Not enough data to create a plot.
Try a different view from the menu above.
Energy
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project
Buchanan, Bruce G., Shortliffe, Edward H.
Artificial intelligence, or AI, is largely an experimental scienceโat least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.
The complete book in a single file.
Artificial Intelligence: An Assessment of the State-of-the-Art and Recommendations for Future Directions
This report covers two main AI areas: natural language processing and expert systems. The discussion of each area includes an assessment of the state-of-the-art, an enumeration of problems areas and opportunities, recommendations for the next 5-10 years, and an assessment of the resources required to carry them out. A discussion of possible university-industry-government cooperative efforts is also included.
Qualitative process theory
ABSTRACT: Objects move, collide, flow, bend, heat up, cool down, stretch, compress . and boil. These and otherthings that cause changes in objects over time are intuitively characterized as processes . To understandcommonsense physical reasoning and make programs that interact with the physical world as well aspeople do we must understand qualitative reasoning about processes, when they will occur, theireffects, and when they will stop. Qualitative process theory defines a simple notion of physical processthat appears useful as a language in which to write dynamical theories. Reasoning about processesalso motivates a new qualitative representation for quantity in terms of inequalities, called thequantity space . This paper describes the basic concepts of qualitative process theory, several differentkinds of reasoning that can be performed with them, and discusses its implications for causalreasoning. Several extended examples illustrate the utility of the theory, including figuring out that aboiler can blow up, that an oscillator with friction will eventually stop, and how to say that you canpull with a string, but not push with it. Journal-length version of Ph.D. dissertation, , MIT, 1985.Artifiicial Intelligence. Also In Bobrow, D. (Ed.), Qualitative Reasoning About Physical Systems, pp. 85รขยย186. MIT Press. Also in Artificial Intelligence 24:85-168 (1984).
Artificial Intelligence Research at Carnegie-Mellon University
AI research at CMU is closely integrated with other activities in the Computer Science Department, and to a major degree with ongoing research in the Psychology Department. Although there are over 50 faculty, staff and graduate students involved in various aspects of AI research, there is no administratively (or physically) separate AI laboratory. To underscore the interdisciplinary nature of our AI research, a significant fraction of the projects listed below are joint ventures between computer science and psychology.
A General Game-Playing Program
A general game-playing program must know the rules of the particular playing game. These rules are:(1) an algorithm indicating the winning state;(2) an algorithm enumerating legal moves. A move gives a set of changes from the present situation.There are two means of giving these rules:(1) We can write a subroutine which recognizes if we have won and another which enumerates legal moves. Such a subroutine is a black box giving to the calling program the answer: 'you win' or 'you do not win', or the list of legal moves. But it cannot know what is in that subroutine.(2) We can also define a language in which we describe the rules of a game. The program investigates the rules written with this language and finds some indications to improve its play. Artificial Intelligence and Heuristic Programming Edinburgh University Press
REALIZATION OF A GENERAL GAME-PLAYING PROGRAM
We study some aspects of a general game-playing program. Such a program receives as data the rules of a game: an algorithm enumerating the moves and an algorithm indicating how to win. The program associates to each move the conditions necessary for this move to occur. It must find how to avoid a dangerous move. We describe the part of the program playing the combinatorial game in order to win: how it can find the moves which lead to victory and what are the only opponent's moves with which he does not lose. This program has been tried with various games: chess, tic-tac-too, etc.INFORMATION PROCESSING 68 - NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM
Machine Intelligence 3
