945. Mathematical Biophysics of the Central
Nervous System, Bloomington, Ind.: Principia Press. 80, D, E,, A.; 21, 31.
32, 36 (Rashevsky, 1940).

Hovland, C. 1., 1952. A "communication analysis" of concept learning, Psy-
chologicalReview, November, 59:461-472.

Go,

d,

ft;

22.— and Hunt, E. 8., 1960. The computer simulation of concept attain-
ment, Behavioral

Science,

5:265-267. F4.— and , 1961. Programming a model of human concept forma-
tion, in [Z], pp. 145-155. F4.

Howland, 8., Minsky, M. L., and Selfridge, O.

G.,

1959. Hill-climbing: Some
Remarks on Multiple Simultaneous Optimization, Group Report 54-15,
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,
Mass.

G,

G,

G;

12, 13, 21, 34, 36.

495BIBLIOGRAPHY

Hu, M. X., 1962. Visual pattern recognition by moment invariants, in [AA],
pp. 179-187. Dio.

Hubel, D.

ft,

and Wiesel, T. N., 1959. Receptive fields of single neurons in the
cat's striate cortex, Journal of Physiology, 148:574-591. Ko, Di., Dv, D»;
23,34,36 (Lettvin, 1959).
— and , 1962. Receptive

fields,

binocular interaction and func-
tional architecture in the cat's visual cortex, Journal of Physiology,
160:106-154.Ko, D„, D,o, D»; 23, 34, 36.

Hugh-Jones, E. M., 1956. Automation today, in Automation in Theory and
Practice, Oxford. No.

Hughes, G. W., and Halle, M., 1959. On the recognition of speechby machine,
in [R], pp. 252-256. D», Dt, Di., D

3;

12, 34, 36.
Hull, C. L., 1935. The influence of caffeine and other factors on certain

phenomenaof rote learning, Journal of General Psychology, 13:249-273.
Ei.—, Hovland, C. 1., Ross, R. T., Hall, M., Perkins, D. T., and Fitch,
F. 8., 1940. Mathematico-Deductive Theory of Rote Learning, New
Haven, Conn. : Yale University Press.

", 1943. Principles of Behavior, New York: Appleton-Century-Crofts. E.
-, 1952. A Behavioral System, New Haven, Conn.: Yale University

Press. E.
Humphrey,

G.,

1951. Thinking, New York: Wiley, h,

G,;

22, 36.
Hunt, E. 8., 1960a. An Experimental Analysis and Computer Simulation of

the Role of Memory in Concept Learning, unpublished Ph.D. dissertation,
Yale University. L.— and Hovland, C. 1., 19606. Orders of consideration of different types
of concepts, Journalof ExperimentalPsychology, 59:220-225. L.—, 1962. Concept Formation: An Information Processing Problem, New
York: Wiley.

Jackson, J. R., 1956. A computing procedure for a line balancing problem,
Management

Science,

April, 2(3) :261-271. Po.
Jackson, R. F., 1960. "A Bridge-playing Program," presented at the National

Conference of the Association for Computing Machinery, Paper 89; ab-
stract appeared in Communications of the

ACM,

July, 398; full paper
never published. Po (Bridge).

Jackson, W. (cd.), 1950. Proceedings of a Symposium on Information Theory,
London: Ministry of Supply. (This seems to be known as the Ist London
Symposium on Information Theory. Our references [X], [I], and [X] are
apparently continuations of a sequence, although the title of [X] is some-
what inconsistent with this.) Hi.

Jacobson,

ft,

1958. On models of reproduction, American

Scientist,

Septem-
ber, 46(3) :255-284. P4.—, 1959. The informational content of mechanisms and circuits, Infor-
mation and

Control,

September, 2(B) :285-296. ft.
Jakowatz, C. V., Shuey, R. L., and White, G. M., 1960. Adaptive waveform

recognition, in [X]. Ni, E«, D. L; 12, 13, 34.

496 BIBLIOGRAPHY

Jefferson, G., 1949. The mind of mechanical man, Lister Oration for 1949,
British Medical Journal, 1:1105-1121.

John, E. R„ and Miller, J.

G.,

1957. The acquisition and applicationof infor-
mation in the problem-solving process, Behavioral

Science, October,

2(4):291-300.

G.;

22 [Gyr, 1960].
Johnson, D. M., 1955. The Psychology of Thoughtand Judgement, New York:

Harper & Row.

Gi,

J2

;

22.
Joseph, R. D., 1960. Contributions to Perception Theory, Cornell Aeronautical

Laboratory Report VG-1

196-G-7,

June 15. Pio, E».
Julesz, 8., 1960a. Binocular depth perception and pattern recognition, in [X],

pp. 212-224. De; 12, 16,34.—, 19606. Binocular depth perception of computer-generated patterns,
Bell System Technical Journal, September, 39:1125-1161. Do.—, 1962a. Visual pattern discrimination, in [AA], pp. 84-91. Do, Dv; 12,
16, 21, 22, 34 (Toward the Automation of Binary Depth Perception).— and Miller, J. E., 19626. Automatic stereoscopic presentation of func-
tions of two variables,Bell System Technical Journal, March, 40(2):663-
-676.

Kac, M., 1962. A note on learning signal detection, in [AA], pp. 126-128.
E4, Et.

Kahrimanian, H.

G.,

1953. Analytic Differentiation by a Digital Computer,
unpublished M.A. thesis, Temple University, Philadelphia, Pa.

ft;

12, 34.
Kailath, T., 1961. Optimum receivers for randomly varying channels, in [X].

G,

E4

;

21.
Kalin, T. A., 1960. Some Metric Considerations in Pattern Recognition, Re-

search Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge,Mass. D,, Dl2, Do, Ko; 21, 36.

Kamentsky, L. A., 1959. Pattern and character recognition systems—picture
processing by nets of neuron-like elements, in [P], pp. 304-309. B«, Di»!
12, 34.

Kassler, M., 1961. The decision of Arnold Schoenberg's twelve-note system
and related systems, Library of Congress Catalog Card No. 61-18855.
P«; 21, 11, 32.

Katona,

G.,

1940. Organizing and Memorizing, New York: Columbia.

Gt, Go,

Mo; 16, 34, 36.

Kattsoff,

L. 0., 1954. Brains, thinking, and machines, Methodos, 6(24) :279. L-
Kazmierczak,

ft,

1959. The potential field as an aid to character recognition,
in [R], pp. 244-247. D„, D.»; 13, 34.

Kehl, W. 8., Horty, J. F., Bacon, C. R. T., and Mitchell, D.

S.,

1961. An in-
formation retrieval language for legal studies, Communications of the
Association for Computing Machinery,4(9) :380-389. M,.

Keller, H. 8., 1961. Finite automata, pattern recognition and perceptrons-
Journal of the Association for Computing Machinery, January, 8(1) :1~
20. A,, 8,, 80, D,o, Eo (Rosenblatt, 1958a).

Kelly, J. L., and Selfridge, O.

G.,

1962. Sophistication in computers: A dis-
agreement, in [AA], pp. 78-80.

497BIBLIOGRAPHY

Kemeny, J.

G.,

1953. The use of simplicity in induction, PhilosophicalReview,
62:391-408. 1,.—, 1955a. Man viewed as a machine, Scientific American, April, 192:58-
-67. 36; L, N, P4.—, 19556. Fair bets and inductive probabilities, Journal of Symbolic
Logic, 20:263-273. L.—, 1955c. Two measures of complexity, Journal of Philosophy, Novem-
ber, 52:722-733. L.

Kilburn, T., Grimsdale, R. L., and Summer, F.

ft,

1959. Experiments in ma-
chine learning and thinking, in [R].

G»,

G, G, Eo, E«; 12, 34 (Friedberg,
1958).

Kirsch, R. A., 1954. Experiments with a Computer Learning Routine, Bureau
of Standards Computer Seminar Notes: July; see NBS publication Com-
puter Development (SEAC and DYSEAC) at the National Bureau of
Standards, 1955. Eo, P. (Penny Matching); 12, 34 (Hagelbarger, 1955).

■

,

Cahn,

L., Ray, L.

G,

and Urban, G.

ft,

1957. Experiments with
processing pictorial information with a digital computer, Proceedings of the
Eastern Joint Computer Conference (EJCC), pp. 221-229. D., D», D»; 12,
13, 34, 36.

Kister, J., Stein, P., Ulam,

S.,

Walden, W., and Wells, M., 1957. Experiments
in chess, Journal of the Association for Computing Machinery (ACM),
April, 4(2):174~177. Po, Go (Chess), J,; 12, 34 (X,

Stein,

1957).
Klaus,

G.,

1961. Relationship of causality and teleology from the cybernetics
viewpoint, German (East) Journal of Philosophy, 8(10) 1960; Joint
Publications Research Service Report 8374, 1961, U.S. Department of
Commerce, Washington, D.C. Nj.

Kleene, S.

C,

1935. General recursive functions of natural numbers, American
Journal of Mathematics, 57:153-157, 219-244. At.—, 1952. Introduction to Metamathematics, Princeton, N.J.: Van
Nostrand. A

4,

A,,

ft,

G

7;

21, 32, 35., 1956. Representation of events in nerve nets and finite automata, in
[G], pp. 3-41. A,, A., 80,

ft;

21, 36 (McCulloch, 1943; Copi, 1958).
Klein,

S.,

and Simmons, R. F., 1963. A computational approach to gram-
matical coding of English words, Journal of the

ACM,

10:334-347.
Kochen, M., Levy, M. J., Jr., 1956. The logical nature of an action scheme.

Behavioral

Science,

October, 1(4): 265-289. G4, F, E, F., N«; 22.—, 1957. Group behavior of robots, Computers and Automation, 6(3):
16-21, 48.—, 1958a. The acquisition and utilization of information in problem
solving and thinking. Information and

Control,

1(3) :267-288. Eo, L, h,
Po, Mo,

G»;

11,22,34, 16,36,21.—, 19586. Organized systems with discrete information

transfer,

General
Systems Yearbook, 2:30-47.
—, 1959. Extension of Moore-Shannon model for relay circuits, IBM
Journal of Research andDevelopment,3(2) : 169-186. 80.—, 1961a. Experimental study of 'hypothesis formation' by computer, in
[X]. h, Jo, L, G,

G,

D., D«; 21, 32.

498

BIBLIOGRAPHY

—, 19616. An experimental program for the selection of "disjunctive
hypotheses," in [Z], pp. 571-578.

Koffka,

X., 1935. Principles of Gestalt Psychology, New York: Harcourt,
Brace & World. D., D«, E,, Fo,

Gi, ft;

22, 35.
Kohler, W., 1929. Gestalt Psychology, New York: Liveright. Di, Do, E., Fo,

G<,ft;

22, 35, 36.
—, 1951. Relational determination in perception, in [C], pp. 200-243.
De, X,.

i,

Kolman, E., 1960. Cybernetics, Joint Publications Research Service Report
5002, U.S. Department of

Commerce,

Washington, D.C. N.
Koppel,

ft,

1952. Digital computer plays NIM, Electronics, November, 25:
155. Po (NIM); 12.

Krieger, F. J., 1959. Future Science and Technology of the

USSR,

RAND
Corporation Paper P-1647, Santa Monica, Calif.

Kubie, L.

S.,

1930. Theoretical application to some neurological problems of
properties of excitation waves which move in closed circuits, Brain, July,
53:166. Ko, Ms, N4

;

22, 21, 36.
—, 1941. Repetitive core of neurosis, Psychoanalysis Quarterly, January,
10:77.Ko, Mo, N<; 22, 21, 36.

Kudielka, V., and Lucas, P., 1961. Lerneprogrammeam

"Mailufterl,"

in [AE],
pp. 125-143. 80, L, P (Willis, 1959;

Steinbuch,

1961; Uttley, 1959a,
19596).

Ladefoged, P., 1959. The perception of speech, in [N], pp. 397-415. Do, Di,
D»; 11, 22, 36, 32.

Laing, R., 1962. Book review, Computers and Common Sense by M. Taube, in
Behavioral

Science,

April, 7(2) :238-240. Lo.
Landahl, H. D.,

McCulloch,

W.

S.,

and Pitts, W., 1943. A statistical conse-
quence of the logical calculus of nervous nets, Bulletin of Mathematical
Biophysics, 5:135. 80, 80, Ao.—, 1962. Mathematical theory of the central nervous system (Rashevsky,
cd.), Mathematical Theories of Biological Phenomena, Annals of the New
York Academy of

Science,

March 2, 96(art. 4) : 1056-1070. 80, E,, Eo,
Eo, Eo, X., Ko, D» (Color).

Lashley, K.

S.,

1942. The problem of cerebral organization in behavior
(Cattell), Biological Symposia, 7:302. Ko.
— , 1951. The problem of serial order in behavior, in [C], pp. 112-146.
Ko, Es, Ho; 23, 36.

Laslett, P. (cd.), 1950. The Physical Basis of Mind, New York: Macmillan.Li-
de Latil, P., 1953. Introduction a la Cybernetique; le Pensee Artificielle, Paris,

France: Gallimard. N; 35.—, 1956. Thinking by Machine, Boston, Mass.: Houghton-Mifflin. Ni,
No, N.; 13, 12,31, 35 (Ashby, 1952a; Walter, 1951).

Lawrence, D.

ft,

and

Coles,

G. R., 1954. Accuracy of Recognition with alter-
natives before and after the stimulus, Journal of ExperimentalPsychology,
47:208-214. D», Mo.— and Laßerge, D. L., 1956. The relationship between recognition ac-

499BIBLIOGRAPHY

J

curacy and order of reporting stimulus dimensions, Journal of Experi-
mental Psychology, 51:12-18. De, Mo.

de Leeuw, X., Moore, E. F.,

Shannon,

C. E., and Shapiro, N., 1956. Com-
putability by probabilistic machine, in [G], pp. 183-212. Ao, At, Ai; 21.

Leimer, J. J., 1962. Design factors in the development of an optical character
recognition machine, in [AA], pp. 167-170. Dio.

Lenneberg, E. H., 1956. An Empirical Investigation into the Relation Between
Language and Cognition, unpublished thesis, Harvard University, Cam-
bridge, Mass. ft.

Lettvin, J. V., and Pitts, W., 1943. A mathematical theory of the affective psy-
choses, Bulletin of MathematicalBiophysics, 5: 139. N<.
—, Maturana,

ft, McCulloch,

W.

S.,

and Pitts, W., 1959. What the frog's
eye tells the frog's brain, Proceedings of the IRE, November, 47:1940-
-1951. Ko, Dn, Dio, D»; 23, 34, 36 (Hubel, 1962).

Levien, R. E., 1962. Studies in the Theory of Computational Algorithms; I.
Formalization Computability, Representation, and Analysis Problems,
RAND Corporation Report RM-3007; Ph.D. thesis, Applied Mathematics,
Harvard University, Cambridge, Mass. Ho.

Levinson, J., and Harmon, L. D., 1962. Studies with artificial neurons, III:
Mechanisms of

flicker-fusion,

Kybernetik, in press. 80.
Lewis, P. M., 11, 1962. The characteristic selection problem in recognition

systems, in [AA], pp. 171-179. D«.
Licklider, J. G R., 1960. Man-computer symbiosis. IRE Transactions on

Human Factors in Electronics, 1(1) :4-11. Po,

G<;

36.
Lindsay, R. X., 1960. The Reading Machine Problem, CIP Working Paper 33,

Graduate School of Industrial Administration, Carnegie Institute of Tech-
nology,Pittsburgh, Pa.

ft,

ft.—, 1961. Toward the Development of Machines Which Comprehend,
unpublished dissertation, Carnegie Institute of Technology,Pittsburgh, Pa.

ft, ft,

Mo.
— , 1962. Information processing theory, in Symposium on Information
Storage and Neural

Control,

10th Annual Meeting of the Houston Neuro-
logical Society (W. S. Fields and W. Abbot, eds.), to be published,

ft,

ft, M=.
—, 1962. A program for parsing sentences and making inferences about
kinship relations, Proceedings of Western Management Science Confer-
ence on Simulation (A. Hoggatt, cd.), to be published,

ft, ft,

Mo (Green,
1961a).

