INFORMATION PROCESSING 68 - NORTH-HOLLAND PUBLISHING CCMPANY - AMSTERDAM (1969)

REALIZATION OF A GENERAL GAME-PLAYING PROGRAM

JACQUES PITRAT
Institut Blaise Pascal, C.N.R. S.,
23, Rue du Mavroc, 75, Paris XIX, France

We study some aspects of a general game-playing program. Such a program receives as data the
rules of a game: an algorithm enumerating the moves and an algorithm indicating how to win. The pro-
gram associates to each move the conditions necessary for this move to occur. It must find how to

avoid a dangerous move.

We describe the part of the program playing the combinatorial game in order to win: how it can find
the moves which lead to victory and what are the only opponent's moves with which he does not lose.
This program has been tried with various games: chess, tic-tac-too, etc.

1. INTRODUCTION

My aim was to realize a program playing sev-
eral games. The rules of the particular game
which it must play are given as data. If we want
to have a performing pregram, it must be cap-
able of studying these rules.

The program is not completely general. It has
limitations of three kinds:

a. It can only play games on a bidimensional
board.

b. The rules of a game are written in a language
which cannot describe every game, but which,
however, covers a very large ground.

. The more severe restrictions arise from heu-
ristics which can be used in various games,
but with very weak performances for some
games.

I cannot describe the whole program, which
is very large. I shall describe the combinatorial
play which happens when we try to win, what-
ever the opponent may do.

The program can also play a positional game:
this comes about when the opponent can play
many moves without serious threats. We shall
not discuss this part of the program.

2. LANGUAGE USED TO DESCRIBE
THE RULES OF A GAME

There are two parameters for each square of

the board:

a. One giving the occupation of the square: emp-
ty - friend - enemy,

b. One giving the type of man if the square is
not empty.

For example, if the game is chess, the piece
may be: king, rook, pawn...

For some games, all men are of the same
kind: tic-tac-toe, Go-Moku.

There are variables. They can represent a
square or a number.

There are statements such as those of FORT-

RAN, ALGOL: arithmetic, test, go to statements.
Some are very specific to games:

a. Result statement. This statement gives infor-
mation about winning in a particular state of
the board. This may be: victory, loss, draw,
no victory ...

. Move statement. This statement describes a
move, which can be made up of several parts
(partial moves). The parts of a move fall into
four types:

i. The man in square A goes to square B

ii. The man in square A is captured

iii. A man of type T is put in square A

iv. The man in square A becomes a new type

1

To sum up, the rules of a game are given as
algorithms written in the language described
above: an algorithm enumerating legal moves
and an algorithm indicating how to win.

3. STUDY OF AN ALGORITHM

First, the program must find, for each move
or for each indication of victory, the conditions
necessary to obtain it. This is useful if we want
to destroy an opponent's move or if we want to
try to make a move possible, or to win, or to
escape a danger.

These conditions are not given by algorithms,







Avtificial Intelligence

which merely enumerate moves or indicate
whether we win or not. To obtain these condi-
tions, the program must study these algorithms.

An algorithm is put into the computer as a
graph. It has many branch points, corresponding
to tests, computed go to, loops. At each such
point, there is a condition. For instance: "If a
square K is empty, go to L1, otherwise to L2".

To each branch point, we associate its "con-
jugate”. This is the first statement where we
are sure to arrive, whatever branch we choose
and whatever the answers of the following tests
may be. There is always a conjugate: we gather
in one statement all the possible terminal points
of the algorithm. This is done in a first step:
each branch point has its conjugate.

While executing an algorithm, at each branch
point, we put the condition which has been satis-
fied in a push down. We remove it when we exe-
cute the conjugate: this condition now has no im-
portance. Whether this condition is true or false,
we are sure to arrive at this statement.

If we have a statement of result or of move,
the necessary conditions are in the push down.
Hence, we output the contents of the push down
at each such statement,

For instance, if the game is chess, and if we
have the state of the board shown in fig. 1, if we
enumerate the opponent's moves we have:

B 7 8
Fig. 1.

