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PREFACE

The impact of computers on modern practice and thought can be analysed

into four blocks of about five years each, beginning in 1948. During the course

of the first five years the world became sprinkled with a sufficiently large hand-
ful of computers to arouse popular interest in them. It was in 1953 accordingly

that I wrote an introduction to Lord Bowden's popular best-seller Faster than

Thought, which represented a response to this interest. The problems of those

days were mostly concerned with hardware design, particularly reliability.
These problems were solved by the coming of the transistor with micro-

circuits on the horizon during the course of the second block of five years.
Software problems began to become urgent during the course of the third

block of five years. The demand of users for higher order languages threw a

tremendous burden on compiler writers as FORTRAN, Cono L, and ALGOL

were evolved, and it gradually became clear that problems of compiler writing,

logic, syntax, and semantics were all involved with one another together with

other non-numerical uses of computers and the simulation of other types of

hardware (e.g. neural networks capable of learning) in an interdisciplinary

complex which has become known as computing science.
Five years ago, at the beginning of the fourth block of five years, the Depart-

ment of Scientific & Industrial Research recognized this subject and the need
to provide for it as part of its grant-aiding machinery by setting up a Com-

puting Science Committee, of which I became the first chairman. When DSIR
was reconstructed the Committee continued in being under the successor-

body, the Science Research Council, with whose funds much of the research
published here has been carried out.
The University of Edinburgh was at that time becoming aware of an ener-

getic and computer-minded young Reader in the Medical Faculty — Donald
Michie — who undertook a survey of all computing science going on in the
United Kingdom on behalf of the Committee of which he later became a
member. He is now Professor Michie of the Department of Machine Intelli-
gence and Perception at Edinburgh University, and his annual 'Machine
Intelligence Workshop' is increasingly becoming an international rather than
a domestic event. This, the third volume of Machine Intelligence, published



PREFACE

with commendable speed after the conclusion of the 'workshop', records
many of the papers given on the occasion of its third meeting.

The workshop, as its name implies, is not a conference devoted to specula-

tion but a venue where hard results are hammered out and reported on,

nearly all of them by young men.
From the beginning this has been a young man's subject. The creative

imagination and energy of youth have been released on an unprecedented

scale into this essentially interdisciplinary field. Looking at the range covered

it is probable that only the young could assimilate the interconnections of such

a ramifying field of subject matter.
With this commendation I wish the publication as wide a circulation as it

deserves, for progress in computing science is at breakneck speed and the

problem of keeping up with it is a very severe one.

THE EARL OF HALSBURY
February 1968
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• INTRODUCTION

In a recent conversation, R. A.Brooker referred to an early categorization
of the two schools which divide the world of computer science as the 'primi-
tives' and the 'space cadets'. At no point is the need to find a meeting place
and a market place between these schools more pressing than in the attempt
to specify and construct intelligent machinery.
The space cadet operates with abstractions not because he enjoys being

above anybody's head but because he believes that only by profound theoretical
coups can our goals become even remotely attainable. So might early mechani-
cal engineers have reasoned in planning the creation of an automotive engine:
first develop the abstract notion of an automotive principle; then a mathema-
tical theory to enshrine it; then invent the steam engine; only then develop the
crafts of the designer, the wheelwright and the gear-cutter. By contrast, the
passion of the primitives is to make something and to make it work, not
shrinking from any methods however earthy. Their defence: that one Law of
Thermodynamics, or even three, does not make a steam engine.
There is of course everything to be said against a doctrine which denies the

arts of ad hoc implementation a central role in the development of a tech-
nology. Certainly, Machine Intelligence is no more than a technology,
although perhaps the most rapidly growing of all on the contemporary scene.
Yet the present decade is one of special excitement precisely because we are
beginning to see the first great conquests (such as J. A. Robinson's contribu-
tion to the present volume) in the mathematics of mechanizable reasoning,
Without which all the most ingenious primitivism in the world will not avail.
One can glimpse the same process at work in Amarel's analysis of problem
formulation, and in a number of contributions in the area of programming
theory and language design. Here the philosophic mantles of prophets absent
from this collection, notably, J. McCarthy, C. Strachey, and P. Landin, are
conspicuously in evidence. If one had to sum up the language trend one might
say that it is directed towards a future in which if a passage of text is respectable
mathematics in a generally accepted notation, then it will compile.
This volume comprises the papers delivered at the third Annual Machine

Intelligence Workshop held in Edinburgh, 11-16 September 1967. Gratitude is

ix



INTRODUCTION

owed to the University of Edinburgh for hospitality, and to its Principal,

Professor M. M. Swann, FRS, who delivered a memorable luncheon address
to the participants. We also owe particular thanks this year to the Science
Research Council, who defrayed the Workshop's costs, and to the Edinburgh
University Press, who have taken over responsibility for publishing the series.

DONALD MICHIE
February 1968
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The Morphology of prex—
An Essay in Meta-algorithmics

J. Laski
Centre for Computing and Automation
Imperial College of Science and Technology, London

Ad-hoc definitions

A set is a prex, as is a list, as is a ring,
as is a queue. . .
Note: prex is the plural of prex.

INTRODUCTION

If we may refer to elements of some sort that may be distinguished (a 0 b)
one from another, it may also be useful to refer to conceptual objects built
Up in various ways from some of these elements. The prex over these elements
are some of the simplest such objects.
As instantaneous objects, prex must be decomposable; thus we need selec-

tors. There is a family of several distinct kinds of prex but they all have in
common a single Selector (the or a) that picks out one of their elements. This
is what distinguishes them from the more general concept tree whose selectors
(car and cdr) may yield either an element or a tree.

Again, as instantaneous objects, prex must be recognizable; thus we require
Predicates of which there are two ('equality of two prex' and 'nil prex'). How
these (with the Constructors) relate to the selectors distinguishes the various
Siblings of the prex family such as 'list', ̀ set"queue', 'bag', etc.
But prex are also historic objects. Constructors applied to a prex will

Change the instantaneous value. Thus we have one Creator ('make nil prex'),
two Updaters ('try to add an element' and 'try to take away an element')
and the obvious Destroyer ('forget').
That our objects change their values, or even cease to exist, distinguishes

what we are concerned with from a traditional mathematical system (e.g.
that described by set-theory). Such mathematical systems concern themselves
With constant objects so that the time-sequence of evaluation of an expres-
sion Can have no effect on its value, unlike the case of objects on which a

3
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computation takes place. Thus I call this work 'meta-algorithmic' rather than
`metamathematican
The purpose of distinguishing the varieties of prex—the name is a contrac-

tion of 'predicate extension' — is to understand their use in specifying an
intensive name for the range of repetition of a quantifier-built expression or
command, as introduced in CSL or other so-called simulation languages. A
detailed treatment of quantification is being prepared for a further paper. The
purpose here is to provide a complete catalogue of the distinct kinds of prex,
naming them and enabling them to be distinguished one from another. This
will be done in two ways, syntactically and semantically.
Formally, we give first a group of axioms that relate syntactically expres-

sions obtained by applying constructors, predicates and selectors to any prex.
Then we give a group of assertions, the truth or falsity of which distinguishes
the varieties of prex. The sense in which we have a complete morphology of
prex is that we can produce a prex that results from any consistent assignment
of values (true, false) to these assertions.

Semantically, we can represent each kind of prex by lists of references to
representations of their elements; then we can distinguish the distinct kinds
by appropriate distinguishing interpretations of their constructors, predi-
cates and selectors in terms of those of the lists. Since, for discrete modelling
language we shall want to use prex of objects of the same (extensional) type,
we present here an aesthetic syntax that might well be part of such a program-
ming language rather than the not very appealing syntax it is convenient to
use in the earlier part of the paper.

A METALANGUAGE

To talk about prex and their elements we require both an object language
and a meta-language. The object-language is made up of signs which may
form well-formed expressions; according to the syntax these may designate
elements (in the domain a), prex (a-lists, a-sets, etc) or provable or disprov-
able sentences. These latter will be taken as true or false respectively when
they appear, as they always do, in statements of the meta-language.

The metalanguage is, of course, used to express meaningful statements
about the object language and I must start by assuming that the reader
understands by it what I intend him to understand by it. To make this possible,
I shall start with part of our common cultural heritage, the English Language.
Fortunately I do not require its full richness, but only a sparse subset. To this
I add some special signs from the vocabularies of predicate logic and I s w m.
These signs are to be construed with the intuitive content of what they for-
malize in these systems; to help the unfamiliar reader, some are listed below
with a comment on their intuitive meaning. This list is not exhaustive, nor is
their syntax (especially binding-power) fully defined. Thus the meta-language
remains unformalized and after this section we need no longer consider a
meta-meta-language.

4
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S6, ib
(95,

<964>
'Juxtaposition'

[0-40, X]

0 for 0
where
and
rec

type recognizer
a '0' together with a
a '0' or a '0'
a '0' followed by a '1,6'
functional application
CPL or LISP conditional expression
a function with domain 0
and range 0
‘,k' is the definiens, '0' the definiendum
subsidiary definition
simultaneous definition
recursive definition

For example:

D1 pred for {true, false}

allows us to refer to what some other writers call boolean.

SYNTAX

The prex primitives

We are now in a position to introduce the prex primitives:
the creator au;
the selector ();

isa
isa
isa
isa
isa
isa
isa

the updaters r, 8; the destroyer v;
the predicates 77, 0.

.a-prex
<a-prex, a> ..a-prex
<a-prex, a> a-prex

a-prex
<a-prex, a-prex> pred

a-prex pred

LASKI

Informal explanation
creates a new nil prex
tries to add an element
tries to remove an element
forgets the prex
equal R-value
recognizes the nil prex

/3. a where
( VA) (A isa 13: -=>: A isa a-prex & —0A)

selects an element from a
non-nil prex

It is convenient to introduce infixed operators for IT, 8, 77 and some simplenon-primitive predicates. Notice that, as defined, the evaluation of the
Predicate c updates A. Further, between each primitive updating of A in this
evaluation other processes may use or update A. For c to be well defined we
Inust be able to exclude the updaters of other processes. It is often, indeed,Convenient to make a pseudo-primitive by:
(a) updating A at the end of the evaluation to its original value.
(b) excluding also selectors and predicates of other processes

5
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D2 A it a for 77. Aa

and A 4 a for 8 Aa
and A =Bfor n AB
and rec aeA for [ç6A-olalse, a -=-0A-+true, ae8A0A]

where a isa and A isa a-prex and B isa a-prex

D3 AOB for>A=B
and OA for>aeA

where a isa a and A isa a-prex and B isa a-prex

In what follows we adopt certain meta-linguistic simplifications and conven-

tions:

1. we drop the explicit mention of the type a and speak simply of prex

and elements

2. a,b,c, . . .; A.B.C. . . .1,j . . . specify conformal elements, prex and

integers respectively.
The comments beside the axioms give their intended content and should,

formally, be ignored.