Linsky, L. (cd.), 1952. Semantics and the Philosophy of Language, Urbana:
Universityof Illinois Press,

ft,

G<.
Lionnais, F. L., 1957. Limitation de la Pensee Creatrice par les Machines,

Paris, France: Universite de Paris. Lo.
Lofgren, L., 1958. Automata of high capacity and methods of increasing their

reliability by redundancy, Information and

Control,

1:127; also in

IF], p. 493, 1956. 80, A, P4 .—, 1961. Kinematic and Tesselation Models of Self-repair, Technical

500 BIBLIOGRAPHY

Report 8, Contract Nonr 1834(21), Electrical Engineering Research
Laboratory, Engineering Experiment

Station,

University of Illinois, Ur-
bana, 111. P4 .—, 1962. Self-repair as the limit for automatic error correction, in [W],
pp. 181-228. 80, P..

Lovelace, (Countess) A. A., 1842. Translator's notes to an article on Bab-
bage's Analytical Engine, Scientific Memoirs, 3:691-731 (R. Taylor, cd.);
see also writings reprinted in appendix to Bowden, 1953.

Loveland, D. W., 1958. Heuristic Approximation, unpublished M.S. thesis,
Massachusetts Institute of Technology, Cambridge, Mass.

G,

Eo; 12, 34.
Luce, R. D., and Raiffa,

ft,

1957. Games and Decisions, New York: Wiley.
Pi, Po, Fo, Po, L, L; 35, 32, 21.

Luchins, A.

S.,

1942. Mechanization in problem-solving, PsychologicalMono-
graphs, 54(6) :248.

G«,Go, G»;

22, 34.
Luhn, H. P., 1957. A statistical approach to mechanized encoding and search-

ing of literary information, IBM Journal of Research and Development,
1(4):309-317. M

2;

12,34.—, 1958. The automatic creation of literature abstracts, IBM Journal of
Research andDevelopment,2(2) : 159. M,; 12, 34.—, 1959. Potentialities of Auto-encoding of Scientific Literature, IBM
Research Center, YorktownHeights, N.Y. M,.

Lyapunov, A. A., and

Sobolev,

S. L., 1958. Cybernetics and natural science,
Problems of Philosophy, No. 5, in OTS-6 1-11565.

(cd.), 1960. Problems of Cybernetics (translated by Nadler et al.,
from Russian edition of 1958), New York: Pergamon Press. N.

MacGowan, R. A., 1960. Letter to theEditor,

Science,

July22.
MacKay, D. M., 1949. On the combination of digital and analogical techniques

in the design of analytical engines, mimeographed;reprinted as an appen-
dix,pp. 53-65, in [N], 1959.

G,

A„,

ft,

K 4 , U, Fo; 36.— , 1950. Quantal aspects of scientific information, Philosophy Magazine,
41:289; also in Jackson, 1950.

ft,

Do.— , 1951. Mind-like behaviour in artifacts, British Journal of Philosophy
of

Science,

2:105-121. L, X,.—, 1952. Mentality in machines, Proceedings of the Aristotelian Society,
26, suppl. pp. 61-86; contains also Spilsbury, 1952, and Wisdom, 1952.
L, K4.

1953. Generators of

information,

in [X], pp. 475-485. ft.—, 1954a. Operational aspects of some fundamental concepts of human
communication, Syntheses (the Netherlands) 9:182-194. ft.—, 1954b. Comparing the brain with machines, American

Scientist,

April,
42:261-268. X«, L.
—, 1956a. Towards an information-flowmodel of human behavior, British
Journal of Philosophy, February, (1)47:30-43. 14,I4, Fi, Fo.—, 19566. The epistemological problem for automata, in [C], pp. 235-
-251. Fo, Di, Dn, 1., 14 ,

G,

80, I,; 13, 36.—, 1956c. The place of "meaning" in the theory of information, in [I],
pp. 215-225.

ft,

ft (MacKay, 1959, 1954a; [X]).

BIBLIOGRAPHY 501—, 1957. Brain and will, The Listener, May 9, 16; also in Faith and
Thought, 90:103-115 (1958).—, 1959a. Operationalaspects of intellect, in [N], pp. 39-54. 1,,

ft, Co,

Fo.—, 1960a. On the logical indeterminacy of a free choice, Mind, 63:31-40.
F2, Ls, Li.—, 19606. Theoretical models of space perception, in [AG]. De, X«, No
(MacKay, 1956a).—, 1961a. The informational analysis of questions and commands, in
[X].

ft, ft,

ft.—, 19616. Information and learning, in [AE], pp. 40-49. Co, E, Eo, F.,
Fo,

ft,

L (MacKay, 1956a, 19566, 1959a).
, 1961c. The visual effects of non-redundant stimulation, Nature, Nov.

25, 192:739-740. Do.
> 1962- The use of behavioural language to refer to mechanical proc-

esses, British Journalof Philosophyof

Science,

in press. Xi, Lo, Lo, U.
Malm, D., 1961. CONTRANS: Conceptual though random net simulation,

Proceedings of the Eastern Joint Computer Conference (EJCC), pp.
124-234; published as Computers: Key to Total Systems

Control, AFIPS,

20, New York: Macmillan.

Go,

Be, J; 33.
Mandelbrot, 8., 1953. An informal theory of the structure of language based

on theory of statistical matching of messages and coding, in [X].

ft, ft,

Ht.
Marill, T., and Green, D. M., 1960. Statistical recognition functions and

the design of pattern recognizers, IRE Transactions on Electronic Com-
puters, December, EC-9(4) :472-477. D», DM, D,o, Po, D,; 12, 21, 34.—, 1961a. Progress in artificial intelligence, editorial in [AF], p. 2. 36.—, 19616. Automatic recognition of speech, in [AF], pp. 34-38. Di,
D,,D„; 31, 32,35.

Marimont, R. 8., 1959. A new method of checking the consistency of prece-
dence matrices, Journal of the Association for Computing Machinery
(ACM), April, 6(2): 164-171. G.,.

Marshall, W.

ft,

and Talbot, S. A., 1942. Recent evidence for neural mech-
anisms in vision, in Visual Mechanisms (H. Kluver, cd.), Tempe, Ariz.:
Cattell. D«, Ko; 23.

Martens, H.

ft,

1959. Two notes on machine "learning," Information and
Control, December, 2(4) :364-379.

C,

E.o, L, J,, Po.
Marzocco, F. N., and Bartram, P. R., 1962. Statistical learning models for

behavior of an artificial organism, in Biological Prototypes and Syn-
thetic Systems, vol. 1, New York: Plenum.

Mathews, M. V., 1961. An acoustic compiler for music and psychological
stimuli, Bell System Technical Journal, May, 40:677-694.

ft,

P«; 14.
Mattson, R. L., 1959. A self-organizing logical system, in [Q], pp. 212-217.

D.o, Do, D„, Dio, Eo, E.; 12, 34.
Mays, W., 1952. Mindlike behavior in artefacts and the concept of mind,

British Journalof Philosophyof

Science,

3:191. Li.
-, 1956. Cybernetic models and thought processes, in [F], p. 103. N.

502 BIBLIOGRAPHY

I

McCallum, D., and Smith, J. 8., 1951. Mechanized reasoning, Electronic
Engineering, 23:126-133; see alsop. 458. Mo, Go.

McCarthy, J., 1956. The inversion of functions defined by Turing machines,
in [G], pp. 177-181. Jo,

G, Co,

1., A,; 11, 21, 36.—, 1959. Programs with common sense, in [N], pp. 75-84. Ji, Mo,

Go,Go,ft, G»;

33.—, 1960. Recursive functions of symbolic expressions, in [T], pp. 184-
-195. ft (LISP), A, A,

ft;

15, 36.
— , 1961. A basis for a mathematical theory of computation, in [Z].
A»,

Gt;

38 (282).

McCulloch,

W.

S.,

and Pitts, W., 1943. A logical calculus of the ideas im-
manent in nervous activity, Bulletin of Mathematical Biophysics, 5:115-
-137. Ao, Ai, Be, Li; 21.
—, 1945. A heterarchy of values determined by the topology of nervous
nets, Bulletin of MathematicalBiophysics, 7:89-93. B», L; 21.—, 1949a. The brain as a computing machine, Electrical Engineering,
June; 68(6) :492. K 4

;

35.
— and

Pfeiffer,

J., 19496. Digital computers called brains, Scientific
Monthly, 69:368-376. Xi, L; 35.—, 1950. Machines that know and want, in Brain and Behavior, a
Symposium (Halstead, cd.); Comparative Psychology Monographs 20
(No. 1), Berkeley, Calif.: University of California Press.—, 1951a. Dans l'Antre dv Metaphysicien, Thales, 7:37-49, Paris:
Presses Universite de France.—, 19516. Why the mind is in the head, in [C], pp. 42-74. Xi, 80, L,
Dr., L; 36.

", 1952. Finality and Form, Springfield, 111.: Charles C Thomas, ft.
-, 1953. The Past of a Delusion, Chicago: Chicago Literary Club. Ni.
-, 1954. Through the den of the metaphysician, British Journal of

Philosophy of

Science,

5:18-31. Li, Mo, Lo, Lo; 36. Less complete version
of 1951a.—, 1955a. Mysterium iniquitatis of sinful men aspiring into the place of

God,

Scientific Monthly, January, 80:35-39.L, K4.—, 19556. Symposium: The design of machines to simulate the be-
haviorof the human brain, in [J].—, 1955c. Towards some circuitry of ethical robots, Acta Biotheoretica,
11:147.P», Lo, J,, Go.—, 1957a. Biological computers, IRE Transactions on Electronic Com-
puters, September, EC-6(3) : 190-192.K 4 , L.—, 19576. The stability of biologicalsystems, in HomeostaticMechanisms:
Brookhaven Symposia in Biology, 10:207-215. 80, B«, Ao.—, 1959a. Agathe Tyche—of nervous nets—the lucky reckoners, in
[N], pp. 613-625. 80, 80, A; 21, 37 (19576).—, 19596. Where Is Fancy Bred? Bicentennial Conference on Experi-
mental Psychiatry, University of Pittsburgh. 36.—, 1960. The reliability of biological systems, in [U], pp. 264-281. B«,
8., A., X.; 21, 37 (1959a).

BIBLIOGRAPHY 503
McLachlan, D., Jr., 1958. Description mechanics, Information and

Control,

1(3) :240-266. D

4,

D„, E,, D»; 11.
McNaughton, R., 1961. The theory of automata, a survey, Advances in Com-

puters, 2:379-421. A,, Ao, Ao, A

4,

Ao, A., A,, A».
McPhee, W. N., 1961. Note on a campaign simulator, Ph6//c Opinion Quar-

terly, Summer, 25:184-193.
Mehl, L., 1959. Automation in the legal world, in [N], 2:755. No.
Merriman, J., Wass, D. W. G., and

Gill, S.,

1959. To what extent can adminis-
tration be mechanized? in [N], 2:809. No.

Meszar, J., 1953. Switching systems as mechanized brains, Bell Telephone
Laboratories Record, February. Lo ("Machines can't think").

Michie, D., 1961. Trial and error, Penguin Science Library, no. 2, pp.
129-145. Po.

Miller, G. A., 1951. Language and Communication, New York: McGraw-
Hill, ft,

ft, ft;

22, 21, 35.— and Selfridge, J. A., 1956a. Verbal context and the recall of meaning-
ful material, American Journal of Psychology, 63:176. Mo, ft.—, 19566. The magical number seven, Psychological Review, 63:81.
Do, Mo, Ht,

G4;

34, 36.—, 1956c. Information and memory, Scientific American, 195(2) :42-46.
Mo,

ft;

36.—, 1956a". Human memory and the storage of information, IRE Trans-
actions on Information Theory, IT-2(3) : 129-137.— and Chomsky, A. N., 1957a. Pattern Conception, Report AFCRC-
TN-57-57, ASTIA Document AD-1 10076, Cambridge Research Center.
L, L, D, Gi.—, 19576. A note on the remarkable memory of man, IRE Transactions
on Electronic Computers, September, EC-6:194-195. Mo.—, 1958. Speech and communication, Journal of the Acoustical Society of
America, 30(5) :397-398. D,; 36.—, Galanter, E., and Pribram, X., 1960. Plans and the Structure of Be-
havior, New York: Holt. F», J=, J,, Di4,

Go,

Eo, Mo, M>,

G.,

X,; 36, 31, 32.—, 1962. Decision units in the perception of speech, in [AA], pp. 81-83.
Do, D„.

Miller, L., Minker, J., Reed., W.

G.,

and Shind'le, W. E., 1960. A multilevel
file structure for information processing, Proceedings of the Western
Joint Computer Conference (WJCC) , 17:53-59. ft.

Milligan, M., 1959. Machines are smarter than I am! Data Processing Digest,
October. Ki.

Milner, P. M., 1957. The cell-assembly: Mark 11, Psychological Review, 64:
242. Ko, Ko, 8,, 80, 8., E., Eo; 23, 22 (Hebb, 1949).—, 1960. Learning in neural systems, in [U]. Ko, Ko, 84, Be, E», Fo; 11, 23,
22, 34.—, 1961a. A neural mechanism for the immediate recall of sequences,
Kybernetik, 1:76-81. 84,B4, Be, Ko, No.

19616. The application of physiology to learning theory, Symposium,

504 BIBLIOGRAPHY

Current Trends in Psychological Theory, Pittsburgh: University of
Pittsburgh Press. Ko, K».

Minot, O. N., 1959. Automatic Devices for Recognition of Visible Two-dimen-
sional Patterns: A Survey of the Field, Report TM-364, June 25, U.S.
Navy Electronics Laboratory, San Diego, Calif. Dn, D», Dm, D», D

4;

31,
32, 36, 13, 15.
—, 1960. Counting and Outlining of "Two-dimensional" Patterns by
Digital Computer, Technical Memorandum TM-414, Aug. 4, U.S. Navy
Electronics Laboratory,San Diego, Calif. Dl2.

Minsky, M. L., 1954a. Neural Nets and the Brain ModelProblem, unpublished
Ph.D. dissertation, Princeton University; availablefrom University Micro-
films, Ann Arbor, Mich. Ao, Be, Eo, B* (SNARC), 80, Ao, Fo, F>,

Go,

X,,
Ko, Ko; (13,34) 33,36.—, 19546. Discrete Selection Processes, Report 1954-494-03-21, Navy
Contract Nonr-494(03), Tufts College,

Medford,

Mass.

C, Co,G, G,

Pt.
-, 1956a. Some universal elements for finite automata, in [G]. A2, 80.— , 19566. Heuristic Aspects of the Artificial Intelligence Problem,

Group Report 34-55, ASTIA Document AD 236885 (MIT Hayden
Library No. H-58) , Lincoln Laboratories, Massachusetts Institute of Tech-
nology, Lexington, Mass.

Gi, G», Gt, Go,

Fi, Fo, Fo, F4, Fo, Ji, D

4,

Dn,
li, L, 80, 80,

Co,

Ei, Eo.—, 1956c. Notes on the GeometryProblem, I and 11, Artificial Intelligence
Project, Dartmouth College, Hanover, Vt, August, mimeographed. Fo,

Gi, Gt,

Ji.—, 1957. Learning systems and artificial intelligence, in Applications of
Logic to Advanced Digital Computer Programming, Ann Arbor, Mich.:
University of Michigan Press.—, 1959a. Some methods of heuristic programming and artificial intel-
ligence, in [N], pp. 3-36. Lo,

G>,

D,, Do,

G.o, G»,

Fo, F4, Fo,

Gt,

D,., 1., h,
Bi; 37 (19566).—, 19596. Physicial Machines and Their Abstract Counterparts, Group
Report 54-4, March, Lincoln Laboratories, Massachusetts Institute of
Technology,Lexington, Mass. Ai, Ao, Be; 35.— and Selfridge, O.