The man in the square (8,1) is captured. The
man in (6,3) goes to (8,1).

With this move, the program gives the condi-
tions:

a. Enemy man in (6,3)
b. Bishop in (6,3)

¢. Square (7,2) empty

d. Friendly man in (8,1).

We see the interest of this method. If we want
to avoid losing, we must destroy one of these
conditions, The number of moves to consider is
thus greatly reduced.

This method is not entirely exact. Under cer-
tain circumstances, some conditions are not
taken into account. But this case does not arise
in any of the games for which I have written
rules. It is possible to write a more complex
program which always gives all the conditions.

REALIZATION OF A GENERAL GAME-PLAYING PROGRAM 1571

It is also useful to enumerate the moves or the
wins that would be possible if the board were
changed. If we force an empty square to be occu-
pied by an enemy man, what are the new moves*?
If we force a square to be occupied by a friendly
man, do we win? In these cases, we may say that
we are forcing.

To see what happens with forcings, at each
modifiable branch point, we store the state of the
variables and the references of the statements to
which the other branches lead. This is done only
if this forcing is possible for the game.

When its normal work is finished, the program
is reset to the state which has been stored and
takes another branch, It stops when it arrives at
the conjugate: the rest of the algorithm has al-
ready been done. At each result or move, it also
outputs the conditions, but indicates those which
have been forced.

In the figure shown above for chess, the fol-
lowing move should be recognized as a forcing:
The man in (7,2) is captured. The man in (6,3)
goes to (7,2).

Under the conditions:

a. The man in (6,3) is an enemy

b. A bishop is in (6,3)

c¢. The man in (7,2) is a friend. This is the forcing
condition,

. THE SEARCH FOR A WIN

First, let us show how we can destroy or ful-
fil a condition.

If the condition is:

the square A is empty
we can destroy it by bringing a man there. To
destroy: the man in the square A is a friend, we
can take away the man.
To destroy: the man in the square A is an enemy,
we can capture the man in A.

The methods to fulfil a condition are similar,

This method is entirely general and good for
every game, Of course, if a particular game has
no capture move, a condition like: "enemy is in
square A", cannot be destroyed by the player.

We count as a single condition two conditions
on the same square.

Now, we can see how to win against all de-
fences. In a first stage, we shall get pairs: move
dangerous for the opponent - list of conditions one
of which must be destroyed by the opponent. In a
second stage, we shall get pairs: move dangerous
for the opponent - list of the opponent's counter-
strokes. Then we shall see how the program can
choose among its moves.




1572 J.PITRAT

Suppose the algorithm indicates when we win.
In parenthesis, we write what to do when it indi-
cates when we do not win.

There are two cases:

a. There is a win with one forcing (only one con-
dition prevents us from winning). There are
conditions £y, ..., E,, already fulfilled (for
win only) and one condition % to be fulfilled
(destroyed). If a move fulfils (destroys) %
without destroying Eq,...,Ep, we win. But if
no move fulfils (destroys) &, we try to see if
we can fulfil (destroy) 2 in two moves. We
enumerate all the moves which can fulfil (de-
stroy) it with one forcing, and we remove all
those which destroy one or several of the E]-.
Let ¢1,...,q, be these moves,

Let g; be one of these. For the others, we will

proceed in the same way. We know the condi-

tions Cq,...,C; necessary for this move, and
there is a condition D to fulfil since there is

one forcing. We look for the move fulfilling D

and we remove those destroying one of the E;

or one of the C;. Letry,...,7g be these

moves.