The prex axioms

xi (V A,B) (qSA.&.0B: -->•: A= B)
x2

x3 ( VA) (—OA. A 4 ®AA)

x4 ( VA,a) OA: cleA,4-*.aeA

x5 ( VA, a) (a4A. A ft a0 A)

comment
unique nil prex
the creator makes
a nil prex
the selected ele-
ment is removable

b ft b where hr.-. OA) when replaced
yield a coextensive
prex.
can always adjoin
a new element

x6 ( V A,a) (a e A * a)

x7 ( V A,B,a) (A =B: -÷: A IT a= B * a. &. A a= B a) it and * preserve
equality

Notice the use of where to provide temporary storage in x4.

The following theorems follow from these axioms and definitions:

Ti ( VA,a,b) (beA a:4-01)=-: avbeA)

T2 ( VA,a) a0 A)

Ti follows from x3 and D2
T2 follows from x6 and D2

The remaining axioms concern equality and the finitude of prex and it is

convenient to introduce further subsidiary definitions. The pseudo-value

undef, enables functions that are in intended application partial to be re-

placed by total functions.

6
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D4 rec .9' (A,i) for [i=0-)-A,
St (-9* ( A ) ) (A,1-1)=undef-÷undef,

(A,i-1)--÷(:). 9' (A, i--1)]
D5 (A,i) for [.?(A,i-1)=undef-* undef, 0.99 (A,i)]
D6 .4c (A) for least i(0(.9'(A,i))
X8 ( VA) ( 30 (#(.9*(A,O) finitude
x9 ( V,A,B) (A=B: <e(A,0), , e (A,..fr(A))> = perm< 6° (B,o),

where perm isa permutation of.AP (A) elements.

The following two theorems follow immediately:

T3 ( VA,B) (A=B.4-.B= A)
14 (V A,B) (A)= S(B))

The axioms xl-x9 are believed to be independent, consistent and categorize
the prex family. However, no formal proofs were attempted. To distinguish
prex siblings we now list various assertions whose truths or falsity determine
Which sibling we have. These are not independent.
As a further simplifying convention we omit in what follows the initial

universal quantifiers.

The distinguishing assertions

Al (a e 4)-0-A 11 a=A element multiplicity
A2 a e A evaluates as a pseudo-primitive
A3 A.B_,®A=0B 

peepability
ordinality

A4

& (Vk) (0 <k< (A)-)-S (A,i+k moddir (A))
(B,j+k mod.** (B)))))

A5 A * a0A-*()A * a=a LIFO
A6 A 11 S(B * (A)+ 1) where B= A FIFO

A7 cm= the a e A with max f(a) where f isa e:c. number sorted list
A2 is a generalization of the nation of 'no-peeping' that distinguishes a push-
down, in which only one element is visible without updating the pushdown,
from a stock, in which any element is visible, but not, of course, removable.
We do not distinguish the two kinds of no-peeping prex: that in which (:)A is
visible without updating A and that in which merely looking for OA updates
A. For a stack or an unordered prex A can be restored to its original value
since, obviously,

(A # b * b where b
This does not hold for a queue. For a sorted list this holds only if removing
and replacing OA has no side-effects on the value of A' Af (A). Thus no-
Peeping prex have the important property that they may not be directly
Copied. The lup has only the update, not the load defined. For these constructed

7



MATHEMATICAL FOUNDATIONS

objects, however, OA is not an isolatable primitive and therefore I do not
consider them further here.

Streams are analogs of queues, and there are corresponding constructed
objects that are analogs of other prex and used similarly to communicate
data from one information system to another. They have the very interesting
property that * and are updaters of distinct processes. Again, such con-
structed objects do not, with respect to a single process, have a full comple-
ment of primitives and I do not consider them further here.

The varieties of prex

If Al, . . , A7 were independent one from another there would be 128
prex siblings. This is reduced to, at most, 24 by the following two theorems
and one convention. That there are precisely 24 follows since Al and A2 are
each independent of the other assertions.

T5 A5 & A6. &: A6 & A7. ->.~A5

: &: A7 & A5. ->.~A6

T6 AS V A6 V A7. ->. A3 & A4 ,
c6 A3 & A4 -->. A5,A6,A7

T5 states that stack, queue and sorted list are incompatible notions. This
follows from the incompatible definitions of OA for each sibling. We now
prove T6.

Suppose A5 and A= B
Then we can prove A3 by induction on i for the sequence
of prex .9' (A, 1), (B (A, i) (A), . . .1,o
A4 holds since 6° (A , i)= e (A, D. i=j
Similar proofs exist for A6 and A7.

It remains to discuss c6, the converse of T6, which states that a ring with a
distinguished head is a stack, or a queue, or a sorted list. Consider the
following argument.

Given A, B such that A = B. A3 and A4 imply that there is some well-de-
fined selection rule for O. This must be a criterion based on the value of some
function either of the elements themselves or the sequence in time in which they
were added to the prex or both. A7 is the general case for the elements them-
selves, AS and A6 the simple functions of history 'first' and 'last'. c6 is a
rejection of more complex functions of history or mixed functions.
Thus, in Table 1, which gives the siblings of the prex family, and in the

later Semantic Interpretations, prex with pathological criteria such as

ifX(A) is prime, first, otherwise max f,

which are contrary to c6, are excluded as beneath disdain.
Table 1, then, lists by name the legitimate siblings of the prex family, with

ticks and crosses signifying whether or not A 1 —A7 hold. The names used

8



Al A2 A3 A4 A5 A6 A7

LASKI

bag-np
bag
set-np
set

x
x
Si
Si

x

Si
x

Si

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

Al

2
3
4

list-np
list

rf-list-np
rf-list

x
X

Si
Si

x

Si
x

Si

V

Si
V
V

x

x
x

x
X

x
x

x
X

x
x

x
x
x
x

13 1

2
3
4

c I
2
3
4

ring-np
ring
rf-ring-np
rf-ring

x
x

Si
V

x

V
x

V

x
x
x
x

V
V
Si
Si

x
x
x
x

x
x
x
x

x
x
x
x

Pushdown
stack
rf-pushdown
rf-stack

x
x

Si
Si

x

Si
x

Si

Si
Si
Si
Si

Si
Si
Si
Si

Si
Si
Si
Si

x
x
x
x

x
x
x
x

DI
2
3
4

queue-np
queue
rf-queue-np
rf-queue

x

Si
x

Si

x
x

Si
Si

Si
Si
Si
Si

Si
Si
Si
Si

x
x
x
x

Si
Si
Si
Si

x
x
x
x

El
2
3
4

sorted list-np
sorted list
rf-sorted list-np
rf-sorted list

x
x

Si
Si

x

Si
x

Si

Si
Si
Si
Si

Si
Si
Si
Si

x
x
x
x

x
x
x
x

Si
Si
Si
Si

Fl

2
3
4

Table I

accord, as near as I can judge, with their usual connotation in a programming
context.
However, not all possibilities are in general programming use, and, if

needed, are usually provided by interpreting them by more usual prex with
explicitly coded selectors, a technique that is of course available for the

Pathological prex swept under the wrong side of the blanket above. I have
introduced one explicit new name and two qualifiers.
The prefix ̀ rf' connotes repetition-free. In general usage unordered prex

are repetition-free, while ordered prex allow the same element to appear more
than once. 'bag' is introduced for the unordered prex with repetition. 'Two
blue balls, seven black balls, .
The suffix 'lip' connotes no-peeping, that is to say that the S'-predicate

cannot be decided without explicitly transforming:

A = SP (A, 0) to .9'(A, 1) to ...... to (A,X (A))

9
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Curiously enough, I have not seen this in a programming context except for
the stack (pushdown) in which it is easiest to restore the R-value of A by
putting the successive 6° (A,i) into a working pushdown.

SEMANTICS

The list model

We can give meaning to each kind of prex by mapping instantaneous prex
onto lists of references to the maps of their elements and, historically, by
interpreting the primitive or defined operations and predicates of the distinct
prex siblings appropriately in terms of operators and predicates of these
lists. We require, therefore, operators and predicates of lists; these can, of
course, only be defined ostensively. In what follows L, M, . designate lists,
/,m, . their elements; .integers. A slightly relaxed meta-language will
be used for clarity.

The list definition

Some selectors, etc. are:

slO head (L) isa / or null
sll tail (L) isa / or null
s12 count (L) isa i
s13 next (1,L) here 1 e remove (tail (L), L) isa 1
s14 element (1,L) where / 4 /4 count (L) isa I
D10 place (1,L) for value of let j=1, l=nil-integer set;

§ if element (j,L)-a- do I 'ft j;
j:=j+ 1 I repeat while] count (L);
result is If

x10 place (head (L), L)=1
x11 place (tail (L), L)= count (L)
x12 place (next (1,L), L)=1+place (1,L)

T10 1. e place (1,L)+4 element (i,L)=1
T11 i e place (element (1,L), L)

Some updaters are:

u10 insertafter (1,I,L) where i < count (L) isa L
u11 insertbefore (1,4L) where i < count (L) isa L
U12 remove (i,L) where i < count (L) isa L

The following axioms apply:

x13 count (insertafter (1,1,L))= count (insertbefore (1,i,L))
=count (L)+ 1

x14 count (remove (1,L))= count (L)— 1
x15 i +1 e place (1, insertafter (1,1,L))

10
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X16 j e place (m, insertafter (1,i,L)): —:ji & j e place (m,L)

.v.j=i-I-1 &lam

.v.j>i+1 & j— 1 e place (m,L)
X17 j e place (m,insertbefore (1,4L)):4-4: j<1 & j e place (m,L)

.v.j=i & lEm

.v.j> & j —I e place (m,L)
X18 element (i,L) e remove (i,L)::dfr (place (element (i,L), L)>1
X19 j e place (m, remove (1,L)):4-4: j<1 & j e place (m,L) -

.v.j i &j-1 e place (m,L)
This completes the ostensive definition of lists DswimP

Lists as given above have more structure than is required to interpret certain
prex-sibling. We therefore introduce the function

select (L) isa i< count (L)

whose value for a given L is some integer in <1, count (L)> to escape the
temptation to allow the structure of the interpretation to persuade us to
admit illegal constructors, predicates and selectors to the prex itself. Clearly
in any practical interpretation any simple function will do depending on
coding convenience.
The Aesthetic Syntax

II

III

Iv

a e A
the A 0
a from A <C1>0 <else C2 > 0
a into A <C1>0 < else C2 > 0 ft
next (i, a,A)
is only available for which the test can be evaluated without side effects
on A, i.e. those for which 'no-peepability' does not apply.
is always defined
the optional clauses C1, else C2 need neither appear. If they do, however,
C1 is performed if a 4 A 0 A, C2 otherwise.
The optional clauses C1 else C2 may only appear if ( 3 a) (A *
i.e. if the prex is not a repetition-free sibling. They need not appear for
the other prex. If they do, however, C1 is performed if A ft a 0 A,C2
otherwise.