G.,

1960. Learning in random nets, in [X]; ASTIA
Document AD-238220. D,o, D«, Dn,

Co,G, G, G,

8,, Eo, E,, Ko.—, 1961a. Steps toward artificial intelligence, in [V], pp. 8-30.

C,

Di, E,
F,

G,

L, Ji, L; 36, 25, 32, 31. Some of the descriptor terminology of this
bibliographycomes from this paper.—, 19616. Descriptive languagesand problem solving, in [Z], pp. 215-218.
Do, Ec, F, Fo, Fo,

Go,

Ho, J., M,, Mo.
—, 1961c. A selected descriptor-indexedbibliography to the literature on
artificial intelligence, in [AF]. The present bibliography is a revised ver-
sion of this reference.
—, 1961d. Recursive unsolvability of Post's problem of "Tag," Annals of
Mathematics. A

4,

At (Post, 1943;Rabin, 1959;Wang, 1957).—, 1962. Problems of formulation in the artificial intelligence area,
Proceedings of a Symposium on Mathematical Problems in Biology,

505BIBLIOGRAPHY

American Mathematical Society. Ao, Be, G, Dm, Eo,

Gi, Gt,

L, L, I», I», Ji.
Mitchell, J., 1957. A Computational Procedure for Balancing Zoned Assembly

Lines, Research Report 6-9480 1-1-R3, Westinghouse Research Labora-
tories, Pittsburgh, Pa. Po.

Moiseyev, X., 1960. Man and the "Thinking" Machine, Joint Publications Re-
search Service Report 2200-N, U.S. Department of

Commerce,

Wash-
ington, D.C. L

2,

N.
Mooers, C. N., 1951a. Ciphering chemical formulas—the Zatopleg system,

Zator Technical Bulletin 59, Zator

Co.,

Cambridge, Mass. (Ray, 1957), Do.
—, 19516. ZATOCODING applied to mechanical organization of knowl-
edge, American Documentation, 2(1) :20. Mi.—, 1956a. ZATOCODING and developments in information retrieval,
Aslib Proceedings, 8(1) :3-22. M.,

ft,

ft.—, 19566. Informationretrieval on structured content, in [I], pp. 212-234.
M,, M

2, ft,

ft.—, 1959. Some mathematical fundamentals of the use of symbols in in-
formation retrieval, in [R], Ms, Mi, Ho.

Moore, E. F., 1956a. Gedanken-experiments on sequential machines, in [G],
pp. 129-156. A.
■— and

Shannon,

C. E., 19566. Reliable circuits using less reliable relays,
Journal of the Franklin Institute, 262:191-208, 281-297. 80, Ao, A.; 21.—, 1956c. Artificial living plants, Scientific American,

October,

195:118-
-122. P4 .—, 1959. On the shortest path through a maze, Proceedings of an Inter-
national Symposium on Switching Theory, in Annals of the Computation
Laboratory, Cambridge, Mass. : Harvard, vols. 29, 30. Pt.

Moore, O. X., and Anderson, S. 8., 1954a. Modern logic and tasks for experi-
ments on problem solving behavior, Journal of Psychology, 38:151-160.

G4,

Gs.— and , 19546. Search behavior in individual and group problem
solving, American SociologicalReview, 19(6) :702-714. G4.

Mowrer, O.

ft,

1954. The psychologist looks at language, American Psycholo-
gist, 9(10):660-694. ft.

Mullin, A. A., 1959. Some mathematical aspects of the analysis and synthesis
of biologicalcomputers, in [O], pp. 1-18. 80, At, A2, Ao.

Murray, A. E., 1959. A review of the perceptron program, Proceedings of the
National Electronics

Conference,

15. Dio, Eo.—, 1961. Perceptron applications in photo interpretation,Photogrammetric
Engineering, September, pp. 627-637. Dio, E».

Murray, F. J., 1955. Mechanisms and robots, Journal of the Association for
Computing Machinery (ACM) 2:61-82. Ai.

Nash, J. F., 1954. Parallel

Control,

Monograph RM-1361, ASTIA Document
AD-86392, RAND Corporation, Santa Monica, Calif. 80.

Neisser, U., 1959a. A Preliminary Study of Human Pattern-Recognition,
Group Report 34-75, Lincoln Laboratories, Massachusetts Institute of
Technology,Lexington, Mass. Dn, Do.

, 19596. Hierarchies in Pattern Recognition, Report

54-G-0009,

Lincoln

506 BIBLIOGRAPHY

Laboratories, Massachusetts Institute of Technology, Lexington, Mass.
D., D„; 16, 34.—, 1960. A Theory of Cognitive Processes, Group Report 54-19, Lincoln
Laboratories, Massachusetts Institute of Technology, Lexington, Mass.
D„, D«, L; 16, 34, 36.

yon

Neumann, J., and Morgenstern, 0., 1947. Theory of Games and Economic
Behavior, Princeton, N.J.: Princeton. Pi, Fo.—, 1951. The general and logical theory of automata, in [C], pp. 1-31;
also reprinted in [H], p. 2070, 1956. A., Ai, Ao, Ao, 80, P,, Ki.—, 1956. Probabilistic logics and the synthesis of reliable organisms from
unreliable components, in [G], pp. 43-98. 80, B», A, E8

;

21, 36.—, 1958. The Computer and the Brain, New Haven, Conn.: Yale Uni-
versity Press. K 4, 80, P4, ft.

Newell, A., 1955. The chess machine, in [E], pp. 101-108. J,, J2, Po (Chess),

G2,Go,ft, ft,

F, Ei, Eo; 33.
— and Simon, H. A., 1956a. The logic theory machine, IRE Transactions
on Information Theory, IT-2(3) :61-79. L, h,

G, G,, G»,

h,

ft, ft;

14
(IPL), 34, 36.— and , 19566. Problem-solving in Humans and Computers,
RAND CorporationPaper P-987, Santa Monica, Calif.—,

Shaw,

J.

C,

and

Simon,

H. A., 1957a. Empirical explorations of the
logic theory machine, Proceedings of the Western Joint Computer Con-
ference (WJCC), pp. 218-239.

G.,

G4 , Lo,

G», G,, G,

L, Jo, M,,

G;

12,
14, 34, 36.— and , 19576. Programming the logic theory machine, Proceed-

ings of the Western Joint Computer Conference (WJCC), pp. 230-240.

ft, ft, ft;

12, 14, 15.
and

Simon,

H. A., 1958a. Elements of a theory of human
problem-solving, Psychological Review, March, 65:151-166.

G«, G«, ft,

Mo,

ft,

Go, J>, Jo,

Go;

23, 36.

",

and ■, 19586. Chess-playing programs and the problem
of complexity, IBM Journal of Research and Development, 2(4):320-
-335.

Go,

G4, Po,

G, G, ft,

M2,

Go,

L, Jo,

Go;

23, 36 (P.; 31) (Turing, 1953;
Kister, 1957; Bernstein, 1958a; Samuel, 1960).

-, and 1958c. The Processes of Creative Thinking,
RAND Corporation Paper P-1320, Santa Monica, Calif.

Go, Gi, Go, C,

G, ft,

M, J,, J2, Go.— and

Simon,

H. A., 1958a". Heuristic problem-solving: The next ad-
vance in operations research, Journal of the Operations Research Society
of America, 6(1).—,

Shaw,

J. C, and Simon, H. A., 1959a. Report on a general problem-
solving program, in [R], pp. 256-264.

Gi,

do, G., Go, ft,

ft,

Ho,

Gt, G»,

L, Jo; 33, 36.

",

and -, 19596. A general problem-solvingprogram for a

",

computer, Computers and Automation, 8(7) : 10-16.

",

and 1959c. Report on the Play of Chess Player 1-5
of a Book Game of Morphy vs. Duke Karl of Brunswick and Count

BIBLIOGRAPHY 507
Isouard, CIP Working Paper 21, Graduate School of Industrial Adminis-tration, Cargenie Institute of Technology. P, (Chess).—, Shaw, J. G, and Simon, H. A., 1960a. A variety of intelligent learning
in a general problem solver, in [U], pp. 153-189. D„,

Gi,

Gi, Go,

ft,

ftHo,

ft,

G„ GB ,

G.,

F,, Fo, G,o, Ec, L, J„ J2

;

34, 33.- ,19606. On programming a highly parallel machine to be an intelligenttechnician, in [V], pp. 267-282. J„ Jo, 80,

G, ft,

C (Holland, 1960).— and Tonge, F. M., 1960c. An introduction to information processinglanguage IPL-V, in [T], pp. 205-211.

ft, ft;

15, 35 (Shaw, 1959).and Simon, H. A., 1961a. GPS—a program that simulates humanproblem-solving, in [AE].— and , 19616. The simulation of human thought, in CurrentTrends in Psychological Theory, Pittsburgh, Pa.: The University ofPittsburgh Press, pp. 152-179.

G, Go,

G

t

,

G,, Gt,

Jo, Xi, L.
and , 1961c.

GPS,

a program that simulates human thought, inLernende Automaten (H. Billing, cd.), Munich: R. Oldenbourg

KG,

109-124.

G,

Go,

G,, G«,G,,

Jo, X,, L.
*T a"d, ' 1961- Computer simulation of human thinking,

Science,

Dec. 22, 134(3495):201 1-2017.

G,

Go, G„

G.,

G„ Jo,K„ L.
ed;;V 96le" lnf°rmation Processing Language V Manual, EnglewoodCliffs, N.J.; Prentice-Hall. ft.

and Simon, H. A., 1962a. Computer simulation of human thinking andproblem-solving, in [AD], pp. 94-133; reprinted in Computers and Auto-mationlo:lB-19ff. (April, 1961) and in Datamation, nos. 6, 7, 1961. E,to,

G,

G4 , Hi, J2.

■

, 19626. Some problems of basic organization in problem-solving pro-grams, in Self-organizing Systems— 1962 (M. Yovitts, G. T. Jacobi, andG. D. Goldstein, eds.), New York: Spartan.
Newman, E. A., 1958. Machines that try to think, Control, December, 1:294--295. N; 31.

, 1959. An analysis of non-mathematical data processing, in [N], pp.863-876. L, 10,

ft;

36.
Oettinger, A.

G.,

1952. Programming a digital computer to learn, PhilosophicalMagazine, 43:1243-1262; reprinted in Methodos, 11, 1959. An incom-plete version appeared in the Proceedingsof the Association for Computing
Machinery (ACM), September, 1952. Eo, E., B,; 12, 34, 36, 32.Ogden, C. X., 1933. Basic English: An Introduction with Rules and

Grammar,

4th cd., London: Kegan Paul, Trench, Trubner & Co.

ft,

ft.Orchard-Hays, W., 1961. The evolution of programming systems, in fY], pp.
283-295.

ft, ft;

31, 32, 35.
. iJ. PP

Osgood, C. E., Suci, G., and Tannenbaum, P., 1957. The Measurement ofMeaning, Urbana, 111.: University of Illinois Press, ft.Pahl, P. M., and Johnson, D. L., 1959. Pattern recognition in an electronicreader, Trend, July, 11:16-21. Du.
Papert, S., 1961. Some mathematical models of learning, in [XI. D

4,

Do Do EoE., Di,,

G;

21, 33.

508 BIBLIOGRAPHY

Pask, G., 1958. Organic control and the cybernetic method, Cybernetica,
1(3) : 155-173. N; 11,24,36.
—, 1959. Physical analogues to the growth of a concept, in [N], 2:877-
-928. L., Bi, E, No; 13, 24, 34.— and Yon Foerster,

ft,

1960a. A proposed evolutionarymodel, in [W].
Eo, Fo, P., Po, No, Ne; 16, 31, 35.—, 19606. The natural history of networks, in [U], pp. 232-263. L, B<,
E,

ft,

No; 13, 24, 34.
— and Yon Foerster,

ft,

1960c. A predictive model for self-organizing
systems, Cybernetica, 3(4):258-300 (1960), 4(l):20-55 (1961). Eo, Et,

G,

L, N, P,, Po; 21, 24, 33, 36.
—, 1961. An Approach to Cybernetics, London: Hutchinson; also New
York: Harper & Row (1962). E, F,

G,

X,L, N.
—, 1962. The simulation of learning and decision-making behavior, in
[AG], No.

Paycha, F., 1959. Medical diagnosis and cybernetics, in [N], pp. 635-659.
Mi, Mo.

Peirce, C.

S.,

1887. Logical machines, American Journal of Psychology, 1:
165-170. Go.

Pendergraft, E., 1961. Machine Language Translation Project, 9th Quarterly
Progress Report, 1 May 1961-31 July 1961, U.S. Army Signal Corps
Contract DA 36-039 SC 78911, File No. 19678-PM 59-91-91 (6909). ft.

Penfield,

W., and Rasmussen, T., 1950. The Cerebral Cortex of Man, New
York: Macmillan.Ko; 23, 34.

Penrose, L.

S.,

1959a. Automatic mechanicalself-reproduction, in New Biology,
Baltimore: Penguin, no. 28, pp. 92-117. Pi.
—, 19596. Self-reproducing machines, Scientific American, 200(6):105-
-112, 114, 202. P4.

Pervin, I. A., 1959. On algorithms and programming for playing at dominoes,
Doklady Akademii Nauk.

SSSR,

124(1) :3 1—33; translated in Automation
Express, l(8):26-28 (1959).

G,

P»; 12, 34.
Petrick, S. R., 1961a. Talking to a computer, New

Scientist,

May 18, 10(235):
370-372. Dt, Do.
—, 19616. Use of a list processing language in programming simplifica-
tion procedures, Proceedings of the 2d Annual AIEE Symposium on
Switching Circuit Theory and Logical Design, AIEE S-134: 18-24.

ft,

ft-

Pfeiffer,

J., 1952. This mouse is smarter than you are, Popular

Science,

March,
160:99-100. P,; 13, 34 (Shannon, 1952).

, 1955. The Human Brain, New York: Harper & Row. Ko, X,; 35.
Piaget, J., 1926. The Language and Thought of the

Child,

New York: Harcourt,
Brace & World; New York: Meridian Books, Inc. (1955), MlO.

G,, Go;

22.— , 1950. The Psychology of Intelligence, New York: Harcourt, Brace &
World.

Gi;

22.—, 1954. The Construction of Reality in the

Child,

New York: Basic
Books, Inc., Publishers (with list of author's books available in English).

G.;

22.

509BIBLIOGRAPHY

Pierce, J. R., 1950. See J. J. Coupling.— and David, E. E., 1958. Man's World of

Sound,

Garden City, N.Y.:
Doubleday. Dt,

ft,

K>; 12, 13, 15,34, 35, 31.—, 1961. Symbols, Signals and Noise, New York: Harper & Row.

ft,

ft,

1., D.
Pitts, W., 1943. A general theory of learning and conditioning, Psychometrika,

8(1):131. Eo.— and McCulloch, W. S., 1947. How we know universals, Bulletin of
Mathematical Biophysics, 9:127-147. Dio, Do, Ko, Ni; 23, 21, 36.

-, 1955. Extended remarks in [E], pp. 108-111, and in [J]. L, Di, K4.
Poincare,

ft,

1954. Science and hypothesis, excerpt in [H].

Gt,

G4, h; 22, 21.
Polanyi, M., 1957. Problem-solving, British Journal of Philosophy of

Science,

8:89; reproduced in Polanyi, M., Personal Knowledge, London, 1958,pp.
120-135.