Note: PDF of full volume downloadable by clicking on title above (26 MB). Selected individual chapters available from the links below. CONTENTSINTRODUCTION MATHEMATICAL FOUNDATIONS1 The morphology of prexโan essay in meta-algorithmics. J. LAS KS 32 Program schemata. M. S. PATE RSON 193 Language definition and compiler validation. J. J. FLORENTIN 334 Placing trees in lexicographic order. H. I.S COINS 43 THEOREM PROVING5 A new look at mathematics and its mechanization. B. M ELTZER 636 Some notes on resolution strategies. B. MELTZER 717 The generalized resolution principle. J. A. ROBINSON 778 Some tree-paring strategies for theorem proving. D.LUCKHAM 959 Automatic theorem proving with equality substitutions andmathematical induction. J. L. D ARLINGTON 113 MACHINE LEARNING AND HEURISTIC PROGRAMMING10 On representations of problems of reasoning about actions.S.AMAREL 13111 Descriptions. E.W.ELCOCK 17312 Kalah on Atlas. A.G.BELL 18113 Experiments with a pleasure-seeking automaton: J. E. DORAN 19514 Collective behaviour and control problems. V.I.VARSHAVSKY 217 MANโMACHINE INTERACTION15 A comparison of heuristic, interactive, and unaided methods ofsolving a shortest-route problem. D.MICHIE, J. G. FLEMING andJ. V.OLDFIELD 24516 Interactive programming at Carnegie Tech. A.H.BOND 25717 Maintenance of large computer systemsโthe engineer's assistant.M.H.J.BAYLIS 269 COGNITIVE PROCESSES: METHODS AND MODELS18 The syntactic analysis of English by machine. J.P.THORNE,P.BRATLEY and H.DEWAR 28119 The adaptive memorization of sequences. H.C.LONOUETHIGGINSand A.ORTONY 311 PATTERN RECOGNITION20 An application of Graph Theory in pattern recognition.C.J.HILDITCH 325 PROBLEM-ORIENTED LANGUAGES21 Some semantics for data structures. D. PARK 35122 Writing search algorithms in functional form. R.M.BURSTALL 37323 Assertions: programs written without specifying unnecessaryorder. J.M.FOSTER 38724 The design philosophy of Pop-2. R.J.POPPLESTONE 393 INDEX 403 Machine Intelligence Workshop
Computers and Thought
E.A. Feigenbaum and J. Feldman (Eds.). Computers and Thought. McGraw-Hill, 1963. This collection includes twenty classic papers by such pioneers as A. M. Turing and Marvin Minsky who were behind the pivotal advances in artificially simulating human thought processes with computers. All Parts are available as downloadable pdf files; most individual chapters are also available separately. COMPUTING MACHINERY AND INTELLIGENCE. A. M. Turing. CHESS-PLAYING PROGRAMS AND THE PROBLEM OF COMPLEXITY. Allen Newell, J.C. Shaw and H.A. Simon. SOME STUDIES IN MACHINE LEARNING USING THE GAME OF CHECKERS. A. L. Samuel. EMPIRICAL EXPLORATIONS WITH THE LOGIC THEORY MACHINE: A CASE STUDY IN HEURISTICS. Allen Newell J.C. Shaw and H.A. Simon. REALIZATION OF A GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter. EMPIRICAL EXPLORATIONS OF THE GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter, J.R. Hansen, and D. W. Loveland. SUMMARY OF A HEURISTIC LINE BALANCING PROCEDURE. Fred M. Tonge. A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC INTEGRATION PROBLEMS IN FRESHMAN CALCULUS. James R. Slagle. BASEBALL: AN AUTOMATIC QUESTION ANSWERER. Green, Bert F. Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. INFERENTIAL MEMORY AS THE BASIS OF MACHINES WHICH UNDERSTAND NATURAL LANGUAGE. Robert K. Lindsay. PATTERN RECOGNITION BY MACHINE. Oliver G. Selfridge and Ulric Neisser. A PATTERN-RECOGNITION PROGRAM THAT GENERATES, EVALUATES, AND ADJUSTS ITS OWN OPERATORS. Leonard Uhr and Charles Vossler. GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT. Allen Newell and H.A. Simon. THE SIMULATION OF VERBAL LEARNING BEHAVIOR. Edward A. Feigenbaum. PROGRAMMING A MODEL OF HUMAN CONCEPT FORMULATION. Earl B. Hunt and Carl I. Hovland. SIMULATION OF BEHAVIOR IN THE BINARY CHOICE EXPERIMENT Julian Feldman. A MODEL OF THE TRUST INVESTMENT PROCESS. Geoffrey P. E. Clarkson. A COMPUTER MODEL OF ELEMENTARY SOCIAL BEHAVIOR. John T. Gullahorn and Jeanne E. Gullahorn. TOWARD INTELLIGENT MACHINES. Paul Armer. STEPS TOWARD ARTIFICIAL INTELLIGENCE. Marvin Minsky. A SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY TO THE LITERATURE ON ARTIFICIAL INTELLIGENCE. Marvin Minsky.
A model of the trust investment process
The investment process is a problem in decision-making under uncertainty. Our model, written as a computer program, simulates the proce- dures used in choosing investment policies for particular accounts, in evaluating the alternatives presented by the market, and in selecting the required portfolios. The analysis is based on the operations at a medium-sized national bank 1 and the decision-maker of our model is the trust imvestment officer. From A Simulation of Trust Investment, Englewood Cliffs, N.J.: Prentice-Hall, 1961.