V is defined only for ordered siblings. Approximately, it transforms
e(a,j) to e (a,f,+ 1). More precisely, since the generalized prex allows
repetition

e(i„4)=a 8c i <.4'(A): next (i,a,A)= <1+1, e(t+1;A)>

We may also define the function of two arguments

next (a,A)=second (next (least i(i e place (a, A)), a, A))

Do You See What / Mean? If not, I will point harder.

11



MATHEMATICAL FOUNDATIONS

Since for repetition-free prex,..4r (place (a,A))<1, it is sufficient to inter-
pret this latter function.

We can now define I—V for Al —F4. a, A map to 1, L, respectively.
If C„ C2 are not referred to in the interpretations of III and Iv, only forms

of the command in which they do not appear are allowed. Codings are for
clarity of exposition rather than efficiency. ND signifies not definable.
If the code name for a prex-sibling is given, the interpretation is to be as
previously given for that sibling.

Al bag-np
ND

ii element (select (L), L)
in test (a= the A) thendo§ remove (select (L), L); C1§ ordo C2;
IV insertbefore (1,1, L)
✓ ND [NB (a) is the interpretation of a just defined]

A2 bag
I value off or i=1 to count (L) do if 1= element (i,L)thendo result is true;

result is false.§
II Al
III test (a E A) thendo§ for 1=1 to count (L)

do if 1= element (i,L) thendo§ remove (I,L);
break§ C1

ordo C2;
IV Al

✓ ND

A3 set-np
I ND
II Al
III Al
IV if value of § for 1=1 to count (L) do if 1=element (i,L)

thendo result is false;
result is true §

thendo§ insertbefore (1, 1,L); C1 § ordo C2;
✓ ND

A4 set
I A2

II Al

III A2
IV A3
✓ ND
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111 list-np
I ND
II Al

III Al
IV Al [NB There are also the concepts of ̀insertbefore"insertafter' for lists][i E place (I,L) & 10 count (L)-3-<1-1-1, element (i+1,L)> , undef]

112 list
I A2
II Al
III A2
Iv Al

Bi

113 rjIlist-np
I ND

Al

III Al

IV A3

V [i0 count (L) & iOundef--> element (i+1,L), undef]
where i= the i 3 1= element (I,L)

114 rf-list
I A2
II Al
III A2

IV A3

V 133

Cl ring-np
I ND
II Al
III Al [ND there is also a concept of ̀insertbetween' for rings]
IV Al

V [i E place (1,L)--)40 count (L)--)- <1+1, element (i+1,L)> ,
<l,head (L)> , undef]

C2 ring
I A2
it Al
In A2
IV Al
V C

13
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C3 rf-ring-np
1 ND
II Al

III Al

IV A3

✓ [iOundef--0.10 count (L)--)-element (i+1,L), head (L), undef]
where i= the 13 I =element (i,L)

C4 rf-ring
I A2
II Al

III A2

IV A3

✓ c3

DI pushdown
1 ND
ii element (1,L)
iii test 1= element (1,L) thendo§ remove (1,L); C14 ordo C2;
IV Al
✓ B1

D2 stack
I A2
II DI
III Di

IV Al

✓ Bi

D3 rf-pushdown
1 ND
II DI.

III Dl

IV A3

✓ B3

D4 rf-stack
I A2
II DI
III DI
Iv A3
✓ 133

El queue-np
I ' ND
II element (count (L), L)

14
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test (1= element(count (L),L)) thendo§ remove (count (L),L); C1§

ordo C2;
Al

131

E2 queue
I A2
II El
III El
Iv Al
✓ 131

£3 rf-queue-np
I ND
II El
III El

Iv A3
✓ B3

E4 rf-queue
I A2

El
III El
Iv A3
✓ B3

II

113

Iv

Fl sorted list—np [NB f (1)=f(a) and may vary while a e A]
D

element (value of let x= —infinity and j be integer;
for 1=1 to count (L) do if x <f (element (i,L))

do§ x+-(element (i,L));
j4-.1§

result is j§, L)
test (a= the A) thendo§ for 1=110 count (L) do

if 1= element (i,L) thendo § remove (i,L)
break § C1§

ordo C2;
Al

element (i,L)—>undefined,
value of let x= —infinity and iii;

for j=i+1 to count (L)
do if f (element (j,L))=. f(0

do result is <j, element (j,L)> ;

15
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for j=1 to count (L)
do if x<f (element (j,L))<f(1) •

do x, (element(j,L)),i;
result is [ii=1-* underlined, <j, element (j,L)> If]

[NB a simpler representation of sorted lists is possible if f(a) is fixed while
a e A]

F2 sorted-list
I A2
II Fl

III Fl

IV Al

V Fl

F3 rfisorted-list-np
ND

II F1

III Fl

IV A3

V value af§ let i, ii both= the j 9 element (j,L) and x= —infinity;
for j=i+1 to count (L)

do if f (element (j,L))=f(1)
do result is element (j,L);

for j=1 to count (L)
do if x<f (element (j,L))<f(1)

do x,ii*-f (element (j,L)),j;
result is [ii= 1--> undefined, element (j,L)]§

F4 rf— sorted-list
I A2

II Fl

III F1

IV A3

V F3

PHILOSOPHIC CODA

The interest of this paper lies not only in the nature of the data-objects it
explicates but in the methodology of the explication itself. This methodology
is tied up with an ontology of what we describe as being data when we write
programs to manipulate data and when we cause these programs to be exe-
cuted in some information system.
When we express our programs, our operands are conceptual objects of

differing types: by a type we mean that 'operators' may properly-i.e.
making up well-formed expressions and well-formed commands-be applied

16
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to these objects and what will be the result of doing so. If the operator is a
selector it will yield an object or its value; if an updater it will change values
of objects to which it is applied. Some operators do both.
In a particular information system data-objects are represented by bit-

patterns arranged in data-structures; the effect of executing a process which
involves certain data-objects, is to refer to and manipulate, in a way that

interprets the program of that process, the data-structures that represent them.
The purpose of making the distinction' be,tween data-object and data-

structure is to emphasize that there are mal%data-structures that can be
used to represent a given type of data-object and the same data-structure may

represent many types of data object.
When we are concerned with programming languages we are concerned

wtth data-objects; when we are concerned with running programs, we are•
vacerned with data-structure. Implementation is concerned with the choice
of representation functions that relate the two.
Type further determines what are the primitive selectors, predicates and

updaters of a data-object. If several processes may concurrently refer to
data-object no primitive updater may operate simultaneously (in parallel)
ith any other updater, selector or predicate. Notice that we are speaking of

the single data-object which may be known under different aliases to different
processes. (Any process, however, may request that some sequence of opera-
tions on this data-object may have no extraneous updaters in parallel with it.)
A third notion concerns two kinds of data type, the intensive and the ex-

tensive. The first, which has been the concern of most computing is like
'Integers' or 'reals' where new temporary L-value may be created during an
evaluation. Extensive data (e.g. 'the entry points in a stored library') does not
allow the creation of anonymous temporary L-values in this way. Constructed
data-objects and the objects from which they are constructed, which is what
we have been concerned with, are usually of an extensive type.
A final remark on the nature of semantic interpretation: I do not under-

stand what is meant by a model of a formal system that is not itself a formal

System. Thus Is w NI must always stop and say Ds wird. However much I say

what I mean, what I use to do so is necessarily a donne and must end with
Do you see what I mean? To which the due answer is 'I think so'.
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Program Schemata

M. S. Paterson
Department of Pure Mathematics
University of Cambridge'

Summary

Program schemata provide a simple and natural model in which many features
of actual computer programs are represented and in which we can sensibly ask
such questions as:
Do two different programs do the same thing?
How can we simplify a given program?

We enquire whether or not there exist effective algorithms to answer these
questions.

1. INTRODUCTION

1.1. Definitions
Figure 1 (opposite) is a program schema given in the form of a flow diagram.

L2 :=G(1_11L4)
is an assignment instruction which gives to the location L2 a new value, which
depends on the current values of LI, L4, and on the as yet unspecified function
G.

is a test instruction which applies the similarly unspecified predicate ( two-
valued function) Ti to the value of L4 and causes the left or right exit path to
be taken according to whether the result is 0 or 1 respectively.
To provide an interpretation for program schemata, we choose some finite

1Now at Atlas Computer Laboratory, Chilton, Berkshire.
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or infinite set of values, then make an initial assignment of values from the set
to each location and an assignment of appropriate functions and predicates
on the set to the function and test symbols of the schemata. Given such an
interpretation, the corresponding execution sequence through any schema,
starting from the initial instruction, is defined in the obvious way. An execu-
tion sequence may terminate at an exit path labelled either 'YES' or 'NO', or
may never terminate. The value of the schema under that interpretation is
'YES', 'NO', or 'um' respectively, or sometimes we may say that the schema
succeeds, fails, or diverges respectively. We define two schemata to be equiva-
lent if their respective values are the same under all interpretations.

1.2. Equivalence problem

How can we tell whether or not two given schemata are equivalent? We can
sometimes decide that they are inequivalent by finding a particular interpreta-
tion under which they evidently have different values. For example, the
schema P of figure 1 clearly has the value 'YES' under an interpretation for
which T, takes the value 1 for all arguments. P is therefore inequivalent to the
schema D of figure 2, which always diverges.
One way to prove the equivalence of two schemata is by passing from one

to the other by a chain of simple transformations, each of which obviously
preserves equivalence. Some examples of such transformations are shown in
figure 3. It should be clear in each case that they do preserve equivalence.

1.3. Example

We will now try to apply Some such transformations to the schema P of
figure 1. We observe first that if the test on L4 ever takes the value 0, L4 is
never again assigned to and the schema can only diverge. We can therefore
replace the left exit of this test by a trivial loop. It can now be more easily
seen that, to avoid divergence, the first value assigned to L1 in each outer loop,
which is also the value assigned to L4, must have the test-value 1, and so the
left exit of the test on L1 can also be replaced by a trivial loop. The resulting
schema P' is shown in figure 4.

The test on L4 is redundant. L2 and L3 are initially assigned the same value,
and so, after 'unwinding' the L2-loop a little, the L3-test can also be dispensed
with. The result is P" in figure 5. Further transformations yield P" (figure 6).
With this hint the reader is invited to convince himself that the schema P is
actually equivalent to the schema Q.

1.4. Simplification

One of our reasons for studying program schemata is that the simplifications
which can be performed on schemata are those that we could do on programs
in a programming language about which we were given a minimum amount of
information. Schema transformations could thus form a part of a very general
'machine-independent' optimization algorithm for computer programs, and
we should naturally like this part to be as efficient as possible.

20



Figure 2. Schema D

(I)
L 2 :—H (L„L3)

(ii) :=G (Ls)   L2:=G (L2)
L2:=G (L2) L1:=G(L2)

(iv)

PATERSON

Figure 3
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Figure 4. Schema P'

Figure 5. Schema P"
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1.1:=F(1.1)

L,:=F(L2)
L.:=F (L2)

Figure 6. Schema r"

Figure 7. Schema Q
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For many definitions of the 'simplicity' of a schema, the problems of

'optimizing' a given schema, that is finding the simplest equivalent schema,

and of deciding whether or not two schemata are equivalent are inter-

changeable. For example, the optimization of the schema below usually pre-
supposes a decision on the equivalence of Pi and P2 as schemata. In the other

direction, if we suppose that program schemata could be enumerated in order

of (decreasing) simplicity, then a theoretically adequate algorithm for optimi-

zation would consist in testing each schema in turn and selecting the first one
equivalent to the given schema. It therefore seems appropriate to avoid the

choice of a more or less arbitrary criterion of ̀simplicity' and to consider only

the problem of deciding the equivalence of pairs of schemata.