C, G, Go,

Jo; 24.
Poletayev, I. A., 1958. Signal, Soviet Radio; cited in Joint Publications Re-

search Service Report 221 1-N, 1960.
Polya, G., 1954. How to Solve It, Princeton, N.J.: Princeton (rev. cd., Anchor

A-93). G4,

Go,

Jo, L, 10, Fo; 35, 36.—, 1954a. Induction and analogy in mathematics, Mathematics and Plau-
sible Reasoning, vol. 1, Princeton, N.J.: Princeton; also New York: Dover.

Gt, G4,

Jo,

Go,

li, Is, Fe.
Popper, K. R., 1950. Indeterminism in quantum physics and in classical

physics, British Journal of Philosophy of

Science,

1:117-133, 173-195.—, 1960. The logic of scientific discovery, review by

Good,

Mathematical
Review, 21:1171-1173. L, L, 1,, 1,, L; 24, 36, 21.

Post, E., 1943. Formal reductions of the general combinatorial decision prob-
lem, American Journal of Mathematics, 65(2) : 197-215. ft At (Minsky,
1961a").

Prawitz, D., Prawitz,

ft,

and Vogera, N., 960. A mechanical proof procedure
and its realization in an electronic computer, Journal of the Association
for Computing Machinery (ACM), 7(2):102-128. G

Gt;

12, 21, 34, 32,
31.

Precker, J. A., 1954. Toward a theoreticalbrain-model, Journal of Personality,
March, 22:310-325. Ko.

Pribram, X., 1959. On the neurologyof thinking, Behavioral

Science,

October,
4:265-287. Ko.

Pringle, J. W.

S.,

1951. On the parallel between learning and evolution, Be-
haviour, 3:174. Go.

Prinz, D.

G.,

1952. Robot chess, Research, 5:261. P..
Prywes, N., 1961. Data processing aspects of some psychological experiments,

Perceptual and Motor

Skills,

12:155-160.— and Gray, H. J., 1962. The organization of a multilist type associative
memory, Gigacycle Computing Systems, AIEE Publication 5-136, Jan.
29-Feb. 2, 87-101. 8.,

G, G,

Eo,

ft,

M,.
Quastler,

ft,

1957. The complexity of biologicalcomputers, IRE Transactions
an Electronic Computers, EC-6(3): 192-194. X«.

510 BIBLIOGRAPHY

!

Quine, W. V. 0., 1955. A proof procedure for quantification theory, Journal
of Symbolic Logic, 20:141-149.

G,

G,.
Rabin, M. 0., and

Scott,

D., 1959. Finite automata and their decision prob-
lems, IBM Journal of Research and Development, April, 3:114-125.
Ai, Ai, At; 21.

Rapoport, A., 1948. Cycle distribution in random nets, Bulletin of Mathemati-
cal Biophysics, 10. B«, B<; 21.— and Shimbel, A., 1949. Mathematical biophysics, cybernetics, and gen-
eral semantics, Review of General

Semantics,

6:145. N, 80.—, 1956. On the application of the information concept to learning the-
ory, Bulletin of MathematicalBiophysics, 18:317. Eo, Ht.

Rappaport, D. (cd.), 1951. The Organization and Pathology of Thought, New
York: Columbia.

G4;

22.
Rashevsky, N., 1940. Advances and Applications of Mathematical Biology,

Chicago: University of Chicago Press. Be, 80, D., Eo, Ko, N; 21, 31, 32.—, 1945a. The mathematical biophysics of some mental phenomena,
Bulletin of MathematicalBiophysics, 7:115. Ko; 21.—, 19456. Mathematical biophysics of abstraction and logical thinking,
Bulletin of Mathematical Biophysics, 7:133-148.

Go,

D, G«.—, 1946. The neural mechanism of logical thinking, Bulletin of Mathe-
maticalBiophysics, 8:29-40. Ko,

Go,

G».—, 1960. Mathematical Biophysics, Chicago: University of Chicago Press,
1938 (rev. cd., New York: Dover, 2 vols.). B«, 80, D,, E., Ko, N; 21, 31,
32, 36.

Ray, L.

C,

and Kirsch, R. A., 1957. Finding chemical records by digital com-
puters,

Science,

126(3278) :814. M,; 12, 34, 36.
Razran,

G.,

1958. Soviet psychology and psychophysiology,

Science,

Nov. 14,
128:1187-1194.

Reich, D. L., and Ernst, H. A., 1960. A Mechanical Hand, Quarterly Progress
Report 56, pp. 156-157, Research Laboratory of Electronics, Massachu-
setts Institute of Technology,Cambridge, Mass. N,; 13, 12, 33, 34.

Reitman, W. R., 1959. Heuristic programs, computer simulation and higher
mental processes, Behavioral

Science,

4:330-335.

G.,

Ko, Jo, Ji; 31. (Ernst,
1962).

-, 1961. Programming intelligent problem-solvers, in [AF], pp. 26-33.

Gi,

ft,

J=, Ji, P.; 31.
-, 1962. Book review,

Science,

Mar. 2. Lo (Taube, 1961), Lo.
Richards, P. 1., 1951. Machines which can learn, American

Scientist,

39:711.
Po, E.—, 1952. On game-learning machines, Scientific Monthly, 74(4) :201-
-205. Po, E.

Roberts, L. G., 1960. Pattern recognition with an adaptive network, IRE In-
ternational Convention Record, pt. 2, pp. 66-70. Dio, Dn, Eo, ft. (Rosen-
blatt, 1958).—, 1962. Picture coding using pseudo-random noise, in [AA], pp. 145-
-154. D..

511BIBLIOGRAPHY

Robinson, A., 1957. Proving a theorem (as done by man, logician, or machine),
Proceedings of the Cornell Summer Institute of Logic, Transcription,
Ithaca, N.Y.: Cornell.

Go, Gt, G,;

36.—, 1960. On the mechanization of the theory of equations, Bulletin of
the Research Council of Israel, 9F(2) :47-70.

Rochester, N., 1953. Symbolic programming, IRE Transactions on Electronic
Computers, EC-2(1) : 10-15. ft.
—, Holland, J.

ft,

Haibt, L. H., and Duda, W. L., 1956. Test on a cell
assembly theory of the action of the brain, using a large digital computer,
IRE Transaction on Information Theory, IT-2(3) :80-93. Ko, 84, Bo; 12,
34 (Hebb, 1949).— , Goldberg, S.

ft,

and Edwards, D. J., 1959. Machine Manipulation of
Algebraic Expressions, Quarterly Progress Report 55, pp. 132-134, Re-
search Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge,Mass,

ft, ft;

14(LISP), 34.
Rogers,

ft,

Jr., 1959. The present theory of Turing machine computability,
Journal of the Society of Industrial and Applied Mathematics (SIAM),
7(1): 114-130. A., A,; 35.—, 1960. Review of Godel's proof by Newman and Nagel, American
Mathematics Monthly, January, 67:98. At Lo; 31.

Rome, B. X., and Rome, S.

C,

1959. "Leviathan: A Simulation of Behavioral
Systems, to Operate Dynamically on a Digital Computer," International
Conference for Standards on a Common Languagefor Machine Searching
and Translation, Cleveland. Nt.

Rosenblatt, F., 1958a. The Perceptron, a Theory of Statistical Separability in
Cognitive Systems, Report VG-1196-G-1, Cornell Aeronautical Labora-
tory,

Buffalo,

N.Y. 8,, B», Dio, Dio, Eo, Xi, D,; 13, 33, 39 (Roberts, 1960;
Bledsoe, 1959; Hawkins, 1961; Papert, 1961;Keller, 1961; Minsky, 1960,
1961a).—, 19586. The perceptron: A probabilistic model for information storage
and organization in the brain, Psychological Review, November, 65:386-
-407. 8,, 80, Dio, Eo, Xi, M, D»; 13, 33.—, 1959a. On the Convergence of Reinforcement Procedures in Simple
Perceptrons, Report VG-1196-G-3, Cornell Aeronautical Laboratory,
Cornell University,

Buffalo,

N.Y. D,o, Do, Eo, Ei\ 21.—, 19596. Two theorems of statistical separability in the perceptron, in
[N], vol. I, pp. 421-456. 84,B4 , B», Do, D,s

;

21.—, 1960a. Perceptual generalization over transformation groups, in [U].
B<, 80, Dio, Do, Dio, F, L; 11, 33, 36.— , 19606. Perceptron experiments, Proceedings of the IRE, March,
48:301-309.
—, 1962. Principles of Neurodynamics, Cornell Aeronautical Laboratory
Report

1196-G-8;

Washington, D.C: Spartan. 80, D,o, D», Dn, E, X,, Ko;
12, 13, 21, 23, 34, 36.

Rosenblith, W. A., 1959. Some quantifiable aspects of the electrical activity of
the nervous system (with emphasis upon responses to sensory stimuli),
Review of Modern Physics, 31(2) :532-545. 12, 23, 34, 32, 31.

512 BIBLIOGRAPHY

Rosenbloom, P. C, 1950. The Elements of Mathematical Logic, New York:
Dover,

ft,

L,; 31, 35.
Rosenblueth, A., Wiener, N., and Bigelow, J., 1943. Behavior, purpose and

teleology,Philosophy of

Science,

10:18-24. N2, L.— and , 1950. Purposeful and non-purposeful behavior, Philoso-
phy of

Science,

17:318, Ns, L.
Ross, T., 1933. Machines that think, Scientific American, April, 148:206-208.

Lo.
Rothstein, J., 1954. Information, organization and systems, IRE Transactions

on Information Theory, IT-4:64-66.

ft, ft,

N.
Russell, 8., 1940. History of Western Philosophy, New York: Simon and

Schuster. Lo.
Russell, D.

ft,

1956. Children's Thinking, Boston: Ginn.

Go;

22.
Russell,

G.,

1957. Learning Machines and Adaptive Control Mechanisms,
Radar Research Establishment Memorandum 1369, British Ministry of
Supply, Malvern, England. E, N, N,, 80,

C,

Dk, I; 13, 34 (Ashby 1952a,
Uttley, 1954-1957).

Ryle, G., 1949. The Concept of Mind, London, Hutchinson. L, L,,

ft,

L; 24.
Salveson, M. E., 1955. The assembly-line balancingproblem, Transactions of

the American Society of Mechanical Engineers, 77:(16). (Tonge, 1959).
Gn.

Samuel,

A. L., 1959a. Some studies in machine learning using the game of
checkers, IBM Journal of Research and Development, 3(3) :210-229.
Po (Checkers),

Go,

M,, E,, Eo, D,,

Co,

E,„, M,; 12, 34, 36.
-, 19596. Machine learning, Technology Review, November, 62:42-45.
-, 1960a. Programming a computer to play games, in Advances in Com-

puters (F. Alt, cd.), New York: Academic. Po; 31, 32, 35.
—, 19606. Letter to the editor,

Science,

132, (no. 3429, September 16).
Lo, Lo (Incorrectly labelledvolume 131 on cover).—, 1962. Artificial intelligence—a frontier of automation, Annals of the
American Academy of Political and Social

Science,

March, 340:10-20.
Samuelson, P. A., 1947. Foundations of EconomicAnalysis, Cambridge,Mass.:

Harvard.
Sapir, E., 1939. Language, New York: Harcourt, Brace and World. Hi, ft.

Schultz,

H., 1938. The Theory and Measurement of Demand, Chicago: Uni-
versity of Chicago Press.

Schutzenberger, M. P., 1954. A tentative classification of goal-seekingbehavior,
Journal of Mental

Science,

100(1) :97-102. No.

Scott,

P., and Williams, K.

G.,

1959. A note on temporal coding as a mecha-
nism in sensory perception, Information and

Control,

2(4) :380-385.
De, ft.

Scriven, M., 1953. The mechanical concept of mind, Mind, April, 62:230-240.
L.

Sebestyen, G.

S.,

1960. Classification Decisions in Pattern Recogntion, Report
381, Research Laboratory of Electronics, Massachusetts Institute of Tech-
nology, Cambridge, Mass. D», Du.

513BIBLIOGRAPHY

—, 1961. Recognition of membership in classes, IRE Proceedings on In-
formation Theory, IT-7(1):40. D., D«.

Selfridge, O.

G.,

1948. Some notes on the theory of flutter, Archives of the
Institute of Cardiology,Mexico, 18(2) : 177-187. B«; 22.—, 1955. Pattern recognition and modern computers, in [E], pp. 91-93.
Di, D4, Di., Do, D», E., L, I,; 12, 34, 33, 36 ([X], Dinneen, 1955).
—, 1956. Patternrecognition and learning, in [I], p. 345; also in Methodos,
8:31. D„, D., Do, D., Do, E., L, L, J,,

G, G,

Po,

ft, Go,

1,.— and Minsky, M. L., 19566. "Digital Computers and Pattern Recogni-
tion," Annual Meeting of the AAAS. Paper does not seem to exist.—, 1959. Pandemonium: a paradigm for learning, in [N], pp. 511-529.
Di„ Dio,

G,

Eo, 80, Dn, Ko; 12, 34, 33, 36.— and Neisser, U., 1960. Pattern recognition by machine, Scientific
American, 203(3) :60-68. Do, Do, Do, Do, Dio, Dio, D»; 31, 35 (Byrnes,
1959;

Gold,

1960;Doyle, 1960, [X]).
Shaginyan, M., 1959. In the World of Cybernetics, Joint Publications Research

Service Report 718-D, U.S. Department of

Commerce,

Washington,
D.C. N.

Shannon, C. E., and Weaver, W., 1949a. The Mathematical Theory of Com-
munication, Urbana, 111. : University of Illinois Press. Ht, Hi, L.—, 19496. Synthesis of two-terminal switching networks, Bell System
Technical Journal, January, 28(1) :59-98. Ao, Ao I«.—, 1949c. Communication theory of secrecy systems, Bell System Techni-
cal Journal,

October,

28(4) :656-7 15. ft.—, 1950a. Automatic chess player, Scientific American, February, 182:
48. Po,

Go, G»,

F»; 33.—, 19506. Programming a digital computer for playing chess, Philosophy
Magazine, March, 41:356-375. Po,

G2,Go,

Fo; 33; also in [H].—, 1952. Presentation of a maze-solving machine, in [B], Bth

conference,

pp. 173-180. E,o, P,; 13, 34.—, 1954. Computers and automata, Proceedings of the IRE, 41(10):
1234-1241;also Methods, 6:115. A,, Bi.—, 1955. Game-playing machines, Journal of the Franklin Institute,

260(6) :447-453. Po, F,, 1,, E,„; 13, 34 (Hagelbarger, 1955, [X]).
1956. A universal Turing machine with' two internal states, in [G]. At.—, 1959. Yon Neumann's contributions to automata theory, Bulletin of

the American Mathematical Society, 64(3, pt. 2): 123-129. 31.
Shaw, J. C, Newell, A., Simon, H. A., and Ellis, T. 0., 1958. A command

structure for complex information processing, Proceedings of the Western
Joint Computer Conference (WJLL), May 6-8.

ft, ft;

15, 35, 38
(Newell, 19576).

Shepard, R. N., and Chang, J. J., 1961a. Stimulus Generalization in the Learn-
ing of Classifications, mimeographed report, Bell Telephone Laboratory.
Eo, D.—, Hovland, C. 1., and Jenkins, H. M., 19616. Learning and memoriza-
tion of

classifications,

Psychological Mongraphs, 517(75). E2, D.

514 BIBLIOGRAPHY

Sherman, ft,

1959. A quasi-topologicalmethod for machine recognition of line
patterns, in [R], Dio, Do, D»; 21, 34.

Shimbel,

A., 1950. Contributions to the mathematical biophysics of the central
nervous system, with special reference to learning, Bulletin of Mathemati-
cal Biophysics, 12:24. E, Ko.

Sholl,

D. A., and Uttley, A. M., 1953. Pattern discrimination and the visual
cortex, Nature, 171:387-388. Be, D, Ko.

, 1956. The Organizationof the Cerebral

Cortex,

London: Methuen. Ko.