If we play one of these (which fulfils D), for

instance 7,,,, the opponent is obliged to de-

stroy the move ¢;, if he does not, he loses
after g;, unless he destroys one already ful-
filled condition for a win. Thus he must de-
stroy one of the conditions C; or D, or one of
the E;, winning conditions a{ready fulfilled.
We have a list of pairs:

Ym -El""’Ep’Cl""’Ct’D’

. There is a win with two forcings (two condi-
tions prevent us from winning).
Suppose we are in the first case. Conditions
E{,...,E pare already fulfilled and two condi-
tions, %1 and k9, must be fulfilled. There
may be many possibilities of this type. We
will proceed in the same way for each of
them.
Let us take 21 (when this is finished, we do it
again, swapping #q and ky). We enumerate
the moves fulfilling 21 and we eliminate those
which destroy one or several Ej. Let g1,...,9;,
be these moves.
After playing gq;, if we fulfil the condition &g,
we win. Let?y,...,f5 be the moves fulfilling
k9. Suppose for the sake of simplicity that
there is only one move M and let Cyq,...,Cy
be the conditions necessary for this move.
If we play g;, the opponent must prevent us
from playing M or destroy one of the condi-
tions already fulfilled; he must destroy one
of the Cj to prevent us from playing M next,

Applications

which thus enables us to win, or one of the £;
or k4 to destroy a condition already fulfilled.
If we play M next, there will always be a con-
dition to fulfil.

Thus we have the list of pairs:

q; - C1,--

Now, for each condition to destroy, we look
for the opponent’'s moves destroying it. Thus we
have a new list of pairs, the first element being
a player's move and the second, the list of the
opponent's counterstrokes. He must choose
among them if we play the first element and if
he does not want to lose. If there is no move in
the second element, we win.

Let us examine the application of this method
to chess, The win algorithm tells us we do not
win. By our method, the program sees that it is
because there is an opponent's king in the square
A. We are in the first case and p = 0. Condition
k is: enemy king is in the square A. If there is a
move which destroys it: a move which captures
the man in A, we win. If not, we look for the
moves which destroy it with one forcing. For in-
stance, the condition to fulfil may be:

a. Friendly rook in square B, or
b. Square C empty (discovered check).

Let us take the first case: there must be a
friendly rook in B. The win move: "Rook captures
king" needs other conditions which are fulfilled,
for instance:

C{1 : enemy man in A

Co : square E empty.

We look for the moves bringing a friendly rook
in B. Let a move be 7;: Rook in F goes to B.

If we play this move, the condition: "Friendly
rook is in square B" is then fulfilled; the oppo-
nent must destroy one of the conditions of "Rook
captures king":

a. Friendly rook is in B
b. Enemy man is in A
c. Square E is empty.

For each condition, he looks for the moves de-
stroying it. If, for instance, he cannot move his
king, without a new check, nor capture the rook,
he may have only two moves:

a. The man in H goes to E
b. The man in I goes to E.

Then we know that if we play:

Rook in F goes to B,
the opponent has only two counterstrokes:

a. The man in H goes to E
b. The man in I goes to E.

It is essential to see that this method is en-
tirely general. I gave an instance for chess, but
we can apply it to Go-Moku or to tic-tac-toe.

.,Ct,El,...,Ep,kl.




Avtificial Intelligence

We can make two remarks:

. A move may produce many threats (for in-
stance double check). In this case, we will
find twice or more the same move as first
element of a pair. Then, we remove all these
pairs and we create a new pair: its first ele-
ment is the move, and the second a list of
conditions obtained by a "and" of the lists of
conditions. If there is no condition, we win.

. When we play the move which is the first ele-
ment of the pair, we must verify that the oppo-
nent does not win, If he does, we must re-
move the pair: it is useless for the opponent
to destroy the threat, he wins before it oc-
curs. We must also verify for each opponent's
counterstrokes that there is no new threat for
him, For instance, if the game is chess, it is
useless to move his king from one check to-
wards another check.

When the program has the following list of
pairs: threatening moves - list of opponent's
counterstrokes, it must choose one of the first
elements. The opponent is then free to choose
among the corresponding list of counterstrokes.
We have a tree.

We must use heuristics in order to find quick-
ly if we can win. One of them is to try first the
moves where the opponent has few counter-
strokes. We restrict his possibilities and we see
more easily all the possible cases.

When we reach a win, it does not mean that
we win, because the opponent may attempt a dif-
ferent move previously. We must prune the tree,
working towards the beginning. If the opponent
has only one possibility and loses, we climb up
two levels higher: we choose the move which
leads to a win. If there are more than one branch,
we only cut the branch, if there is only one
branch, we resume the procedure,.