2. DECISION PROCEDURES

2.1. Loop-free schemata

For schemata whose flow-diagrams have no loops, the decision procedure for
equivalence is easy. We illustrate a fairly practical solution by an example
(figure 8). The condition (on the interpretation) that this schema has the
value 'YES' can be expressed as a formula of the propositional calculus:

Ti [L2] & T2[G(Li,F(L3))]

•v• [ L2] & T2 [11(L2)] & T2 [G(H(L2),L2)]

It is easy to see that two such schemata are equivalent if and only if their
corresponding formulae are equivalent in the propositional calculus, and this

is readily decidable.

2.2. Schemata which always halt

This decision procedure can now be extended to the class of schemata which

halt under all interpretations. An example is shown in figure 9 whose longest
execution sequence is of 31 instructions. Given any schema, we can ̀unwind'

the loops to produce an equivalent infinite tree. We then proceed systemati-
cally outwards from the initial instruction in that tree and examine each test

instruction to see whether the same value has been tested previously by the
same predicate on the way to that point. If so, then the subtree dependent on
one of the exit branches from this test can be ̀pruned' away and the test in-
struction removed, leaving an equivalent tree.

24



Figure 8

Figure 9

YES NO
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START

Figure 10. Schema N

0,1

Figure 11. Schema P(N)
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If this procedure does not eventually stop, there will be an infinite number
Of nodes in the pruned tree, and so an infinite path in it is guaranteed by
Konig's infinity lemma. By the construction this path must be consistent with
respect to all the tests on it, which is a necessary and sufficient condition for it
to be the execution sequence corresponding to some interpretation. Thus for
schemata which halt under all interpretations, the construction must produce
an equivalent, finite, loop-free schema, after which the decision procedure of
2.1 can be used.

3. UNSOLVABILITY OF GENERAL EQUIVALENCE PROBLEM

3.1. 'Rule books'

If we could find a finite collection of effective, equivalence-preserving trans-
formations so that any pair of equivalent schemata could be transformed one
into the other by a chain of these transformations, i.e. a rule-book, then we
would have a partial procedure to decide equivalence. This is an algorithm
Which, when presented with equivalent schemata, would eventually prove
this, but might fail to reach any conclusion when given an inequivalent pair.
The main result of this section will be to show that there is no effective proce-
dure for determining whether or not two general schemata are equivalent, and
indeed that there is not even a partial procedure. Hence any attempt to com-
plete the transformations of figure 3 to an adequate rule-book must fail.

3.2. Two-headed automata'

In proving these results it is convenient to introduce some two-headed auto-
mata. These are finite automata equipped with two one-way reading heads,
Which independently travel down the same input tape. Alternatively we may
consider them as two-tape automata, as described by Rabin and Scott (1959),
to which we always present identical pairs of input tapes. For each non-
terminal state is specified which head is to read the next symbol and also, for
each symbol, which is to be the next state. There is in addition one terminal
state, a, and if this is reached the automaton is said to accept the tape. The
automata start with both heads over the first symbol of the tape and in a
Specified initial state.
We give an example of a simple two-headed automaton (figure 10). (The

head to be used is shown in parentheses after each state.) The reader should
verify that N accepts just those tapes which first deviate from the sequence:

010110111011110 . . . .

With an extra 0. When N is operating on such a tape, Head 1 reads along a
sequence of l's while Head 2 verifies that the following sequence contains

'These are also described by A.L.Rosenberg. The unsolvability proof given here is
essentially that given by Rosenberg (1966).
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precisely one more 1. After this, Head 1 is positioned to read the latter se-
quence and Head 2 is ready for the next piece of tape. An extra 1 causes N to
enter a closed loop, but an extra 0 allows N to accept the tape. The modus
operandi of this automaton is a useful introduction to the more complicated
automata to be described.
For any two-headed automaton A, with input alphabet [0, 1], there is a

natural associated program schema P (A). It should be a sufficient explanation
of how this is obtained to display P(N) corresponding to the automaton N
above (figure 11). The first two instructions merely ensure that L1 and L2 start
with the same values. P (A) succeeds under an interpretation / if and only if
the binary sequence of the values under / corresponding to:

T1[F2(L1)], T1[F3(L1)], T1[P(I,1)],

is accepted by A. For example, P(N) succeeds under any interpretation where:

F is the successor function,
(x) = 0 if x is prime

= 1 otherwise,
and the initial value of Li = 1,

just as N accepts the tape:

010101110 . . . .

3.3. Turing machines

We shall prove our main result by reducing the equivalence problem for
schemata to the 'halting problem' for Turing machines. For a description of
Turing machines, an explanation of our notation, and a proof of the theorem
we use, the reader is referred to Davis (1958).
The states of our Turing machines are denoted by qi, q2, ., and the tape

symbols by So, S1..... An instantaneous description gives the current expres-
sion on the tape and displays to the left of the scanned symbol the current
internal state. For any Turing machine Z, if a is the instantaneous description:

PS,AiSQ

where P, Q are strings of tape symbols, then 13 succeeds cc under Z,(cc-->13), if

13 is SoPS,DgiS „QS and qi.S.S vqj is a rule of Z,
or /3 is SoPSo,SoqiQS„ and qiS „Rqj is a rule of Z,
or is S oPgiStoSisQ o and q1SLq, is a rule of Z.

cc is terminal if there is no succeeding /3. A computation of Z is a finite sequence
of instantaneous descriptions ao, al, ..., az, such that oti_i—> oti for i= 1,. p,

and cep is terminal. It is a well-known theorem that there is no effective
(partial) procedure to determine, of a given Turing machine Z and instan-
taneous description a, when there is no computation of Z from ce, i.e. when
Z fails to halt after starting in the situation described by a.
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3.4. Proof of unsolvability
For any Z and cco, we can effectively construct a two-headed automaton
A (Z,cto ) over the alphabet [So, S1, . . .; q1, q2, . . . ;*] which will accept just
those tapes, if any, which start:

ao* 041*, • • .,*ccp*

Where oco, . . cc, is a (completed) computation of Z. Briefly, the action of
A (Z, cco) is as follows. It verifies with Head 2 that the tape starts with a°, then
while Head 1 reads this ozo it checks that the next part of the tape is «I. Now
Head 1 is ready at the start of this cc i and Head 2 is prepared to read on. This
checking operation continues until either Head 2 finds a terminal description
and the tape can be accepted, or else the check fails and the automaton is
made to enter some trivial loop. The checking operation is easy. Apart from
extra So symbols at the beginning and end, the succeeding description differs
only from its predecessor in two or three symbols around the state symbol
and the automaton has only to verify that this change is in accordance with
the rules of Z.
We observe that A(Z, ao) accepts some tapes if and only if Z halts from oco.

By suitably coding the alphabet of A(Z, cc') into a binary alphabet, we may
readily construct a two-headed automaton As(Z, fro) with alphabet [ 0, 1]
which also accepts some tapes if and only ifZ halts from cco. For any automaton
A, P(A) diverges under all interpretations if and only if A never accepts a
tape. Denoting P(A'(Z, cco)) by P(Z, °to), we remark that:

P(Z, cc') is equivalent to D if and only if
Z fails to halt from cco,

where D is the schema of figure 2, which always diverges. There is no effective
(partial) procedure which tells us, for arbitrary Z, ao, when Z fails to halt
from ao, and so the equivalence problem for schemata is effectively unsolvable
and indeed not partially solvable.

4. FURTHER RESULTS
4.1. Other relations between schemata

Because we are interested in program schemata as a model of computation, it
might be more appropriate to restrict ourselves to interpretations in which all
the functions and predicates are recursive, or to interpretations which can be
defined over a finite set of values. We then obtain the relations of recursive
equivalence and finite equivalence. Thus two schemata are recursively equiva-
lent if they have the same values for all recursive interpretations. The
interested reader may like to verify that these relations are all different. A rather
weaker relation, misnamed weak equivalence, is obtained by considering for
each pair of schemata only those interpretations under which both of them
halt. The unsolvability of each of these relations can be proved. Indeed we can
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prove, at one stroke, the unsolvability of any relation lying between equiva-
lence and weak equivalence.

4.2. Solvable classes of schemata

Having established the unsolvability of the equivalence problem for a sur-
prisingly simple class of schemata, we have a better vantage point from which

to survey the scene and find interesting solvable classes. The single test, single
monadic function and two locations of our unsolvable schemata allow little

scope for further restriction. However, we can solve the equivalence problem

for schemata with only a single location, which are then similar in structure to
ordinary finite automata and the 'logical schemes' of Ianov (1958 and 1960).
By using the unsolvability of the halting problem of a fixed, 'universal',

Turing machine (see Davis, 1958) presented with arbitrary initial tapes, we
construct an unsolvable class of schemata which all have the same loop
structure. Thus it is not necessary for unsolvability for the schemata to have
arbitrarily complicated flow structures, but it is an open problem to find just
how simple a structure will suffice. Apart from loop-free schemata, we have a
decision procedure for schemata in which no two loops are 'nested' or inter-
sect, but subject so far to the restriction that all the functions be monadic.
One of the more striking features of the 'unsolvable' schemata we construc-

ted is that they duplicate their calculations and tests in a way we would be
loath to recognize in our computer programs. This suggested closer study of
free schemata, which never test the same value twice, and liberal schemata,
which never calculate the same value twice. For any liberal schema we can
construct an equivalent free schema, but not vice versa. The schema in figure 12

Figure 12
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is free but 'essentially illiberal'. A further distinction is that whereas we can
effectively decide whether or not a schema is liberal, the decision problem for
freedom is unsolvable.

If we impose the fairly restrictive condition on schemata, that in any execu-
tion sequence any value that is computed is used as an argument by the next
assignment instruction, the resulting schemata are clearly liberal and we have
obtained a decision procedure for their equivalence. The solvability of the
equivalence of liberal schemata remains an important open problem. We see
that, if the first two instructions of the 'simulation' schemata are deleted,
they are then liberal and simulate two-tape finite automata, where the two
heads read two different tapes.
The equivalence problem for two-tape automata, that is, whether two given

automata accept the same set of pairs of tapes, is a well-known open problem
in automata theory. Its unsolvability would imply unsolvability for the equiva-
lence of liberal schemata, but we believe it to be solvable, in which case the
solution should lead us to new solvability results for wider classes of schemata.
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Abstract

A method is proposed for checking that a compiler translates in accordance
with the user language definition. It involves formalizing the compiler action
into a series of automata models, each with a state transition table. A finite
number of input-output experiments are then to be done to recover the state
transition tables, and these are compared to the specifications. In a language
with operating system facilities, details of the operating system must be inclu-
ded in the automata states. The problems arising here are briefly discussed.