Shoulders,

K. R., 1960. On microelectronic components, interconnections, and
system

fabrication,

in [V]. Bi, 80.

Shubik,

M., 1960a.

Games,

decisions and industrial organizations, Manage-

ment

Science,

6:455-474. Po, Pi, P2.— , 19606. Bibliography on simulation, gaming, artificial intelligence, and
allied topics, Journal of American Statistical Association, 55(292):736-
-751. Po, P., P2, No; 32.

Shultz, G. L., 1957. Use of IBM 704 in simulation of speech-recognition sys-
tems, Proceedings of the Eastern Joint Computer

Conference,

(EJCC),
pp. 214-218. Dt; 12,34.

Simmons,

R. F., 1960. Anticipated Developments in Machine Literature Proc-
essing in the Next Decade,

SP-129,

System Development Corporation,
Santa Monica, Calif. Mi.

Simon,

H. A., 1955. A behavioral model of rational choice, Quarterly Journal
of Economics, February, 69:99. Po.
— and Newell, A., 1956a. Models: Their uses and limitations, in The
State of the Social Sciences (White, cd.), Chicago: University of Chicago
Press. G«.
—, 19566. Rational choice and the difficulty of the environment,Psycho-
logical Review, March, 63:129. Po, Go.

-, 1957. Models of Man, New York: Wiley. Fe,

G,;

22, 21.
■ and Newell, A., 1958. Heuristic problem-solving, Operations Research,

6(1): 1-10. J,, Jo,

G;

35.—, 1960. The New Science of Management Decision, New York: Harper
&Row.
—, 1961a. Modelling human mental processes, in [Z], pp. 111-120.

G,

Gi,

Ji, Jo.—, 19616. The control of the mind by reality: Human cognition and
problem solving, in Control of the Mind (Farber and Wilson, cd.), pp.
219-232, New York: McGraw-Hill. Eo,

Go,G,,

Jo, Lo.
, 1961c. Experiments with a heuristic complier, RAND Corporation

Paper P-2349, Santa Monica, Calif.
Singer, J. R., 1961. Electronic analog of the human recognition system, Journal

of the Optical Society of America, January, 51:61-69. D, E, B.

Skinner,

B. F., 1953. Science and Human Behavior, New York: Macmillan.

Go,

Eo; 22, 35.
—, 1957. Verbal Behavior, New York: Appleton-Century-Crofts.

ft, ft,

E2, £3.—, 1961. Cumulative Record: Enlarged Edition, New York: Appleton-

BIBLIOGRAPHY 515
Century-Crofts; contains a number of earlier papers. Ei, E2, E.,

ft,

Li, Lo,
Li, Go.

Slagle, J., 1961. A Computer Program for Solving Problems in Freshman Cal-
culus (SAINT), doctoral dissertation, Massachusetts Institute of Tech-
nology, Cambridge, Mass.

Gi, G», Gt,

Ji, Jo, Di,

ft;

12, 14, 21, 34.

Sluckin,

W., 1954. Minds and Machines, London: Pelican; Baltimore: Penguin.
E, N; 35.
—, 1958. Information theory, probability models and psychology, Pen-
guin Scientific News, 47:65.

ft,

L.
Sobolev, S. L., Kitor, A. 1., and Lyapunov, A. A., 1958. The Basic Features

of Cybernetics, JPRS/DC-L-15, Library of Congress Photoduplication
Service, Washington, D.C. N.

Solomonoff, R. J., 1957. An inductive inference machine, IRE National Con-
vention Record, pt. 2, pp. 56-62. L, L, Ji,

Go,

Ec, Dn; 33, 36.—, 19586. The mechanization of linguistic learning, in [AB]; also in
Zator Technical Bulletin ZTB-125, ASTIA Document AD 212226. L,
10, 1,, ft.
—, 1959. A new method for discoveringthe grammars of phrase structure
languages, in [R], ASTIA Document AD 210390. 10, L, 10, L, Ho, Eo.
—, 19596. On machines to learn to translate languages and retrieve infor-
mation, Zator Technical Bulletin, AFOSR-TN-59646. L,

ft,

Mi.
—, 1960. A preliminaryreport on a general theory of inductive

inference,

Zator Technical Bulletin ZTB-138, Contract AF 49(638)-376, Zator
Company, Cambridge, Mass. L, L, L, le, Ai, Ao; 21, 24.

Somenzi,

V., 1956. Can induction be mechanized? in [I], p. 226. Lo, L.
Sperry, R. W., 1951. Mechanisms of neural maturation, in Handbook of Ex-

perimental Psychology (S. S.

Stevens,

cd.), pp. 236-280, New York:
Wiley. Ko.—, 1952. Neurology and the mind-brain problem, American

Scientist,

40:291. D., L,, K 4.
Spiegelthal, E. S., 1960. Redundancy exploitation in the computer solution of

double-crostics, Proceedings of the Eastern Joint Computer Conference
(EJCC),pp. 39-56. Go, G.

Spilsbury, R. J., 1952. Mentality in machines, Proceedings of the Aristotelian
Society, 26: suppl., 61-86. X«, Mi.

Sprick, W. and

Ganzhorn,

X., 1959. An analogous method for pattern recog-
nition by following the boundary, in [R], pp. 238-244. Dn, D», Do; 13.

Stein,

P., and Ulam,

S.,

1957. Experiments in chess on electronic computing
machines, Computers and Automation, September, 6:14. Po,

Go,

Ji (Kister,
1957; Bernstein, 1958a).

Steinbuch,

X., 1958a. Automatic symbol recognition. Nachrichtentechnische

Zeitschrift,

11(4) :210, (5):237; Electrical Engineering Abstract, nos.
3722, 4872. D.», Do, D

4;

13, 31, 32, 36.
—, 19586. Automatic speech recognition, Nachrichtentechnische Zeit-

schrift,

September, 11:446. Dt.
1961. Die Lernmatrix, Kybernetik, 1(1), 36-45. (Kudielka, 1961).

Ei.

516 BIBLIOGRAPHY

Stevens, M. E., 1957. A Survey of Automatic Reading Techniques, Report
5643, National Bureau of

Standards,

Washington, D.C. D,o, Do, D>; 31, 32
(Stevens, 1961a).—, 1959. A machine model of recall, in [R], pp. 309-315. Mi, Mo, E 5

;

12, 34.—, 1961a. Automatic Character Recognition—a State-of-the-art Report,
NBS Technical Note 112, PB No. 161613, Washington, D.C. D.., D., Do,
D

4,

Do, Do, Do, D.o, Et; 31, 36, 35, 32 (549 references).—, 19616. Abstract shape recognition by machine, Proceedings of the
1961 Eastern Joint Computer Conference (EJCC) (Computers—key to
total systems control), 21:332-351. Do, Dn, Dio (Deutsch, 1955).

Stevens,

S. S. (cd.), 1951. Handbook of Experimental Psychology, New York:
Wiley. Do, Dt, E,

G,

H, M.
Strachey, G

S.,

1952. Logical or non-mathematical programmes, Proceedings
of the Association for Computing Machinery (ACM), September, On-
tario, Canada.

P*,

ft.

Sutherland,

N.

S.,

1959. Stimulus analysing mechanisms, in [N], pp. 575-609.
Di, Do, Ei, Ko; 22, 23, 31, 32, 36.

Sutherland,

W. R., Mugglin, M.

G.,

and

Sutherland,

1., 1958. An electro-
mechanical model of simple animals, Computers and Automation, 7:6-8,
23-25, 32. N; 13.

Sutro,

L., 1959. Emergency simulation of the duties of the president of the
United

States,

in [P], pp. 314-323. N4

;

12, 33, 36.

Swallow,

R., and Weston, P., 1959. On the design of artificial nerve nets, in
[O], pp. 34-46. B«.

Tarjan, R., 1958. Neuronal automata. Cybernetica, 1(3): 189. Ao, 80.
Taube, M., 1959. Man-machine relationships, January-February,Datamation.

Po.
-, 1960. Letter to the editor,Aug. 26, Science. Lo.—, 1961. Computers and Common

Sense,

The Myth of Thinking Ma-
chines, New York: Columbia. X., Li.

Taylor, W. X., 1956. Electrical simulation of some nervous system functional
activities, in [I]. Ko.—, 1959a. Pattern recognition by means of automatic analog apparatus,
Proceedings of the Institute of Electrical Engineers, pt. B, no. 106, pp.
198-209. D; 13.—, 19596. Automatic control by visual signals, in [N], pp. 843-861

Do, Dio, Dio; 13.
Thomson, R., and

Sluckin,

W., 1954a. Cybernetics and mental functioning,
British Journal of Philosophy of

Science,

4:130; Psych. Abstract 3532. N...
— and ; 1954b. Machines, robots, and minds, Durham University
Journal, 15. Li.

Thorpe, W.

ft,

1956. Learning and Instinct in Animals, Cambridge, Mass.:
Harvard. Ei; 35 (Tinbergen, 1951).

Tinbergen, N., 1951. The Study of Instinct, New York: Oxford. Et, Em, Dm,
Tonge, F. M., 1960. An assembly line balancing procedure, Management

Science,

7(l):21-42. F4 , J., Jo,

G,, ft, G, G, G;

14, 34, 36, 31.

BIBLIOGRAPHY 517

—, 1961a. A Heuristic Program for Assembly Line-balancing,Englewood

Cliffs,

N.J.: Prentice-Hall.—, 19616. The use of heuristic programming in management science.
Management

Science,

April,7(3).
Troll, J.

ft,

1954. The thinking of men and machines, Atlantic Monthly,
July, pp. 62-65. Lo.

Tsien, H.

S.,

1954. Engineering Cybernetics, New York: McGraw-Hill. N.
Turing, A. M., 1936. On computable numbers, with an application to the

Entscheidungsproblem, Proceedings of the London Mathematics Society,
(ser. 2) 42:230-265, 43:544 (1937). A, At, L,.— , 1950. Computing machinery and intelligence, Mind,

October,

59
(n.s. 236):433-460; also reprinted in [H], pp.

2099ff.,

and in Methodos,
6:195 (1954). L, Lo, Lo, L., E; 24, 36 (Kleene, 1952, chap. 30).
—, 1953. Author of part of chap. 25, pp. 288-295, of Faster than
Thought (B. V. Bowden, cd.), London: Pitman. Po, Go (Chess), Dio, Ji;
12 (Hand-simulated),34 (Newell, 19586).

Uhr, L., 1959a. Machine perception of printed and hand-written forms by
means of procedures for assessing and recognizing gestalts, in Preprints
of the 14th National Meeting of the Association for Computing Machin-
ery, Boston, Preprint 34. Ann Arbor, Mich.: Mental Health Research
Institute. Dn, Do, D».
—, 19596. Latest methods for the conception and education of intelligent
machines, Behavioral

Science,

4:248-251 (review of reference [P]).
—, 1960. Intelligence in computing machines: The psychology of per-
ception in people and in machines, Behavioral

Science,

5:177—182. Do, Dn.
— and Vossler,

G,

1961a. Suggestions for self-adapting computer models
of brain

functions,

Behavioral

Science,

5:91-97. D, X, Et.
—, 19616. A possibly misleading conclusion as to the inferiority of one
method for pattern recognition to a second method to which it is guar-
anteed to be superior, IRE Transactions on Electronic Computers, EC-10:
96-97. Do, D.
— and Vossler,

G,

1961c. A pattern recognition program that generates,
evaluates, and adjusts its own operators, in [A], pp. 555-569. Dn, L, L.
— and , 1961a". Recognition of speech by a computer program
that was written to simulate a model for human visual pattern recognition,
Journal of the Acoustical Society, 33:1426. '

-, , and Uleman, J., 1962a. Pattern recognition over distortions,
by human subjects and by a computer simulation of a model for human
perception, Journalof ExperimentalPsychology, 63:227-234.
—, 19626. Pattern recognition computers as models for form perception,
PsychologicalBulletin, in press.

Unger, S.

ft,

1958. A computer oriented toward spatial problems, Proceed-
ings of the IRE, 46(10) : 1744-1750. Bo

ft,

A, Do, D..—, 1959. Pattern detection and recognition, Proceedings of the IRE,
47(10) : 1737-1752. B=,

ft,

D», D,, D,»,

D*;

36.
Uttley, A. M., 1954. The classification of signals in the nervous system,

E. E. G. Clinical Neurophysiology, 6:479. D., Ko, Di4, Do, Dio, 8,, 80, 8..

518 BIBLIOGRAPHY

—, 1955. The probability of neural connections, Proceedings of the Royal
Society, (B) 144:229. 8., K»; 23.

■■ V

i

I

i

\

r 1

V

— , 1956a. Conditional probability machines, in [G], pp. 253—275. L, Eo,
Eo, Do, 80, 80.—, 19566. Temporal and spatial patterns in a conditional probability
machine, in [G], pp. 277-285. L, Eo, Eo, Do, Di, Dn.
— , 1956c. Conditional probability as a principle of learning, in [F], pp.
830-856. Dm, Dio, Do, Eo, li.
— , 1959a. The design of conditional probability computers, Information
and

Control,

April, 2:1-24. 1., Eo, Eo, D„; 13, 34 (Kudielke, 1961).—, 19596. Conditional probability computing in a nervous system, in
[N], pp. 121-146. 1,, 80, Bi, Be, 80, Ko, Eo, D,o, D... Do.
—, 1961. The engineering approach to the problem of neural organiza-
tion, Progress in Biophysics, 2:25-52.
— , 1962. Properties of plastic networks, Biophysical Journal Supplement,
Rockefeller Institute Press, in press.

Verbeek, L. A. M., 1960a. On error-minimizingneuronal nets, in [W]. 80, Ao,
No, 80.
—, 19606. Reliable computation with unreliable circuitry, in [S], 80,
A,, 80.

Vinacke, W. E., 1962. The Psychology of Thinking, New York: McGraw-Hill.
Jo,

G4;

22.
Yon Foerster,

ft,

1949. Quantum mechanical theory of memory, in [B],
6th conference. Mo,Ko.—, 1957. Basic concepts of homeostasis, in Homeostatic Mechanisms,
Brookhaven Symposia in Biology, no. 10, Upton, N.Y., pp. 216-242.
N,, No; 21.— , 1959. Some aspects in the design of biological computers, in [O], pp.
47-64. A, 80, 8,, Be, Di No; 13.
—, 1960. On self-organizing systems and their environments, in [U],
pp. 3 1-50. No.

■

and Zopf, G. W., Jr. (eds.), Principles of Self-organization, New
York: Pergamon. 80,

C,

Dn, E.
Wada, H. et al., 1959. An electronic reading machine, in [R], pp. 227-232.

Do, Dio, Dio.
Wald, A., 1950. Statistical Decision Functions, New York: Wiley, P2.
Wall, P. D., and Melzak, R., 1962. Neural mechanisms which discriminate

events on the skin, in [AA], pp. 120-125. Dt, Ko, No.
Wallace, R. A., 1952. The maze-solving computer, Proceedings of the Asso-

ciation for Computing Machinery (ACM), May, Toronto, Pittsburgh, Pa.:
Rimbach, pp. 119-125. Pt, E,».

Walter, W.

G.,

1950. An imitation of life, Scientific American, 182(5) :42.
Eo, K4

;

13.
, 1951. A machine that learns, Scientific American, 185(2) :60. Eo, X.;
13, 34.

-, 1953. The Living Brain, New York: Norton.Ko; 23, 31, 35, 36.

BIBLIOGRAPHY 519
,1954. Networks of neurons, Brooklyn Information Networks Sym-

posium, Brooklyn Polytechnical Institute, Brooklyn, N.Y., p. 185. B«.
Wang, H., 1957. A variant to Turing's theory of computing machines, Journal

of the Association for Computing Machinery (ACM), 2:63. A<, Ao U\21 (Minsky, 1961a").
—, 1960a. Toward mechanical mathematics, IBM Journal of Research
and Development, 4(l):2-22.