If we return to the beginning, we win what-
ever move the opponent chooses. We stop if we
have no further possibility of threatening the op-
ponent or if he has too many ways of escape.
This measure is heuristic.

In chess, this method leads to a sequence of
checks. It is very close to Mater I of Baylor and
Simon [1].

5. SOME RESULTS OF THE PROGRAM

It has been written for the CDC 3600. We de-
scribe a move by:
a. A man is added in square A : A
b. A man is moved from A to B ;: A-B
¢. The man in square A is captured : X A.

REALIZATION OF A GENERAL GAME-PLAYING PROGRAM 1573

A square is characterized by its two coordi-
nates.
Tic-tac-toe,

Cross noughts
2,3 2,1
3,1 1,3

2,2 - 3,2 and victory after the next move.

Cross noughts
3,3 1,1
1,3 2,3

3,3 - 3,2 and victory after the next move.

Time: 6 seconds
Fig. 2.

Thus, the program wins if it is playing first
and can put its first man in the center.
Chess. K = King; Q = Queen; R = Rook;
B = Bishop; N = Knight; P = Pawn;
W = White; B = Black.

55

-+
[s2]
-
~N
-
. -
N
]
[a=d -]
@ N

O « ~

and victory

|
[= =R N]
. w

1
NNOON oo oN

e v v~

.- e

NODOND Owu X
. .
Nw-PPood NO
1
S NWpHO;

- N

and win ime: 47 seconds

Fig. 3.

Edward Lasker played exactly the same se-
quence of moves. It is not the quickest mate.
There is a mate in seven moves (see fig. 4).

The sequence found by the program is the se-
quence given by Tarrasch.

6. CONCLUSION

We must not compare the performance of a
general program with that of a program playing




J.PITRAT

-
-

- -
.- -

il v il e it v
o OPOO® O O
- OO ON OO O
I« v w

@ ONO® ON o

o

=

(=

=

-

- |

NSNS QD ENER 00 BRI %00 BN

1
~N
-
[a=]

-
-

seconds

Applications

only one game. Artificial intelligence aims to
get general programs. If they are too particular,
we often have progress in the theory of the par-
ticular problem, but no progress in the theory of
artificial intelligence. Also, a particular pro-
gram cannot study new problems.

This program has been tried on games as var-
ied as tic-tac-toe, Go-Moku, chess and cylindri-
cal chess.

It is important to see that nowhere does it use
the particular properties of the game. If it is
playing chess, it does not know, for example,
that it is advisable to protect its men.

REFERENCE

[1] Baylor and Simon, A chess mating combinations
program, AFIPS, Vol. 28 p. 341.

DISCUSSION

Question by K. Paton

In your conclusion, you state that in playing
chess, the program does not know that it is pro-
tecting men. Does the program ever find out
that it is protecting men?"

Answer
No, it cannot learn. The general method en-

ables it to perform in each specific case, but it
is not formally capable of discovering the notion
of protection. Incidentally, the idea of protection
in chess does not apply in all cases, and makes
the formal discovery of the program difficult.

Question by D. Levy
How does the program decide what to do in a
non-tactical position?

Answer

The program takes into account the possibil-
ity of winning and forcing, e.g. in Go-Molar, it
takes into account relationships of moves and op-
ponent's moves, and tries to increase its mo-
bility (i.e. the number of possible moves) and
lessen the mobility of the opponent. The defini-
tion of mobility is included in the program, and
is completely general.

Question by P. Braffort

I can understand the advantage of a general
approach to the problem of artificial intelligence
treating games of a different nature on the same
level and with the same formalism for the es-
tablishment of rules. But have you also made an-
independent evaluation or comparison of your
program with others, and if so how do you find it?

Answer

The aim of the program is to play several
board games, but not specifically any one game,
and I would not expect it to be better than a spe-
cific program for a specific game.

Question by G. Nagy
Can you compare the performance of your
program with the Simon-Baylor results?

Answer

A general purpose game playing program will
obviously be less efficient than a special pro-
gram for a game. The combinational program
is finished, and I am now writing the positional
program.