1. INTRODUCTION

This is an account of some initial thoughts on compiler validation—that is,
verifying that a particular compiler translates source programs in accord with
the language definition. It is essential to solve this problem for the following
kinds of reasons:
(i) Language standardization committees are faced with the question—

what is the use of a language standard if there is no effective way of

guaranteeing that a particular compiler meets the standard?
(ii) There exist many schemes where the same language must be run on

different machines. For instance, a 'computer grid' scheme has been put
forward. At present such schemes are unworkable because small incompati-
bilities in compilers for the same language on different machines would not
allow the same program to be run on any machine in the grid.
(iii) Any theory of software must be based on linking together measurable

quantities. Progress, both theoretical and practical, depends on rigorous
Specification and measurement. Compiler validation is one step towards
this.
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1.1. The technical problem

Validation may be expressed technically in several ways. The most comprehen-
sive view is that of McCarthy and Painter (1966). They define two formal
systems: one describes source programs and the other the machine. In
describing the source language evaluation each possible, correct, source pro-
gram is taken as an initial axiom. Fixed rules then transform the program to
its value relative to the store contents. The machine formal system starts with
empty registers, accumulator, and program counter. This initial state is trans-
formed by rules which depend on the current machine language program.
The compiler now translates between these formal systems by taking a source
language axiom across to a machine program which acts as a transformation
rule. For a particular language they show that the two systems produce the
same terminal value from programs which are compiler equivalent.
In this paper a much simpler problem is posed. Although simpler, it is

adequate for many practical purposes, such as those mentioned in the intro-
duction. A language is defined in the usual way by its action on an interpreter
automaton. Then we ask if the compiler produces analogous effects in its
machine when translating source program. A useful answer appears to be
possible when the language is highly structured and when the compiler is
written in a very systematic way.
This approach makes it necessary to systematize language semantics, and

some suggestions are put forward here.

1.2. Scope of language

The facilities included in high-level languages have increased greatly in the
past few years. Early languages included facilities for doing arithmetic only;
recently, languages such as PL/1 have included the handling of large data
files, control over interrupts to the operating system, and running of a
hierarchy of concurrent tasks. It is clear that eventually compiler validation
must include means of verifying that these run-time facilities are correctly
implemented. A brief discussion of this is given.

2. BASIS OF SUGGESTED METHOD

The real work in validation is the reduction of the compiler to a form where
its essential action can be reconstructed by a finite number of input-output
experiments. One way of approaching this is to specify the various translation
and interpretation processes within the compiler as formal automata. The
essential action of these devices is then contained in a state transition table.
The input-output experiments then have to recover these state transition
tables. Here the term output means any way of extracting a trace of the pro-
gram action, that is a record of store changes, jumps, and subroutine calls.
To form an automaton model of program action the state must first be

identified. This will contain a neat layout of all stored data, the current
instruction number or subroutine being called and other similar information.
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Then the state transition table must be formed. For this the language defini-
tion must be used. The number of input-output experiments needed and the
size of the table depend on the language definition, and hence on any structure
Within it. Strong structures make validation simpler, besides making the
definition easier to understand.
2.1. A simple illustration

The simplest example which will show the above points is a syntax recognizer
or acceptor. This only indicates whether an input word is actually in the lan-
guage. It is slightly less complex than a compiler component, and here is just
given in outline.
The acceptor is for a simple precedence syntax (see Wirth and Weber, 1966).

The language is generated by a context-free grammar, and has the extra struc-
ture that for every pair of symbols which can appear in a sentential form a
precedence — 1,0, 0,1 is given. In a sentential form each string of symbols
Which forms the right-hand side of a production, and which may be reduced
to a single symbol, can be found by looking at successive precedences for each
pair of symbols in the string. A succession of precedences like —1, 0, 0, 1
Shows the presence of a reducible string. The quoted reference gives a more
complete explanation.
The main storage of the automaton is made up of three strings:

in holding the input
temp which is temporary storage
out which builds up the right hand side of the production

The action of the acceptor is first described by a program depending heavily
on subroutines. There are two main routines—forward and back. In addition
the routine prec yields the precedence, and prod finds the required left-hand
side of a grammar production. Only an outline program is given, and, for
instance, no error detection in the input string is considered.

forward(in, temp, out)=ifnull(in) then STOP

else
if prec(hd(in), hd(temp))>0 then

forward(tail(in), hd(in)Iltemp, out)

back(in, temp, out)
back(in, temp, out) =if null(out) then back(in, tail(temp), hd(temp)

'lout)

else

else
if prec (hd(temp), hd(out)) =0 then

back(in, tail (temp), hd (temp)jIout)

forward(in, prod(out)Iltemp, nil)
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The state of the corresponding automaton is given by the quadruple

(hd(in), hd(temp), hd(out), Q)

where Q is a state variable having two values-forward or back-depending on
which subroutine is in force.
Given the precedence table and the grammar, the state transition table of

the automaton can be developed. This could be done by a computer. By using
a trace routine which records the changes in the given state components the
transitions caused by all possible inputs could be checked. A note on reducing
the number of states to be checked is made below. Hopefully, the trace rou-
tine could be made error-free.
A second version of the acceptor will now be given with sequential impera-

tive statements. Simultaneous assignments will be used. Variables i, t, o are
special registers for subscripting the stores in, temp and out, which now
appear as vectors.

1. o, t, i<-1, 1, n
2. if null(in) then goto 12

3. if prec(in(i), temp(t))> 0 then goto 8
4. out(1), t temp(t), t-1
5. if prec(in(i), out(o))=0 then goto 10
6. t, temp (t+1), o4-t+1, prod(out), 1
7. goto 2

8. t, temp(t +1), in(i), i-1
9. goto 2

10. o, out(o+/), t<-o+1, temp(t), t-1

11. goto 5

12. STOP

The automaton state corresponding to this program is the 9-tuple

(o, t, 1, pred, prod, out (o), temp (t), in(i), progcount)

prod and pred are special registers whose contents are undefined when the
corresponding subroutines have not been called; progcount is a special
register containing the current instruction number.

Deriving the state transition table is more complicated here. Also, the
question arises-how many values of i, t, and o should be tried in experiments?
At this point the array feature of the acceptor writing language is being
tested. This kind of difficulty comes up constantly. To some extent the array
facility must be tested; however, it will be noted that it can be tested separately
from the action of the acceptor program. An analogous question arises in the
previous program, for the fact that the recursive subroutine mechanism works
without fault also needs to be checked. Again, the action of the subroutine
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facility can be checked independently of the program. Actually, some impre-
cision will probably be accepted here, and checking will only be done to a
moderate depth of facilities.

2.2. Cutting down the number of experiments

Usually only a sub-set of possible states in the automaton can be attained
when the compiler is driven by a correctly written program. To cut down the
number of input-output experiments it is possible to check only the attainable
states. As an example, in the simple precedence acceptor above, it is quite
usual to find that the precedence matrix is only sparsely filled in, and only a
limited number of triples (hd(in), hd(temp), hd(out)) can appear for a
syntactically correct input string.
Of course, the chosen method of language definition and program writing

affects the amount of experimenting to be done. Little is now known of these
important factors.

3. SEMANTIC STRUCTURES

The need for validation leads to a study of semantic structures. Just as
syntactic structures can be associated with particular parsing automata, so a
semantic structure can be specified by the construction, and action, of an
interpreter automaton. An outline example will be given to illustrate this.

3.1. A stack interpreter

This semantic interpreter is based on Dijkstra's ALGOL compiler (see
D. ukstra, 1963). It will accept, roughly, the class of postfix languages. The way
in which the form of the input language is restricted is discussed later. The
interpreter is diagrammed in figure 1, and contains

(i) a controller to initiate reading of successive input program symbols
followed by appropriate action;

( ii) an evaluator for the primitive functions of the language. Primitive
function evaluation has no side effects, and leaves the arguments
unaltered;

( iii) a stack store for unravelling functional composition;
(iv) a table to effect the naming facilities in the user language, and

further to allow address manipulation and instruction labelling;
(v) a data store with access to it controlled by the table.

Symbols from the user input program string are read into the stack and then
interpreted by reference to the tables. The stack may be read, and written to,
at the top, but may only be read in the interior. It handles names rather than
actual data. It is very well known that functions with arguments written in
postfix notation, like xy +, can be evaluated within the linear discipline of the
stack. The effect of restricted store access can be seen more strongly in func-
tional composition. For instance, the composition shown in figure 2a cannot
be handled in a stack, whereas that of figure 2b, which yields the same result,
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program

stack

basic
function
evaluator

table

control

Figure 1. Semantic interpreter
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Figure 2 (a) and (b)
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fi fa

(b)

can be. In figure 2 the symbol f stands for a primitive function, and x for an
argument. Thus, the ways in which the user can express functions are con-
trolled by the stack, and these restrictions are passed to the user by the lan-
guage syntax. In this way syntax is critically linked to semantics.
The table links symbols in the user, or rather postfix, program to their

interpretation as functions or data names. The search algorithm for the table
must be specified to allow multiple naming, and restricted scopes of names
as in ALGOL. It could be useful to let the user manipulate table entries directly,
and thus allow instructions like aa- b to mean that a and b both name the
same storage location. Other address manipulation can be regarded in the
same way.
A detailed specification of the operation of the data store must include a

statement of the varieties of data representation possible, whether program
can be held, and if the links for related data, as in a tree, are kept within the
store or the table.
The possible elaborations of the user language by fully using the facilities

of an interpreter of this kind is under investigation. Notice that the precise
nature of the primitive functions is not so important as the methods of
composing them.
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4. COMPILER COMPONENTS

A compiler will have several components, like:
I. A pre-processor to convert user programs to internal computer form, and
also make user defined names into special symbols. The validation automaton
to be associated with this will not come directly from the language definition
because it involves the special characteristics of the card punches or other
devices. It is likely that it could be treated as a finite automaton, which would
be a simplification.
2. A translator from the internal user program to a fully parsed tree form.
The automaton here can be derived directly from the syntactic part of the
language definition. It might typically be a pushdown device to handle the
Syntax specified by a context-free grammar, plus an extra store to handle
requirements such as the difference of labels in the same block. This is the
easiest part to treat at present.
3. A translator from the parsed tree form to machine code. This should be
based on the semantic interpreter given in the language definition. Besides
modelling the analysis action of the interpreter it is additionally necessary to
check that the machine code corresponds to the changes in interpreter
machine state. This will be made easier if the generator blocks of machine
code are carefully constructed to correspond to interpreter machine actions.
4. Various optimization routines intended to produce more efficient machine
code. These act at different stages of compiling. Some act directly on the
parsed tree form, while some act directly on the machine code produced by
the last translator. These will be a serious problem unless they can be put in
at a distinct stage of compiling. For instance, if the parsed tree can be put
through an optimizer before translation, and then the machine code can be
Put through a second optimizer, then the two optimizers act exactly like extra
stages of translation. Unfortunately, little is known about systematic optimi-
zation.
A study of compilers is being undertaken in order to carry through the

systematization of each stage as indicated above, but substantive conclusions
are not available yet.
A systematic examination of the components of a compiler will bring a

deeper understanding of its action. Also, it will lead to a study of the relation
between semantics and syntax, which will lead to a better appreciation of the
Possibilities in language design. One aspect of this would be a determination
of semantic similarities with only syntactic differences. The importance of
reversible, or information lossless, syntactic transformations has been pointed
out to the author by Mr R. A. Francis and is under investigation.