Gt, ft,

J,, Jo,

G,

L2,

G, G;

21, 12, 34, 36
(Minsky, 1961a).

, 19606. Proving theorems by pattern recognition, I, in [T], p. 220. Gt., 1961. Proving Theorems by Pattern Recognition, 11, Bell Telephone
Laboratories, Inc., Murray Hill, N.J., unpublished. Gt.

Ware, (cd.), 1960. Soviet computer technology—l9s9, IRE Transactions on
Eectronic Computers, March, pp. 72-120. Bi.

Watanabe,

S.,

1960. Information-theoretic aspects of inductive and deductive
inference, IBM Journal of Research and Development, 2(4) :208-231.
1., L, li, Mo; 21, 12, 34.

Watson, A. J., 1959. Some questions concerning the explanationof learning
in animals, in [N], pp. 693-728. E>, D„, E 4

;

22, 36.
Weber, C. 0., 1949. Homeostasis and servo-mechanisms for what? Psychologi-

cal Review, 56:234-236. No, N.
Wechsler, D., 1958. The nature of intelligence, in The Measurement and Ap-

praisalof Adult Intelligence, Baltimore: Williams& Wilkins. Lo.—, 1960. Intelligence, quantum resonance and machine thinking, Trans-
actions of the New York Academy of

Sciences,

22(4) :259-266. Lo,
Ko, M.

Weinberg, M., 1951. Mechanism in neurosis, American

Scientist,

January,
39:74-98. N<.

Weir, J. M., 1958. "ALearning Process Suitable for Mechanization,"presented
at the 11th national meeting of the Association for Computing Machinery,
Los Angeles, Calif., August, 1956, "A Physical Model of an Abstract
Learning Process," presented at the 13th national meeting of the Associa-
tionfor Computing Machinery, June, 1958. E, L.

Wertheimer, M., 1945. Productive Thinking, New York: Harper & Row.

G<,

Jo.
White, G. M., 1959. Penny matching machines, Information and

Control,

December, 2:349-363. L, E., Pi, Po; 21.
Wickelgren, W., 1962a. A simulation program for conservative focusing, Be-

havioral

Science,

April, 7:245-247.
and Cohen, D.

ft,

19626. An Artificial Language and Memory Ap-
proach to Concept Attainment, Psychological Reports, 10:815-827.

Widrow, 8., 1959. Adaptive sampled-data systems—a statistical theory of
adaptation, IRE WESCON

Convention,

San Francisco. Ni, E., G.
Wiener, N., and Rosenblueth, A., 1946. Conduction of impulses in cardiac

muscle, Archives of the Institute of Cardiology, Mexico, 16:205-265. Be.—, 1948. Cybernetics, New York: Wiley. Ht, Ni, Ne, No, No, Ni, D.o, E.,
X, L, Go, Po (Chess) (New material concerning learning and game
playing.)

M

520 BIBLIOGRAPHY

f,

t

h

:ii

Xl '" ; i

15:5-19. X..

—, 1949a. Extrapolation, Interpolation,and Smoothing of Stationary Time

Series,

Cambridge, Mass.: Technology Press, Massachusetts Institute of
Technology.L, D».

-, 19496. Sensory prostheses, in [B]. D.—, 1950a. The Human Use of Human Beings, Boston, Mass.: Houghton
Mifflin. No.—, 19506. Speech, language and learning, Journal of the Acoustical So-
ciety of America, 22:696-697.

ft,

Dt.
—, 1958. My connection with cybernetics: Its origin and its

future,

Cybernetics, 1(1): 1-14. N.
—, 1960. Some moral and technical consequences of automation, Sci-
ence, May 6. No.

Wilkes, M. V., 1953. Can machines think? Discovery, 14:151; also in Proceed-
ings of the IRE,

October,

41:1230. Lo.—, 1956a. Appendix on Can machines

think?,

in Automatic Digital
Computers, London: Methuen; New York: Wiley. L*.

Williams, J. D., 1960. Toward Intelligent Machines, RAND Corporation
Paper P-2170, Santa Monica, Calif. Lo.

Williams, T., 1956. Translating from Ordinary Discourse into Formal Logic,
ASTIA Document AD98813, Research Department, Avion Division,
ACF Industries. Hi, Ho, ft.

Willis, D.

G.,

1959. Plastic neurons as memory elements, in [R]. Mi, Bo (Xi,
Di.), E»; 12, 34 (Not made of plastic!) (Kudielka, 1961).

, 1960. The functional domain of complex systems, in [W].

Co,

Co.
Wisdom, J. 0., 1951. The hypothesis of cybernetics, General Systems Year-

book, 1:111; also in British Journal of Philosophy of

Science,

2:1, 248,
312. N; 24.—, 1952. Mentality in machines, Proceedings of the Aristotelian Society,
26; suppl. 1-26. L.

Wozencraft,

J., and Horstein, M., 1961. Coding for two-way channels, in
[X].

ft,

J..
Wright, M. A., 1959. Can machines be intelligent? Process Control and

Automation, January, 6:2-6. Lo.
Wulfeck, J. W., and Taylor, J.

ft,

(eds.), 1957. Form Discrimination as Re-
lated to Military Problems, Publication 561, National Academy of Sci-
ences, National Research

Council,

Washington, D.C. Di.
Wyckoff, L. 8., 1954. A mathematical model and an electronic model for

learning, PsychologicalReview, 61:89-97. E.
Yngve, V.

ft,

1956. A programming language for mechanical translation,
Mechanical Translation, July, 5(1).

ft,

ft.—, 1961. A model and an hypothesis for language structure, Proceedings

of the American PhilosophicalSociety, 104:444-466. Hi, ft.—, 1962. Computer programs for translation. Scientific American, June,
206(6): 68-76.

Yntema, D. 8., and Torgerson, W.

S.,

1961. Man-computercooperation in de-
cisions requiring common sense, in [AF], pp. 20-26. Po.

Young, J. Z., 1956. The organization within nerve cells, Endeavor, January,

BIBLIOGRAPHY 521—, 1957. Doubt and Certainty in

Science,

New York: Oxford. X, L, M
23, 34.

Zemanek,

ft,

Kretz,

ft,

and Angyan, A. J., 1960. A model for neurophysi
ologicalfunctions, in [X], pp. 270-284. E>, E., L, X..

Some Symposia, Proceedings, and Other Special Collections Con-
cerning Artificial Intelligence
[A] Teleologicalmechanisms, Annals of the New York Academy of

Science,

50:189. (L. K. Frank, G. E. Hutchinson, W. K. Livingston, W. S.
McCulloch, and N. Wiener.)

[B] Yon Foerster, H. (cd.), Cybernetics: Circular Causal and Feedback
Mechanisms in Biological and Social Systems, transactions of the 6th
(1949), 7th (1950), Bth (1951), 9th (1953), and 10th (1955) con-
ferences, sponsored and published by the Josiah Macy, Jr., Foundation,
New York.

[C] Jeffress, L. A. (cd.), 1951. Cerebral Mechanisms in Behavior: The
Hixon Symposium, New York: Wiley; also London: Chapman & Hall,
1951, (yon Neumann, McCulloch, Lashley, Kluver, Kohler, Halstead,

and discussants.)
[D] Couffignal, L. (cd.), 1952. Les Machines a Penser, Paris: Editions de

Minuit.
[E] Proceedings of the 1955 Western Joint Computer Conference, Session

on Learning Machines, W. H. Ware, Chairman, pp. 85-111, Mar.
1-3, 1955. (Clark and Farley, Selfridge, Dinneen, Newell; discussion by

W. Pitts and G. A. Miller.)
[F] Proceedings of the Ist International Congress on Cybernetics, Namur,

Belgium, June, 26-29, 1956, Paris; Gauthier-Villars; 2d

conference,

reference [AB].
[G] Shannon, G E., and McCarthy, J. (eds.), 1956. Automata studies,

Annals of Mathematics

Studies,

vol. 34, Princeton, N.J.: Princeton.
[H] Newman (cd.), 1954. The World of Mathematics, vol. 4, New York:

Simon and Schuster, (yon Neumann, 1951; Poincare, 1954;

Shannon,

19506; Turing, 1950.)
[I] Cherry, C. (cd.), 1956. Information theory, Proceedings of the 3d

London Symposium on Information Theory, London: Butterworth; also
New York: Academic, 1956.

[J] Tompkins, H. E. et al., 1956. Symposium on the design of machines to
simulate the behavior of the human brain, IRE Transactions on Elec-
tronic Computers, EC-5:240-255. (H. E. Tompkins, moderator; Mc-
Culloch, Oettinger, Schmitt, Rochester, Pitts, Rothstein, others.)

[X] Jackson, W. (cd.), 1953. Communication theory, Proceedings of the
2d London Symposium on Applications of Communications Theory,
London: Butterworth.

[L] Carr, J. W., 111, 1958. Computer Programming and Artificial Intelli-
gence: An Intensive Course for Practicing Scientists and Engineers,
University of Michigan, Ann Arbor: Summer Conference, College of
Engineering.

E

522 BIBLIOGRAPHY

[M] Liapunov, A. A. (cd.), 1959. Problems of Cybernetics, JPRS 876-D,
Joint Publications Research

Service,

Washington, D.C. This is a serial;
translations available from Pergamon Institute, New York and Oxford.h

[N] Blake, D. V., and Uttley, A. M. (eds.), 1959. Proceedings of the
Symposium on Mechanisation of Thought Processes, National Physical
Laboratory, Teddington, England, London: H. M. Stationary

Office,

2 vols.
[O]

yon

Foerster, H. (cd.), 1959. The Realization of Biological Computers,
Report 5, Electrical Engineering Research Laboratory, University of
Illinois, Urbana, 111.i

[P] Proceedings of the Western Joint Computer

Conference,

Mar. 3-5, 1959.
[Q] Proceedings of the Eastern Joint Computer

Conference,

Dec. 9-13, 1959.
[R] Proceedings of the International Conference on Information Processing

(ICIP), 1959, Paris: UNESCO House.
[S]

Steele,

E. J. (cd.), 1960. (USAF Air Research and Development Com-
mand) Symposium on BIONICS. (P. Armer, H. E. Savely, M. Blum,
L. Verbeek, J.

Cowan,

L.

Stark,

W. S.

McCulloch,

B. A.

Schreiver,

P. M. Kelly, A. Novikoff, W. P. Tanner, W. C. Dersch, E. E. Loebner,
L. A. de Ross, L. Vallese, K. K. Maitra, W. A. van Bergeijk, L. D.
Harmon, W. Reitman, P. Metzelaar, R. J. Lee, R. Ryle, T.

Scott,

L.

Steinman,

H. V. Noble, M. Taube, O. H.

Schmitt,

and E. J. Steele.)

I

[T] Communications of the Association for Computing Machinery, 3(1960);
preprints of the Conference on Symbol ManipulationPrograms.

[U] Yovitts, M., and

Cameron,

S. (eds.), 1960. Self-organizing Systems,
New York: Pergamon. (Farley,

yon

Foerster, Estes, Rosenblatt, Newell
et al., Milner, Campbell, Pask,

McCulloch,

Burks, and others.)
[V] Proceedings of the Western JointComputer

Conference,

May 3-5, 1960.
[W]

yon

Foerster, H. (cd.), 1960. Illinois Symposium on Principles of Self-
Organization, University of Illinois, Urbana, 111., to be published. (G.
Pask, W. R. Ashby, A. Rapaport, S. Beer, L. Verbeek, M. Blum, J.

Cowan,

L. Lofgren, R. W. Sperry, R. L. Beurle, G. W. Zopf, F. A.
Hayek, J. K. Hawkins, J. R. Piatt, A.

Novikoff,

C. A. Rosen, D. G.
Willis, F. Rosenblatt, and P. H. Greene.)

[X] Cherry, C. (cd.), 1961. Proceedings of the 4th London Symposium on
Information Theory, London: Butterworth; also New York: Academic.

!

[V] Proceedings of the IRE, 1961. Special computer issue; review articles
about artificial intelligence, automatic programming, adaptive servo-
mechanisms, adaptive networks, etc.

!

[Z] Proceedings of the Western Joint Computer Conference, May 9-11,
1961.

[AA] David, E. E. (cd.), 1962. Special issue on sensory information process-
ing, IRE Transactions on Information Theory, IT-8:2, 74-191.

[AB] 2d International Congress on Cybernetics, Sept. 3-10, 1958, Namur,
Belgium, Association de Cybernetique.

[AG] Delafresnaye, J. F. (cd.), 1954. Brain Mechanisms and

Consciousness,

Council for International Organizations of Medical

Sciences,

Oxford:
Blackwell Scientific Publications.

BIBLIOGRAPHY 523
[AG] Delafresnaye, J. F. (cd.), 1961. Brain Mechanisms and Learning,

Oxford: Blackwell Scientific Publications.
Greenberger, M. (cd.), 1962. Management and the Computer of theFuture, New York: Wiley.
Proceedings of a Conference on Learning Automata (Lernende Auto-
maten), 1961, Technische Hochschule, Karlsruhe, Germany, Apr.
11-14, 1961, Oldenbourg, Munich, 1961.

Marill, T. (cd.), 1961. Special issue on artificial intelligence, IRE
Transactions on Human Factors in Electronics, HFE-2:1.
Symposium on Biosimulation Organized by the Barth Foundation at
Locarno, Switzerland, June-July, 1960.
Liapunov, A. A. (cd.), Problems of Cybernetics, no. 1 (1958), no. 2
(1959), no. 3 (1960), no. 4 (1960), no. 5 (1961).
Seminar on Cybernetics in Moscow University, 1959-1960; All Union
Conference on Computer Mathematics and Technology, 1960. These
all contain papers in the Artificial Intelligence area, and I have not at-
tempted to characterize their content. For a listing of titles for these
and other Soviet literature, with numbers and prices of the Office of
Technical Services and other available translations, see Morris D. Fried-
man, Bth Reference Bibliography (Artificial Intelligence—Soviet Bloc),
MIT Lincoln Laboratory Library, Dec. 27, 1961, ASTIA MIT Hayden
Library and see Feigenbaum, 1961c, for an interpretation of this
literature.

[AD]

[AE]

[AF]

[AG]

[AH]

k. ,

Index
Abstract machines, 25
ACSI-MATIC system, 215
Adaptive servomechanisms,410, 455, 473
Administrative structure of Logic

Theorist, 436
Advice taker, 441
Algorithm, 6, 113, 135,438

British Museum, 115, 118, 120, 132
enumerative, 459

Alluisi, E. A., 267
Amarel,

S.,

322, 324
Analytical engine, 16, 26
Andree,R. V., 394
Armer, P., 8, 387-405
Articular descriptions of patterns, 424
Artificial intelligence, definition

of,

3, 37
Asch,

S.,

375
Ashby, W. R., 409n., 442/j.
Assembly line balancing program, 168-

-190
exhaustive procedures, 170-171
grouping tasks into work stations, 177-

-179
heuristic program

for,

171-173
hierarchy of problems, 174-177
mechanizing, 185-186
problem stated, 169
regrouping, 179-181
results, 182-184
smoothing, 181-182
zoning constraint, 184-185

Atkinson, R.

C,

297n.
Aufenkamp, D. D., 443
Austin, G. A., 300n.
Automata, minimization

of,

454
theory, 454, 457-458

Babbage,

C,

16, 390
Backtracking, 440-441
Bailey, C. E.

G.,

251
Bales, R. F., 373
Bar-Hillel, V., 218

Baran, P., 251
Bartlett, F.