5. OPERATING SYSTEM FACILITIES

Modern languages have the capability of initiating concurrent tasks which
can communicate with each other. This makes the framework of compiler
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validation change. The viewpoint shifts from that of the program to that of
the process within a computing system.
A process is an interpreter which may be obeying any designated sequence

of program and referring to any data available in the computing system.
Processes can bring into being new processes, and processes are removed
when no longer needed. At any time the computing system consists of a
number of processes in an orderly hierarchy, and stores of data and program
which can be accessed by the processes. Processes can refer to the same data or
program simultaneously. Rules must be set up to control the initiation and
termination of processes, and to set conditions on access to the stores by each
process.

Internally the process could be very like the previous semantic interpreter.
But it must have a number of extra components to reflect the working of the
operating system. Examples of extra state components required by a process
are:

(i) the identity of the program it is obeying;
(ii) the parts of the data stores it has access to, and under what

conditions;
(iii) the status of any lower level processes it has initiated;
(iv) the status of any process with which it has to communicate.

Notice that it is not necessary to include the status of the parent process, since
it cannot be affected by commands in the current process.
Whenever operating system instructions are written into a program their

effect must be validated by the transitions induced in these extra state com-
ponents. An obvious approach to validation would be to separate, as far as
possible, commands which affect the operating system, and those which affect
ordinary problem actions. This is now being considered.

6. CONCLUSIONS

The method proposed for compiler validation is first to divide the compiler
action into a number of independent stages. Then the action of each stage is
formalized as an automaton having an input-output behaviour controlled by
a state transition table. After the compiler has been written, a finite number of
input-output experiments are done to recover the state transition tables. These
measured state transition tables are then compared to the specified ones.
This proposal leads back to a study of language definition and the design of

languages with strong syntactic and semantic structures. When operating
system facilities are included in the user language the number of components
of the formal automata states has to be increased. The rules governing the
operating system now are needed to find the state transitions.

Currently the Language Definition Group at Imperial College are carry-
ing out a study of syntactic and semantic structures, and are beginning to
consider the notion of state components due to the action of the operating
system.
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Placing Trees in Lexicographic Order

H.I.Scoins
Computing Laboratory
University of Newcastle upon Tyne

BACKGROUND AND MOTIVATION

The ideas described in this paper are part of a project, being conducted by the
author and C. R. Snow, which is aimed at forming a general, but efficient,
algorithm to prove or disprove that two given linear graphs of n points are
Isomorphic.
To the pure mathematician the problem is trivial. He says: Consider all the

n! possible permutations of the labels of one of the graphs. If for one, or more,
of the permutations the two graphs match then they are isomorphic, otherwise
not.
The worker with a computer background says: n! is a very large number.

Even our largest and most powerful computers have little hope of making the
number of straightforward comparisons appropriate for n =20 (say). There-
fore, we must attempt to impose some classification or structure on the set of
all possible linear graphs, so that most of the comparisons need not be made
explicitly and only a small subset of particular comparisons made.
To illustrate that there is a problem consider the three linear graphs of 6

Points and 11 lines in figure 1. It is not immediately obvious that two are

Figure 1
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isomorphic and one is on its own, yet each has a partial specification of 4, 4,
4,4, 3, 3, i.e. there are four points with four lines each and two with only three.
If you know the answer you may be able to find reasons, but if the isomor-
phism is unknown the problem is much more difficult.
There have been other attempts to tackle this problem which some think is

in general impossible. Perhaps all that can be hoped for is something like an
algorithm which will always work for n= 100 (say) in less than one hour on a
computer costing one million pounds. Even the simplest algorithms will prove
most pairs of graphs dissimilar quite quickly. The difficulties arise when they
are isomorphic, but have to be proved to be so.
The problem has been considered in part by workers interested in mini-

mizing the band-width of a matrix so as to enable a computer to solve a
corresponding set of simultaneous equations in a compact form. (Alway
and Martin, 1965; Obruca, 1966):

Following a rather different approach is the work of Unger (1964) and of
Read and Parris (1966). The latter has ideas similar but not exactly the same
as those expounded here.
The long view we take of this problem is that one can handle a tree which

spans a linear graph much more readily than the whole graph. If it is possible
to determine a unique spanning tree which is independent of the labelling of
the graph under consideration, the problem of the comparison can be reduced
to first finding those spanning trees, comparing them and if these skeletons
are isomorphic, then moving on to compare the flesh of the two co-trees (i.e.
the two sets of lines not included in the spanning tree).
In this contribution the problem of the isomorphism of two trees is con-

sidered, as well as the possibility of forming an index which can be used to
describe the tree uniquely when its labels are ignored.

THE BINARY ROOTED ORDERED TREE

The simplest and probably the most common type of tree used in computer
work is the binary, rooted, ordered tree which carries information of some
sort at its extremities or terminals. This is the type of tree involved in 'list.
processing', if one excludes cyclic list structures.
In such a tree every node is either a terminal node, or else it has just two

nodes 'above' it. Each node has one node 'below' except the 'root' which has
no 'below'. Figure 2 (a) gives an example of such a tree, having seven ter-
minal nodes, five internal nodes and the root R. The fact that the tree has
been drawn out on paper imparts an ordering on the upward branches so that
we can meaningfully refer to the left and right branches at any non-terminal
node.

Occasionally it is useful to separate the root node into two separate nodes
to distinguish between the whole tree which stands on R and the point at
which this tree forks into its two main branches. This is illustrated in 2 (b)
and in this case the tree is said to be 'planted' on R.
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Figure 2

(b)

SCOINS

Suppose that, in our example, we have seven elements, A to 0, which we
attach to the terminals of the tree, and suppose we label the non-terminal
nodes I to 6 (figure 3). Then the numbered nodes represent the various sub-
sets and sub-sets of sub-sets of the set A to G. The whole set has been split into

BC

Figure 3

FG

6
3

two parts, each part being split into two and then split again recursively as
long as there is more than one element in any sub-set so formed. Thus the
tree represents a 'complete' partition of A to G with the retention of order, so
that splitting into (A, B, C, 13) and (E, F, G) is different from splitting into (E,
F• G) followed by (A, D, C, D). If this ordering is ignored we have a different
and much smaller set of possibilities.
The number of different trees of the ordered type with seven terminals is

132, rather too many to display; but with four terminals, for example, there
are five cases, illustrated in figure 4. It is the placing of such a set of trees in a
lexicographic order that we wish to examine.
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Figure 4

THE GENERATING FUNCTION APPROACH

The counting or generating function for these trees is:

(x)-=- tx" = x+x2+2x3 +5x4+14x5 + 42x6 +132x7 + . .

where t„ is the number of binary ordered rooted trees with exactly n terminals.
3"(x) satisfies the equationg"(x)=x +{.r (x))2 (Scoins, 1967) which implies
that asymptotically 4+1=44, and that t,, 22"-7 is a very rough approximation
for n?..7.

This functional equation satisfied by the generating function, 5"(x), can be
used to form an index number for each tree of the form (n, r) which indicates
that a particular tree has n terminals and is the r-th within that partial specifi-
cation, when the t„ cases are placed in sequence according to certain rules.
Moreover, this index number is an efficient representation of the tree, and not
just a reference number of some stored list of some other representation.
The quadratic equation implies (but is usually derived from)

n--1

tn= E t, t„..„ n > 1,

which is only another form of the statement that a tree with n terminals
necessarily consists of a composition of a tree with s terminals as left part,
and a tree of n —s terminals as right part, s being permitted all values from Ito
n —1. This permits us to divide up the set, T„, of the t„ possibilities into n —1
sub-sets, each of which is a product set of all the t, possibilities in T, taken
with each and every possibility in T„_„. If the product sets are considered in the
order of increasing s, and if within each product set we group under fixed
left part while taking the right part possibilities in their proper order, we have
a valid numbering system.
For example, if we take the example in figure 2, its reference number is

(7, r). The 132 cases in T7 are taken as six product sets, i.e.

T7=-T1x To+TBx T5+T3x T4+T4x T3+Tsx T2+T6xTi

which contain 1 x 42, 1 x 14, 2 x 5, 5 x 2, 14 x 1, 42 x 1
cases respectively.
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Our example is in the product set 7'4 x Ts since the left part has four ter-
minals, and therefore 66<r < 76 (= 42 +14 +10 +10).
The right part is in T 3=T1 x 71+ 7'2 x T2 and specifically it is the one element

in the product set T1 x T2. Thus the right part has reference (3, 1).
The left part is in 7',= T1 x Ts + T2 X T2 ± Ts X T1 and is in 7'3 x T1. The

particular case in Ts is the first of two and so the left part has reference (4,4).
Thus r = 66 +3 x 2 +1, where the 3 x 2 is accounted for by those cases in

T4 X Ts which have earlier left part, and the 1 by the fact that the right part
has reference (3, 1).
In general, (n, r) is a concatenation or composition of (s, p) and (n—s, q)

and these are related by
s—i

r= z tk tn_k+(p —1) x
k-I

The five trees displayed in figure 4 are in the sequence (4,3), (4,5), (4,4),
(4,2), (4,1).

With this reference system one can calculate r for a given tree or alter-
natively deduce the structure of the tree given only (ii, r) and a table of ti
(1 < i <n). Thus we have been able to give each tree a two-component
reference number; in other words, we have enumerated or numbered-off the
set and can also use this reference together with a simple algorithm to deduce
the structure of the tree. In subsequent discussion we shall see that other
representations produce other lexicographic orders and that the index num-
ber, i.e the number found if we number-off the set 1, 2, 3, . . . , usually cannot
be used without a dictionary containing all or most of the trees in that
particular representation sorted into the appropriate proper order.

THE NON-ORDERED BINARY ROOTED TREE

If we discard the order property of our binary trees, we have, in the case of
four terminal nodes, only the two cases

and

the second of these two being isomorphic with four of the trees illustrated in
figure 4.
The counting series for this species of tree is:

a(x)-=-ipir„xn=x+x2+x3+2x4+3x5+6x6+11x7+
+23.0+46x9+98x1°+
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This generating function does not satisfy such a simple functional equation as
9-(x) discussed earlier, and the coefficients are best considered as formed by:

(n/2]

r„=--

Here the upper limit is the integer not greater than n/2 and there is a special
modification to be applied to any term rnia x r„12 for even n. The recurrence
relation essentially says, if there are r1 possible cases in the left part and r,,,
cases in the right, we cover all possibilities once only by the restriction
s n — s. However, in the case 2s =n (even) we have to count only once the
different possibilities and the corresponding number of cases is

ra12 x (rn12+ 1)/2.

Thus, in r8 the contribution from r4 x (r4+ 1)/2 consists of

Although a functional equation which the generating function satisfies can be
found, it does not seem to be a satisfactory basis for putting the trees in
sequence, and this applies generally to the other types of tree considered here.

It is interesting to note that the counting series described here is an espe-
cially simple sub-problem of that considered by Riordan and the counting
series is at first sight the same as that given by Riordan (1958) for unlabelled
trees, which are discussed in much more detail by Harary and Prins (1959).
In fact the counting series agree up to and including the eighth coefficient and
only then become distinct — an interesting example of the traps that lie in wait
for those who study correspondences between sets. The trees discussed here
are also related to the distinct possibilities of instantaneous binary codes to
represent sets of n distinct elements, when the probability of the occurrence
of these distinct elements is non-uniform (see, for example, Abramson,
1963).

A MINIMAL REPRESENTATION OF A TREE-

THE TERMINATED BINARY SEQUENCE

From what has gone before, it is clear that a binary tree is essentially some-
thing which, unless it is fundamental and indivisible, splits up into two parts
in a unique manner. If the two parts are always interchangeable without loss of
significance we have a non-ordered tree, but when we must make a distinction
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between the two parts, we are considering an ordered tree. These ideas go
far beyond the simple pictorial concept used up to this point and the following
is a wide but useful attempt to define a general class of binary ordered rooted
trees.

Let R represent a set of independent and distinct elements which are essen-
tially indivisible (atoms), and let S be a set of different ways of associating
together any two of these elements or constructs from them. A class of trees
T can be defined on R and S such that:

(i) All r e R also e T.
(ii) If tl, 12 e T then the construct, whatever the construction rule may

be, is formed by associating tl, 12 as an ordered pair, with some
s c S. This construct also e T.

(iii) If t3 E T then either t3 e R or 3s e S. tl and 12 e T such that 13 is
identically the construct of tl, 12 and s. Moreover this decomposi-
tion must be unique.

If the background sets R and S are the identifiers of independent real variables
a, b, c , . . . . and the set of binary operators +, —, x, /, together with
brackets to define the composed form, we see that bracketed algebraic expres-
sions are trees in the above sense. However, this class of trees is of wider
import. The manufacture of a ship or a car consists of the putting together of
Parts, although after assembly the sequence of decomposition is not obvious
unless one has a record of the construction sequence.

Clearly by introducing the unique decomposition we may be forced to
distinguish between two forms which are entirely equivalent. Who cares in
Which order the wheels were put on the car?
An interesting example for the reader to study is the various expressions

Which can be formed by the division operation /. With brackets we have the
construction rule, in Backus normal form,

<expression > = <identifier > I ( <expression > / <expression > )

Which can always be uniquely decomposed. It is a separate matter that
((a/b)/(c/d)) and ((alc)I(bld)) are arithmetically equivalent, but that is
another big problem and not to be discussed here.
At the very simplest level, let the set R contain 0 as its only element and let

the set S contain just the symbol 1. The composition rule is expressed as

<T> ::=0 I <T> <T>

This is a prefixed form and the representation of the 'tree' is a sequence of
O's and l's, The zeros correspond to the terminal nodes of the binary tree
and the ones to the forks at the non-terminal nodes. Following this correspon-
dence the five trees in figure 4 correspond respectively to

1100100, 1110000, 1101000, 1011000, 1010100.

In general, a tree of n terminal nodes is represented by an arrangement of n
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zeros and n-1 ones such that if one starts at the left-hand end of the sequence
and keeps a running total of the number of zeros and the number of ones
encountered, the binary sequence is terminated, and the tree is completed, as
soon as the number of zeros exceeds the number of ones by unity; hence the
'terminated binary sequence'.

Taking any binary sequence, starting at an arbitrary position and moving
from left to right through the sequence, we must inevitably find some se-
quences which terminate in the above sense. If the sequence is finite it may
contain at its right-hand end an incomplete tree, but in general it represents a
forest.
To emphasize the correspondence between the pictorial tree and the binary

representation, Table 1 indicates the correspondence between the labelled
tree in figure 3 and its binary representation.

binary digit position 1 2 3 4 5 6 7 8 9 10 11 12 13
binary digit 1 1 1 0 1 0 0 0 1 0 1 0 0

corresponding node in figure 3 1 2 4 A 5 B C D3 E 6FG

Table 1

The terminated binary sequence (t.b.s.) starting at position 1 represents
the whole tree, while the subsequences commencing at positions 2 and 9
represent the two main branches, and themselves are properly terminated
sequences.
The number of distinct ordered trees with seven terminals is 132, requiring

a minimum of 8 bits for representation purposes, so that the 13 bits required is
not absolutely minimal in the sense of information theory. However the t.b.s.
in general requires 2n —1 bits, while the number of trees increases by roughly
a factor of 4 as n increases by one. Hence one has good value from the bits
used in the t.b.s. especially as n increases.
The terminated binary sequence is thought by the writer to be a minimal

representation for an unlabelled binary ordered rooted tree, but it should not
be thought to be necessarily convenient for manipulation purposes. One can
construct from it by fairly simple algorithms such quantities as the number of
terminals in a given sub-tree and thence get back to the type of identification
discussed earlier. One can set up cross references so that one can immediately
tell, for example, that node 2 has right neighbour 3 and node 3 left neighbour
2, or construct other forward and backward pointers. However, rather more
computer storage would then be required and might not be appropriate if a
large set of trees had to be kept in computer storage.

Although we shall not consider it here, there is also a post-fixed form of
binary representation based on the rule:

<S> ::=0 VS> <S> 1,

corresponding to the reverse-Polish command structure of machine code
programs.
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THE ORDERED ROOTED MULTIFURCATING TREE OF
n NODES

The general ordered rooted tree may have any number of nodes ( 0) above
a given node and any such will possess a sense of order. If we make use of our
general definition of a tree and use a convenient combination rule we can im-
mediately establish that the multifurcating trees with n nodes can be mapped
one-to-one into the binary trees with n terminals.
Let 71 and T2 be two ordered rooted trees of p and q nodes respectively.

Define the composition of T1 and T2 by taking 7'2 and planting it on a stalk on
the root of Ti and to the right of T1. Pictorially the figure below is the com-
position with root R, and total nodes p+q. (see Scoins, 1967).

Thus the terminated binary sequence can also be considered as a representa-
tion of an ordered rooted tree of n nodes. The correspondence chosen here
(other composition rules are possible) has some especially interesting
features, which are brought out by figure 5, which corresponds to the t.b.s.
given in Table 1 with the same labels.

unlabelled labelled

t.b.s.= 1110100010100

Figure 5

A

The sub-trees numbered 1 to 6 in figure 3 and in Table 1, correspond in
figure 5 to

1  whole tree on A,
2   tree with extreme right branch EFG deleted,
3   sub-tree standing on E,
4   sub-tree ABC, on A,
5   sub-tree BC on B,
6   sub-tree FG on F.
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What has been done can be described in terms of a kind of ̀condensation'

process carried out on figure 3, where the figure below is an intermediate
stage; but if one tries to use this technique to establish correspondences with

pencil and paper by drawing, one seems to make rather more mistakes than
one would like.

It is however worth noting that
(i) a group of k l's in the t.b.s. corresponds to a k-way fork,
(ii) the zero which terminates that run of k l's corresponds to the node

at which the k-fork occurs,
(iii) the node sequence corresponding to the left to right order of the

zeros in the t.b.s. is given by the algorithm:
start at the root, go up left, labelling as you go; when you can't
go up any more, come back down and go up again as soon as
possible, taking as left a path as possible without arriving by an
upward movement at a node that is already labelled. Label in
natural order only when ascending.

SEQUENCING BY RECURSION AND BY BINARY VALUE

If one wishes to construct all the ordered rooted trees for given n by computer
program one can employ an approach which generates the whole set of T in
some systematic order via some representation and this order of generation
can be considered a type of lexicographic ordering.

The two ALGOL procedures described in this section both form the
terminated binary sequence for each tree in an integer array A[1:2 x n — 1]

and carry out the operation Q(n,A), which might be just printing the tree in
some form, as each tree is formed.
The first, RECTS1, forms the t.b.s. by entry to a higher level recursive

procedure recTS which does the main work and forms the t.b.s. in the
sequence given by the number pair representation (n,r) discussed earlier.

procedure RECTS1(n,A,Q); value n; integer n;

integer array A; procedure Q; comment Q(n,A) acts on each

completed tree, A[1: 2 x n — 1];
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begin integer array K[1:2 x n —1]; integer m;
procedure recTS(k,i); value i,k; integer i, k;
if k= 1 then begin A[i]:=0;

if i=m then Q(n,A) else recTS(K[i+1],i+1);
end

else begin integer p;
for p:= 1 step 1 until k — 1 do

begin
K[i+2xp]:=k—p;
recTS(p, i+1);
end

end recTS;
m:=2 xn-1; recTS(n,1);
end RECT Sl;

The function of the integer array Kis to record the number of nodes to be
allocated to the right part of the tree while the left part is being formed.
This algorithm forms the five trees of four nodes in the sequence 1010100,

1011000, 1100100, 1101000, 1110000. These are in ascending order when con-
sidered as binary integers, but if the reader forms for himself the 14 cases for
n 5, he will find that one of the fourteen is out of place relative to numeri-
cally increasing value of the t.b.s.
The second algorithm uses the rules which the t.b.s. must satisfy to be a

legitimate form and produces the t.b.s. for given n in numerically descending
order. (A minor adjustment will produce the reverse ascending order). The
algorithm is given to illustrate the point that each representation has its own
natural lexicographic or reversed lexicographic sequence of trees.

procedure TBS(A,n,Q); value n; integer n;
integer array A; procedure Q;

begin integer r;
procedure tbs(ones,i,ex);
value one s,i,ex; integer ones,i,ex;
if ones.° then begin r:=r+1; Q(n,A);

end
else begin A[i]:=1; tbs(ones-1,i+1,ex+1);

if ex> 0 then tbs(ones,i +1,ex —1);
end tbs;

for r: =2 x n-1 step — 1 until 2 do A[r]:=0;
r:=0; tbs(n — 2,2,1);
end TES;

In this algorithm there is a separation at each level of recursion of those cases
where A [I] = 1 from those where A[i] = 0. The parameter r is not essential
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and simply numbers the cases 1, 2, 3 , . . ., while the parameter ex represents

the current excess of ones over noughts.

In the case of n = 4 we have the sequence

1110000, 1101000, 1100100, 1011000, 1010100.

The reader is recommended to study the case of n = 5 for himself.

THE NON-ORDERED, ROOTED, MULTIFURCATING TREE

The rooted multifurcating tree with order can have that order discarded, so

that we may consider as entirely equivalent, for example, the tree in figure
5(a) and the trees in figure 6.

and

Figure 6

This is not the same as the removal of the ordering in the bi-furcating case,
for the counting series is now

saxn=x+x2+2x3+4x4+ 9x5+20x6+48x7+115x8+

cf. Harary and Prins (1959).