C,

323
Baseball program (see Question-answei

ing machines)
Bayes nets, 419, 441

learning, 420
random nets, 421

Baylor, G. W., 66
Behaviorism, 280
Bellman, R., 43 1n.
Berg, A. 1., 403
Bernstein, A., 48, 56, 63, 430n.
Bibliography, 453-523
Binary choice experiment, 329
Binary choice program, 330-339

deficiencies,

337-338
hypotheses, 331-332

guess-opposite (gambler's fallacy),
331

pattern, 331
Phase

One,

332
Phase Two, 333

Binary connective terms in evaluation

functions,

102
Biriuker, D. A., 402
Black box analogy, 3 1 1
Blau, P. M., 376
Bledsoe, W. W., 252, 266, 422
Blum, G.

S.,

275
Bomba, J.

S.,

425
Bowden; B. V., 390
Brain, cell assembly, 471

comparison to machines, 471
models, 450
synaptic

facilitation,

470
theories of

function,

470
Brainlike computers, 458
British Museum algorithm, 115, 118,

120, 132
Browning, 1., 252, 266, 422
Bruner, J.

S.,

293, 300n., 450
Brunswick, Duke Karl

of,

61
Brute-force computing, 4

525

If.

526 INDEX

i ' Bryton, B„ 171, 186
' I BSAINT, 202
,i ' Bush, R. R., 427
'»' | Butler,

S.,

389
i[I
| ',
''

Calculus,

191

1 1 447n., 471

1 I ness, 22

' 111-
II'll
IP

in. stipulation, 394

|
f [theological, 20

p

Carr,

J. W., 401

|iv 175
, '! Chang, J. J., 321

. I j of a problem, 444
i

ii
i

d 443

"'j written, 462
''.(printed text, 462

i 1 430-432

' rote, 79-83

Cameron,S.,

446n., 450
' ' Can machines

think?,

11, 237, 387,

i l ' , objections and arguments, conscious-

continuity in the nervous system, 27

\\ ! extrasensory perception, 29
1 ij; ■ false attrition, 394
! j,

t

false extrapolation, 395

■

! heads in the sand, 21
["' informality of behavior, 28
|, , invidious comparison, 393
j- p ' mathematical, 21

, '" i obedient slave, 395

i'JI superexcellence, 393

, r various disabilities, 23

»j Cell assembly model, 471
,'>' Chain (group of assembly line elements),

j i

Character,

of a figure, definition

of,

415

j j i Character-Algebra model, 443
'jl'j Character-Method machines, 441

\ Character-Method matrix, definition

of,

I Character-reading machines, hand-

I I Checker-playing program, 71-105, 337,

!| i basic program, 73-79
j evaluation

function,

74-76, 99-103
,' learning, generalization, 83-95, 430

, i parameters, 100-102
programming details, 95-97
vs. R. W. Nealey, 103-105

'■; sample games, 97-99
search, 77-78

Checker-playing program, variations, 78
Chess-playing programs, 39-70

Bernstein's program, 48-50
Los Alamos program (Kister,

Stein,

Ulam, Walden, Wells), 46-48
Newell,

Shaw,

Simon program, 50-70.
337, 431

analysis, 54
basic organization, 51
evaluation, 52
final choice, 53
goals, 51, 57-60
vs. H. A.

Simon,

66-70
move generation, 52
performance, 60-63
programming, 63-64

Shannon's proposal, 42-44
Turing's program, 44-46

Chomsky, A. N., 221, 448
Chomsky,

C,

205

Church,

A., 21, 310

Clark,

W. A., 72n., 450

Clarkson,

G. P. E., 37, 274, 327, 330,
347-371

Classification techniques, 412
Coding theory, 455, 469
Coefficient assignment, 83-95, 431

Cohen,

K. J., 275
Colby, K. M., 275
Coles, G. R., 321
Combining properties, 418
COMIT, 185/1.
Common trust

funds,

362
Comparator, 409
Complex information-processing systems,

109
Computability, 458
Computation, theory

of,

458
Computer, definition

of,

1
digital, 14, 458

control, 15
executive, 1 4
random element, 16
store, 14

parallel, 458
structures, 458

Concept, conjunctive, 3 1 1
definition

of,

310
disjunctive, 311

Concept learning model, 311-325

527INDEX

Concept learning model, answer de-
velopment subsystem

of,

314
dimensionalanalysis

of,

312
execution list

of,

315
property lists

of,

312
reference lists

of,

315
solution routines

of,

316
subject parameters, 314
time-checking mechanism

of,

318
Conditional prediction, 337

Craik,

K. J. W., 447n.
Creativity, 447

relation to randomness, 460
Credit-assignment problem, 432, 434
Cybernetics, 399, 403, 473'

(See also Servomechanisms)

Darlington, C. D., 434
Da Vinci, L., 389, 397
Davis, M., 437, 438/i.
Decision net models, 421, 422

limitations

of,

422
Decision procedure, 437, 459
Decoding procedure, 440
Definite integration, 191, 199
De

Groot,

A. D., 47
Delta, 85
Diagram computer, 139, 141
Difference-Algebra, 445
Differences, 444

(See also General Problem Solver)

Differentiation,

410
Dinneen, G. P.,

301/;.,

417
Directed-graph structure, 169, 439
Discrete-state machines, 17-18
Distortions, 413

noise, 413, 428
systematic, 413

Doyle, W., 247, 252, 266, 422
Duda, W. L., 72n.
Duncker, X., 277, 330
Dunham, 8., 35n.

Elementary Perceiver and Memorizer
(EPAM), 297-309

cue, 305
discrimination net, 300
forgetting in, 308

Elementary Perceiver and Memorizer
(EPAM), image lists

of,

302
interference in, 308
internal symbols

of,

301
macroprocesses

of,

306
net interpreter

of,

302
noticing order, 304
oscillation, 299, 307
perceptual process, 300
response generation, 300, 306
response retrieval, 306
retroactive inhibition, 299, 307
tests

of,

302
Epistemological questions, 471-472

what can a machine know? 47
(See also Can machines think?)

Equivalence

transformations,

414
Errors, of conclusion, 25

of functioning, 25
Estrin,

G.,

251
Evaluation

function,

431
(See also Checker-playing program;

Chess-playing programs)
Evolution, 434

False-peak problem, 411
(See also Hill-climbing)

Farley, B.

G.,

12n., 433, 450
Feigenbaum, E. A., 274, 293, 295, 297-

-309, 325, 385, 401
Feldman, J., 274, 293, 299, 300n.,

327, 329-346, 385
Fermat's Last Theorem, 394
Finite-state machines, 457
FLPL (see FORTRAN List Processing

Language)
Forder, 138
Forgetting, 308

FORTRAN,

108, 445n.
FORTRAN List Processing Language

(FLPL), 108, 155, 446n.
(See also Geometry-theoremproving

machine)
Freeman, 402
Freimer, M., 431
Fridshal, R., 35n.
Friedberg, R. M., 433-434
Functional equivalence of man and

machine, 392

528 INDEX

f

!

Gagne, R. M., 275
Galanter, E., 428, 446
Gambler's fallacy, 331
Game-playing machines, 474

(See also Checker-playing program;
Chess-playing programs)

Gametheory, 45, 474
Gelernter, H., 108, 134-163, 220, 283,

439, 443, 446/j.

Gelfand,

I. M., 403
General ProblemSolver (GPS), 7, 277-

-293,

300/1.,

437
comparison to human behavior, 288-

-293
differences, 284, 441
feasibility test, 285, 286
goals, 284

apply operator, 284, 285
reduce

difference,

284, 285

transform,

284, 285
methods, 285
objects, 284
operator-difference table, 285
operators, 284

General-purpose computers, 406
Generalizationlearning, 83-95, 430
Generating properties for pattern

recognition, 417
Geometry machine, 136-147, 153, 172,

443
Geometry-theoremproving machine,

134-163
diagram computer, 139, 141
heuristic computer, 140-142
heuristic methods, 135
limitations, 158
results, 143-163
syntax computer, 139-141
working backward, 136

Gestalt movement, 280, 425
Gestalt-type problems, 424

Gibson,

E. J., 297

Gilmore,

P.

C,

146, 159/1.

Goal,

definition

of,

444
(See also General Problem

Solver;

Geometry-theorem proving
machine; SAINT)

Godel's theorem, 21, 447

Gold,

8., 238

Golumb,

441

Goodman,

N., 7 ln.

Goodnow,

J. J., 300n.

Gorn, S.,

450
GPS (see General Problem Solver)

Grant,

D. A., 275

Greanias,

E.

C,

251
Green, B. F., Jr., 205

Grimsdale,

R. L., 251, 425, 434
Growing machines (infinite structure),

157
Growth account, 364
Growth and income account, 364
Growth portfolio selection, 367
Guess-opposite hypothesis, 331

Gullahorn,

J. E., 274, 374-386

Gullahorn,

J. T., 274, 374-386

Gutenmacher,

L. 1.,402, 405

Haibt, L. H., 72n.
Haller, N., 425
Hansen, J. R., 108, 153
Harris, Z.

S.,

211
Hartline, H. X., 265
Hartree, D. R., 26
Hawkins, V. X., 422n.
Hayek, F. A., 447n., 450n.
Hays, D.

G.,

339
Hebb, D. 0., 425
Heidbreder, E., 330
Helgeson, W. 8., 171
Heuristic assembly line balancing pro-

gram (see Assembly line balancing
program)

Heuristic computer, 139-141
Heuristic connection, 409
Heuristically effective

definitions,

412
Heuristics, definitions

of,

6, 109, 114,
135, 137, 172, 192, 407n., 435,

438, 470
(See alsoparticular heuristics, e.g.,

Means-end type of analysis;
Planning; and particular pro-
grams, e.g., Chess-playing pro-
grams; Logic Theorist; Pattern
recognition)

Hex, 439
Highleyman, W. X., 251, 422
Hilbert, D., 138
Hill-climbing, 408-411, 460

coefficient assignment, 83-95, 411
false-peak problem, 411

529INDEX

Hill-climbing, Mesa phenomenon, 411,
433-434, 460

Hodes, L., 424
Hohn, F. E., 443
Holistic Principles of organization

(Gestalt theory), 280
Holland, J. H., 12n., 425
Homans,

G.,

375, 386
Homunculus, 376-386

(See also Social behavior)
Hovland, C. 1., 274, 293, 296,

299/1.,

310-325
Hubel, D. H., 265
Hugh-Jones, F. M., 394
Hull, C. L.,

297/1.,

299/1.
Hunt, E., 274, 293, 296, 310-325

Imitation game (Turing's test), 11, 18,
158, 390, 397

Income account, 364
Income and growth account, 364
Income portfolio selection, 367
Indefinite integration (antidiflerentia-

tion), 191-199
Individual trust accounts, 363
Inductive

inference,

455, 469
abbreviativeencoding, 469
conditional probability, 469
grammatical induction, 469
hypothesis formation and

confirmation,

469
simplicity and, 470
theories

of,

470
Industrial applications, 475
Inferential analysis, 146, 159
Inferential memory, 217
Infinitive capacity computer, 16
Information Processing Language

(IPL), vi,

185/1.,

440
IPL-IV, 63, 185, 187

Inhibition, 299, 307
Intelligence, 447, 471

Interference,

308
Invariantproperties for pattern recog-

nition, 416
Investment process model, 347-371

"A" list, 352-362
average rate of change list, 354
current value list, 354
economy and industry expectation

lists, 355
forecasting

information,

354
guiding criteria, 348
memory

of,

348
portfolio selection, 365-369
postulates and data

for,

348-352
recent change list, 354
relative performance list, 356, 357
relative value list, 356, 358
search and selection procedures

of,

348
selecting, "A" list, 359

scanner, 359-362, 364, 367
selector, 359-362, 364, 367

temporary expectation lists, 355
ten-year average list, 354
test

of,

369-371
IPL (see Information Processing Lan-

guage)
Isouard,

Count,

61

Jackson, J. R., 171, 180, 182, 183
Jefferson,

G.,

22, 23
Jenkins, H. M., 319

JOHNNIAC,

63, 110, 122n., 126, 185,
186

Kamentsky, L. A., 251, 422
Kehl, W. 8., 217IPL-V, 185, 186, 207, 306, 312, 377, Kehl, W. 8., 217

385 Keller, H., 32, 323
Information retrieval techniques, 217, Khrushchev, N., 401, 403

450, 455, 472 Kilburn, L., 283, 434
human memory, 472 Kirsch, R. A., 422, 425, 455
reasoning about stored

information,

Kister, J., 394
472 Klaus,

G.,

400, 403
(See also Question-answering Kleene, S. C, 21

machines) Kochen, M„ 236, 324
Information theory, 455, 469 Kohler, W., 425

'l

k .

530 INDEX

Lettvin, J. V., 265
Lindsay, R. X., 206, 217-233, 300/1.
Linear operator model, 427

(See also Statistical learning model)

LISP,

185n., 191, 312, 440, 446n.La Berge, D. L., 321
Laing, R., 389/i.

i

i

List structure, 221
Local peaks, 460"X" (lambda) notation, 424

Languages, 448, 450, 455, 467 (See also Hill-climbing)
Logic, 450, 454and coding for models, 468

formal, 468 Logic Theorist, Logic Theory Machine
(LT), 108-143, 166, 172, 192, 197,
201, 237, 322, 435-438

grammar, 448

| information theory and coding the-
ory, 455, 469 British Museum algorithm, 115, 118,

120, 132natural, 467
programming systems, 468 criticism

of,

437
described, 110-113role in thinking and communication,

468j

effort,

measurement

of,

126-128
executive routine, 119,436symbol manipulation, 468

(See also

FORTRAN;

Information
Processing Language; LISP)

matching process, 124
methods, 117-119, 436

Laplace, 17 chaining, 117
Lasker, E., 37, 66-70
Latent learning, 321
Laughery, X., 206-216
Lawrence, D. H., 321
Learning, 30, 463

detachment, 117
substitution, 117

modification

of,

132, 133
similarity tests, 124-126
subproblems, 128-132
task of, 114-115adaptation, 464

animal, 463 Logical network theory, 457
association, 279, 464
averaging, 426

Los Alamos chess program, 46, 63
Lovelace, Lady, 26, 30, 390

conditioning, 464 Loveland, D. W., 153
LT (see Logic Theorist)confirmation of internally generated

hypotheses, 464 Luhn, H. P., 217
correlation, 464
definition

of,

426, 450
extinction, 464
human, 463 McCarthy, J., 15n., 191, 312, 325, 435,

440, 441, 445learning systems, 425-435
basic learning heuristic, 425 McCullough, W.

S.,

72, 265, 416

reinforcement,

464
reward, 464i Machine translation, 455
rote, 465 Machines thinking (see Can machines

think?)statistical learning theories, 464
(See also Checker-playing program;

Concept learning model; Ele-
mentary Perceiver and Mem-
orizer; Pattern recognition)

MacKay,D. M., 425, 447/1.
McPhee, W„ 374
Man-machine interaction, 474
MANIAC I, 46

Learning-by-generalization tests, 89-93
Lebedev, S. A., 399 Markov processes, 373
Legal stocks, definition

of,

363/i. Markowitz, H., 369/1.
Lenin, 400 Marx, X., 400, 403

Kolman, E., 401
Kwo, T. T, 171

I

Lyapunov, A. A., 400, 403

MacGowan,

B. A., 389, 390

Marimont, B. 8., 186

531INDEX

Matching process, LT, 124
Material balance, 59, 75
Maturana, H., 265
MAUDE (Morse Automatic Decoder),

238
Maximum-likelihoodtype of analysis,

421
Maze learning machine, 475
Maze model, 5
Means-ends type of analysis, 277, 444

(See also General Problem Solver)
Mechanical mathematics, 437
Mechanical translation, 455
Mechanized proof methods, 437
Mesa phenomenon, 411, 433, 434, 460

(See also Hill-climbing)
Meszar, J., 396
Miller, G. A., 215, 267, 293, 428, 446,

448
Milligan, M., 396
Milner, P. M., 450
Mind-brain problem, 441n., 472
Minimaxing, 42, 56, 76, 430, 431
Minot, O. N., 425
Minsky, M., 154, 283, 296, 301, 387,

391, 406-523
Mitchell, J., 169, 171, 182, 184
Model, definition

of,

413
Modus ponens, 141
Moiseyev, 5, 400
Mooers, C. N., 422n., 439n.
Morphy, 61
Morse Automatic Decoder (MAUDE),

238
Mosteller, F., 47, 427
Move generator, 52, 59
Mowrer, O. H., 219
Multiple integration, 191, 200
Multiprogramming, 450
Music writing machines, 474

Names (symbolic expressions), 310, 412
computed (complex descriptions), 413
conventional (proper), 413

Nash (Hex), 439
Nealey, R. W., 103
Neisser, U., 237-250, 321, 324, 420, 422
Neural nets,

v,

71, 459
random, 458

Neurophysiology, 455

Newell, A., 37-70, 109-133, 185, 192,
197, 274, 276, 277, 279-293, 296,
300n., 312, 322, 330, 337, 348, 394,
405, 409n., 418, 423, 430-435, 437-
-441, 444, 447, 455

Newman, E. A., 408
Nonsense Syllables, 295
Normalizationof patterns, 413
Norrie, C. 0., 251
Noticing order, 304

Oettinger, A.

G.,

455, 456
Ogden, C. X., 227
Operations Research, 455
Orchard-Hays, W., 446
Ordering routines in model of human

concept

formulation,

310
Osgood, C. E., 219

Pace, F., Jr., 404
Paired-associates presentation, 298
Pandemonium (see Pattern recognition,

programs)
Papert,

S.,

420, 421n., 422n.
Parallel processing, 245, 290
Partial reinforcement, 429
Pask,

G.,

447n.
Passive classification systems, 424
Pattern, definition

of,

413
hand-printed characteristics, 422
incomplete figures, 424
overlapping figures, 424
printed characters, 242-268, 413, 422

Pattern hypothesis, 331
Pattern recognition, 201-202, 235-268,

411-425, 460
discovery of useful properties

for,

462
programs, amplifier, 257-259

details, 253-260
operator, 253-257
results, 261-265
summary, 252

Maude (Morse Automatic De-
coder), 238-242

pandemonium, 245-250, 420
cognitive demons, 420
data demons, 420
decision demons, 420
demons, 246, 420

532 INDEX

:m

p

i\

i

" i

;
VI '

ij
II

i

Pattern recognition, programs, Uhr-
Vosslerprogram, 251-276

schemes, articulation, 461
attention, 461
character-vector, 461
hierarchies of recognition devices,

463
matching criteria, 461
property-list, 415, 422, 461
recursion, 461
statistical decision theory, 462
template-matching scheme, 244, 413,

415
weighted sums, 463

transformation-invariantproperties not
requiring prenormalization, 463

Pavlov, 400
Pavlovian Conditioning Device, 429
Pendergraft, E., 222
Perception, human, 461

machine (see Pattern recognition)
Perceptron, limitations

of,

421
(See also Rosenblatt, F.)

Philosophical Problems of Cybernetics,
399

Physiological psychology, 455
Pierce, A. M., 455
Pitts, W., 265, 416
Planning, 7, 278, 430, 435, 465

general heuristic, 445
homomorphic models,442, 465
human, 465
internal abstract models, 465
internal models, 465
prediction of effects of contemplated

action, 465
semanticmodels, 442, 465
simplified model, 442

Plausible moves, 52, 430
Play limitations (see Checker-playing

program, Chess-playing programs)
Poletayev, I. A., 400
Polya,

G.,

135, 324, 450
Portfolio

diversification,

368
Portfolio selection (see Investment proc-

ess model)
Predicate calculus, 438
Prediction and expectation, 430
Previous results, use

of,

132, 434
Pribram, X., 428, 446

Principia Mathematica, 108, 11In., 116,
120, 129, 146, 237

Probabilistic machine theory, 457
Probability matching, 427
Problem, concept

of,

4, 1 1 3
Problem-solving, 277-293, 435, 465

administrationproblem for heuristic
programming, 465

character-methodselection, 467
deductive logic in, 467
goals and subgoals, 466
human, 466
program-writing programs, 467
reasoning and discovery, 467
search-tree terminationwith static

evaluation

function,

466
theory proving by machine,467
training sequences, 466
(See alsoparticular programs, e.g.,

General Problem

Solver;

Geom-
etry-theorem proving machines;
Logic Theorist)

Problems of Cybernetics, 403
Program, definition

of,

2
Program-writing program, 433
Programming, 16
Propositional calculus, 435
Protocol, 282, 330, 349
Putnam, H., 438

Question-answering machines, 205-233
baseball program, 8, 205-216

data, 209
dictionary, 208
linguistic routines, 210-212
processing routines, 212-214
specification list, 208

inferential memory machine (SAD
SAM), 217-233

semantic-analysis program, 227-233
sentence-parsing program, 221-227

RAND simplex code, 184
Random nets, 421, 458

(See also Neural nets)
Rashevsky, N., 450
Recursive function theory, 454, 458
Reinforcement, definition

of,

426

533INDEX

Reinforcement, extinction,426, 428
operant, 426
reward, 426

Reitman, W., 389n.
Reliable computation with unreliable

elements, 454, 458
Response generalization, 307

(See also Elementary Perceiver and
Memorizer)

Response selection, 322
(See also Elementary Perceiver and

Memorizer)
Retroactive inhibition, 299, 307
Rivalry between man and machines, 397
Roberts, L.

G.,

48, 251, 422, 433
Rochester, N., 12n.,439, 443, 450
Rosenblatt, F., 72n., 251, 266, 321, 324,

420, 421, 422/i., 433
Rosenbloom, P.

C,

447
Rosser, 21
Rote learning in checker-playing pro-

gram, 79
tests

for,

82
Rules of inference in LT, 1 1 1

detachment, 111
replacement, 111
substitution, 111

Russell, 8., 108, 11 In., 112, 113, 146,
238, 435, 437

Russians, attitudes toward thinking ma-
chines, 399

emphasis on artificial intelligence re-
search, 402

position in computer sciences, 401

SAD

SAM,

206, 217-233
(See also Question-answering ma-

chines)
SAINT (Symbolic AutomaticIntegra-

tor), 166, 191-203

BSAINT,

202
definite integration procedure, 199
experiments with, 200-203
indefinite integration procedure, 192-

-199
algorithmlike transformations, IP7
AND-OR goal tree, 195
character of goal, 196
executive organizations, 198-199

SAINT (Symbolic AutomaticIntegrator),
indefinite integration procedure,
goal list, 194

goals, 193-194
heuristic goal list, 197
heuristic

transformations,

197
immediate solution, 198
pairing goal tree, 197
relative cost estimate, 196
resource allotment, 196
standard

forms,

194
temporary goal list, 195

multiple integration, 200

Salveson,

M. E., 171, 183

Samuel,

A. L., 38, 71-105, 237, 283,
296, 337, 390, 408, 409n., 428,
430-432, 447

Search,

407, 459
efficiency of large searches, 459
heuristics for reducing magnitude

of,

460
imperfect, 459
(See also Checker-playing program;

Chess-playing programs; General
Problem Solver)

Secondary reinforcement and expectation
models, 429

Selection of industriesfor investment
policy, selection of portfolio (see
Investment process model)

Self-reproducing machines, 474
Selfridge, 0., 236-250, 266, 301n., 321,

324, 411, 417, 418, 420-422, 425,
450

Semantic analysis program, 227
Sentence-parsing program, 221-227
Sentential calculus, 110
Sequential improvement schemes, 460
Sequential processing, 244
Serial-anticipationpresentation, 298

(See also Elementary Perceiver and
Memorizer)

Servomechanisms,

473
adaptive control systems, 410, 455, 473
automation machines and society, 473
homeostasis, 473
and psychiatry, 473
social organizations, 474
teleological mechanisms, 473

S«sher,S.,

443

534 INDEX

'\

n
;jjl

'1.

I

i;

Set,

group of elements in assembly line,
174

psychological, 321

Shannon,C,

42, 51, 63, 73, 408, 430,
439, 440

Shapiro,

G.,

200
Share selector process, 369

Shaw,

J.

C,

37-70, 109-133, 154, 192,
197, 277, 283, 296, 300n., 312, 322,
337, 348, 394, 418, 423, 430n., 431,
435, 437, 438, 441, 444, 447

Shepard, R., 319, 321

Sherman,

H., 251, 425

Shoulders,

K. R., 395

Shubik,

M., 428n., 450

Silver,

R., 440n.
Similarity tests in LT, 124, 436

evaluation

of,

127
Simmons, P. L., 455

Simmons,

R. F., 455

Simon,

H. A., 4, 37-70, 109-133, 154,
192, 197, 274, 277, 279-293, 296,
300«., 306, 309, 312, 330, 337, 348,
394, 405, 418, 423, 430n., 431, 435,
437-439, 441, 444, 447

Simplicity test in LT, 436
Sins of the positivists (exaggerated

claims of accomplishments of com-
puters), 397

Skinner,

B. F., 426
Slagle, J., vi, 166, 191-203,441/j.

Smearing, 414

Sobolev,

S. L., 400
Socialbehavior, model of elementary

(homunculus), 375-386
deprivation-satiation aspect, 381
principle of distributive justice, 383
reward frequency, 379
stimulus-situation, 377
subjective values of rewards, 381

Solomonoff,

R. J., 418, 435, 448
Solution routines in concept formulation

program, 3 1 1
Soviet Union (see Russians)
Specification list, 208
Speech recognition, 265, 461
Sperry, R., 266
Static evaluation, 60
Statistical decision theory, 455, 474
Statistical (incremental) learning

schemes, 428

Statistical learning model, 339, 427
Steepest ascent (see Hill-climbing)

Stevens,

M. E., 425

Stevens,

S.

S.,

299n.
Stimulus generalization in EPAM, 307
Stochastic learning model (see Statistical

learning model)
Storage capacity, 18
Strachey, C.

S.,

73, 75n.
Strassen, S. M., 66
Stream of associations, 280

STRETCH,

203
Strong nonprovability test in LT, 436
Subproblems, 460

selection

of,

438
centrality, 438
difficulty, 438
global methods, 439
hereditary methods, 440
local methods, 440

(See also Geometry-theoremproving
machine; Logic Theorist;
SAINT)

Sumner,

F. H., 434

Sward,

G. L., 35n.
Switching circuits, 454
Switching theory, 454, 457
Symbolic Automatic Integrator (see

SAINT)
Symbolic logic expressions, 283
Syntactical analysis, 210-211
Syntax computer, 139-141
Systematic introspection, 280

Tarski, A., 138
Task environment in

GPS,

278
Teleological process, 436
Teleological requirements of classifica-

tion, 412
Theorem Proving (see Geometry-the-

orem proving machine; Logic The-
orist; SAINT)

Think-aloud technique, 282, 329, 349
Thinking, defined as continuum, 390

by machines (see Can machines
think?)

Throw-me-off hypothesis, 333
Time sharing, 450
Tinbergen, N., 425

535INDEX

Tonge, F., 165, 168-190, 278, 283,
440

Topological equivalence, 414
Trace of

GPS,

287
compared to protocol, 288-292

Training sequence, 428, 434-435, 437

Transfer,

definition

of,

322
Tree of possibilities, 5

(See also Checker-playing program;
Chess-playing programs; General
Problem

Solver;

Geometry-
theorem proving machine; Logic
Theorist; SAINT)

Troll, J. H., 395
Trust Investment Model (see Investment

process model)
Turing, A. N., 9, 11-35, 44, 51, 55, 77,

135, 283, 390, 447n., 450n.
Turing machines, 457
Turing's test (imitation game), 11, 18,

158, 390, 397

Uhr, L., 236, 251-268
Uleman, J., 264
Unger, S. H., 252, 425
Universal machines, 18
Uttley, A. M., 422

Yon Neumann, J., 400, 454
Vossler,

C,

236, 251-268

Wang, H., 146, 159n.,437, 438
Ware, W., 391, 401, 404
Wells, H. H., 319
Whitehead, A. N., 108, 1 1 In., 1 12, 113,

146, 238, 435, 477
Wickelgren, W., 275, 300n.
Wiener, N„ 390, 399,

4\on.,

417
Wiesel, T. N., 265

Wolf,

A., 205
Working backward, 435, 436

(See also Geometry-theoremproving
machine; Logic Theorist)

Wozencraft,

J., 441
Wurzburg

School,

280

Yngve, V. H., 226
Yovitts, M. T., 446n., 450

Z (group of assembly-line elements),
175, 176

Zatocoding, 422n.
Zoning, in assembly-line balancing, 171

constraint, 184

i

i

(continued from front flap)
The volume focuses on milestones in
achievement of intelligent behavior by
machine. Among the papers in this vol-
ume are reports of computer programs
that play chess and checkers, prove
theorems in logic and geometry, solve
problems in calculus, balance assem-
bly lines, recognize visual and tem-
poral patterns, and communicate in
natural language. The reports of simu-
lation of cognitive processes include
computer models of human behavior
in solving logic problems, deciding on
common stock portfolios in trust invest-
ment, and carrying out social inter-
action. Models of verbal learning
behavior, predictive behavior in two-
choice experiments, and concept for-
mation are also presented.
In addition to the research reports, the
volume contains an early and a recent
discussion of the question, "Can a
machine think?," a comprehensive
survey of the field of artificial intel-
ligence, andan extensive bibliography
with a descriptor index.

Other McGraw-Hill Books

PROGRAMMING COMPUTERS FOR BUSINESS APPLICATIONS
By NED

CHAPIN,

Stanford Research Institute. 275 pages.
This book provides a sound basis for programming computers geared to business
applications. It offers an explanation and guide to the thinking a programmer must
do, including a carefully graded series of didactic programming examples. Basic
principles common to all computers are covered.
COMPUTER LANGUAGE: An Autoinstructional Introduction to FORTRAN
By HARRY L. COLMAN, Computer Sciences Department, Armour Research Founda-
tion, Illinois Institute of Technology; and CLARENCE P.

SMALLWOOD,

Western
Data Processing Center, University of California, Los Angeles.
This program helps teach the basic principles of FORTRAN to those with limited
background in the field. It serves as a general guide to FORTRAN and is applicable
to almost all types of computer installation. The program differs from the tradi-
tional programming approach in that it does not ask the student to respond to
every unit of information; it breaks the material into sequences of distinct visual
units and asks for answers to questions at various intervals in the program.

THE LANGUAGE OF COMPUTERS
By BERNARD A. GALLER, The University of Michigan. 256 pages.
Here is an introduction to some ideas and techniques involved in communicating
the solution of a problem to a computer. The basic approach is the gradual develop-
ment of a computer language, accomplished by examiningseveral typical problems.
Each problem is examined in detail, showing the need for adding new features
to the language. All problems illustrate techniques actually used in solving real
problems on computers.

DIGITAL COMPUTERS IN RESEARCH: An Introduction for Behavioral and
Social Scientists
By BERT F.

GREEN,

Carnegie Institute of Technology. Lincoln LaboratoryPublications.
352 pages.
This volume acquaints behavioral and social scientists with the use and operation
of computers. It combines an introduction to programming with an account of the
applications of computers to research programs. A conscious attempt has been
made to keep mathematics at an elementary level.
COMPUTER HANDBOOK
By HARRY D. HUSKEY and GRANINO

KORN,

University of Arizona. 1288 pages.
Here is detailed information and a wealth of industrial know-how on modern design
practices in the field of analog-computer components and systems. Included are
general-purpose analog computers and representative special-purpose machines.
Many actual circuit diagrams are included as concrete examples of design prin-
ciples or for direct adaptation to the designer's problems.

McGRAW-HILL BOOK COMPANY,
7227 Avenue of The Americas " New York, N.Y. 10020