One method of forming a collection of this set of trees within a computer is

to generate all the examples covered by 9" (x), as, for example, in the previous

section, and form the binary representations in some sequence. It is then

relatively easy to formulate operations which are equivalent to swapping

branches about at each internal node and to discover, as the set T„ is covered,

whether an equivalent tree has already been found. This method of generating

all cases and throwing away the second and subsequent isomorphs is clearly

extremely wasteful, as Snow (1966) discovered in some earlier work, for the

magnitude of s„ only increases roughly as 2". The better approach is to form a

logical description of the set S„ so that only one example is found, while still

using representations which contain the 'order' which we really wish to

ignore.
It has not proved practicable to use the t.b.s. form as the basis for this

latter approach, but it has been carried out using a ̀height' representation.

Before discussing this it is necessary to discuss the general problem of how we

might say that a tree T1 is less than, or occurs earlier in some sequence than,

another tree T2.
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Up to this point we have only considered at the same time collections of
trees with the same number of nodes, n. Although it is not obvious, this
carries with it an assumption that there is an overall ordering by n, and only
when this constraint was discarded could further progress be made.
Let us consider two trees Ti and Ts which are ordered rooted trees and

decompose according to the rules implied earlier into Ts, T4 and T5,7', respec-
tively.
We wish to make a statement of the form Ti <T2 or Ti= T2 Or 71> 7.2.

For equality let us take only identity in the unlabelled ordered form, and
consider isomorphism between rooted forms as something different.

If we consider the right part as something added later, we would naturally
require that if Ts= Ts and T,<T', then TI<T2. We would also expect for
such a system that if 7'3< T5 then Ti.< T2 whatever the relationship between
T4 and Tg.
We may further break down a typical multifurcating tree, T, and consider

it as an ordered composition of k sub-trees (k>1) T1 7', 7'3 . . . . Tk as indi-
cated in figure 7.

Figure 7

Whatever our rule for sequencing in detail, the set counted by .9'(x)
requires only one version of the possible permutations of the order T1 T2. . . .
Tk, as well as just one isomorph of each component. We shall say that an
ordered rooted tree is in 'canonical form' if

and such that each component is itself in canonical form.
The 'heavy' part of the canonical form is taken to be on the left rather than

on the right so as to preserve correspondence with the previous definition of
the decomposition method for the multifurcating tree.

Consider now two trees Tand T' with k and k' planted sub-trees respectively
referred to as T2 Ts Tk and T1 r 2 . . . . T'.. Then Twill be taken to be

as T15 T1' even if T and T' are not in canonical form.
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In the case of Ti= Tic let T,=T; s = 1, 2, 3, ... , r <min(k,e). Then T.;.T'

as T,'+1. If r = min(k,k') then as k k' and if k = k' = r, then and
only then is T= T'.
Thus far we seem to have an incomplete specification for the 'earlier than'

relationship. However, when one combines the above with the intrinsically
sensible statement that the isolated point is first in sequence and that the
next is the rooted tree of two nodes we have a complete specification.
This 'earlier than' relationship applies to the whole class of ordered trees

but is most useful in discussing the sub-class of non-ordered rooted trees.
For example, consider the two trees shown below.

(A)

and

(B)

Their relative position is determined first by the relationship between
their left-most planted parts

and

The relation between these is that of their left-most planted parts which are
1 and respectively. Thus tree A> tree B, since 1>

However, if they had not been in canonical form the relationship might be
different, for similar analysis shows, for example, that

We observe that in pictorial terms it is not difficult to change a rooted tree
into canonical form, and that when it is in canonical form the heights of the
planted sub-trees standing on any node form a non-increasing sequence from
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left to right. Figure 8 is a more sophisticated example. Figure 9 puts the
rooted trees of 5 nodes in 'increasing' sequence, after they are put into
canonical form. The important feature of this general pattern of sequencing
is that there are an infinite number of trees which lie between any two trees of
different heights. For example all trees of height three or less are 'earlier' than
the last indicated in figure 9, whatever the number of nodes that they may

contain.

non-canonical
Figure 8

Figure 9

canonical

THE HEIGHT REPRESENTATION

In this section we shall confine attention to trees in canonical form, although
the representation is capable of dealing with the wider class.
Let us label the nodes of the ordered tree under consideration from bottom

to top and left to right in the same manner as that implied by the zeros in the
terminated binary sequence. Let the height of the i-th node be H [i]. Then
H[i+ 1 ] <H[i]+1, all i. Moreover H[1]=0 and H[i]>0, 1>1.
This integer array H [1: n] we shall term the height representation of a tree

and if the tree is in canonical form we can make further restrictions on the
permitted values.
The tree in figure 8 can be represented by

0, 1, 2, 3, 3,2, 1, 2, 3, 2, 3, 1, 2 (n=13)

We can tell from this that it is in canonical form for the sequence

1, 2, 3, 3, 2 > 1, 2, 3, 2, 3 > 1,2

in the natural manner for comparing two sequences of integers lexicographi-
cally. Similarly the sub-sequences commencing with 2 and belonging to the
same main branches are also in proper order

2, 3, 3 > 2; 2, 3 >2, 3
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Thus the comparisons are reduced to comparing sequences of integers either
to confirm the canonical property or to compare two canonical trees.
The procedure NO RTS(n,H,Q) generates all the rooted trees of n nodes

in ascending order and carries out the operation Q(n,H) on each as it is
formed. The inner recursive procedure P2(i,w) keeps track of those parts of
the tree which are the same between the completion of consecutive trees. A
non-recursive approach requires a stack to carry the equivalent of i and w
at the different levels of entry.

procedure NO RTS(n,H,Q); value n; integer n;
integer array H; procedure Q;

begin integer y,z;
procedure P2(i,w); value i,w; integer i,w;
begin integer u,h,s,t;
u:=H[w]; comment u is a partial upper bound to H[i+1];
for h:=1 step 1 until u-1 do

begin H[i+1]:=h; 1:=i;
for s:=I while H[s]Oh do t:=s-1;
if i+1= n then Q(n,H) else P2(1+1, 1+1)
end;

H[i+1]:=u; if 1+1=n then Q(n,H) else P2(1+1,w +1)
end P2;
for z:=2 step 1 until n do

begin for y: =1 step 1 until z do H[y]:=y-1;
zOn then P2(z,z) else Q(n,H);

end;
end NORTS;

The parameter z is the number of nodes in the left-most chain and the y for-
statement fills in the corresponding portion of the array H. When z=n we
have an especially simple case.
P2(i,w) builds up the H-vector at position 1+1, taking into account the

partial sequence which starts at position w( < i). A distinction has to be made
when H[i+1] attains its upper limit: w must be stepped on by one, for we
then have a maximal sub-sequence.

This procedure and a non-recursive equivalent have been carefully studied
on KDF.9using the WALGOL and KALGOL systems. The interesting result is
that the extra cost in time of the recursive approach is found to be only slight
in the KALGoL system, and the average time per case generated approaches
a constant value as n increases, if the operation Q is time independent of n.
To illustrate the representation for the nine trees shown in figure 9, the

corresponding vectors are

01111 01221 01232

01211 01222 01233

01212 01231 01234
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This representation is not as compact as the t.b.s., but the trees can be
generated in sequence by the nest of for-statements implicit in NORTS or
any variant of it and then readily converted to t.b.s. form if required for
reference purposes. However the examples given so far do not disclose the
difficulties which arise for larger values of n and which account for the
apparent complexity of NO RTS.
Suppose n= 14 and we have the partial specification

HE!]... H[14 ]=0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 2, 3, ?.

The last node has an upper bound on its height of 2 since h [10 ] =2. The

parameter w in P2 provides the necessary stack of backward pointers.

FREE TREES

A free tree is one that is non-ordered and without a root. A diameter of such a
tree has the greatest path length between any two nodes in the tree. It can
readily be shown that if the diameter is even then the mid-point of every dia-
meter is a unique point in the tree called the centre. If such a tree is taken
With centre as root and the sub-trees planted on the root put in descending
order from left to right, and the same recursively, we have a unique, ordered
rooted tree corresponding to the free tree. Since the root is the centre, the
ordered rooted tree has the constraint imposed that the first two planted
sub-trees are to be of equal height.

It is not difficult to generate in proper sequence all free trees which have a
centre and possess n nodes in all using the height representation.
However, if a free tree has an odd diameter there is a pair of mid-points

Jointed by the bi-centre, and some difficulty arises. It is perfectly practicable
to generate in proper sequence all free trees with odd diameter by using the
height representation to generate trees of the form

Where T2 is of the same height as 7'1 before planting, but such that 7'8> T1.
This gives the bi-centred trees in their proper order. However, it has proved
impossible so far to generate the interleaved set of centred and bi-centred
trees except by carrying out a comparison between the next centred tree and
the next bi-centred tree, which is essentially a sorting operation which we
have previously avoided.
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A New Look at Mathematics and its
Mechanization

B. Meltzer
Metamathematics Unit
University of Edinburgh

INTRODUCTION

Most published work on theorem proving by computer has belonged to one
of two schools: either heuristic methods like those of Newell, Shaw and
Simon are used, or axiomatic-complete methods such as those of Davis,
Prawitz and J.A. Robinson. Both schools have, however, been toying with
another approach, which makes more or less use of models or interpretations
of the mathematical theory concerned. For example, in the heuristic school
Gelernter has used geometrical figures as aids in proving theorems of geo-
metry, and in the axiomatic school Loveland has used a method he terms
'model elimination'.

In this paper I wish to consider the model approach to theorem proving. To
do this it will be necessary to take a look not only at the mechanization of
mathematics but at mathematics itself.

THE SIGNIFICANCE OF UNDECIDABLE PROPOSITIONS IN
MATHEMATICAL THEORIES

The classical results on undecidability and unsolvability of G &lel, Turing,
and Church have been frequently discussed in connection with the develop-
ment of mechanized mathematics. In particular Church's Theorem has proved
extremely valuable for accurately delimiting the possibilities of various
schemes. These uses are in effect of a negative character: they tell us that
certain things we would like to do cannot be done, but they do not point to
better ways of doing what we want to do.
However, I think the significance of Godel's discovery of undecidable

propositions is rather different and has not been properly appreciated; a
proper appreciation would provide a useful pointer for future developments.

Since Motel announced the existence of true undecidable propositions in
formal number theory in 1930, the characteristic attitude of most of those
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interested has been that an undecidable proposition is a pathological pheno-

menon. This reaction is probably due to the peculiar syntactical structure of

the particular proposition constructed by Godel, and to the fact that preju-

dices die hard—in spite of his result people could not quite stomach the
demonstrated fact that formal number theory based on the Peano axioms did

not completely describe elementary arithmetic, i.e. was not categorical. I wish

to suggest that this attitude is inappropriate, because undecidable proposi-

tions are not only extremely numerous in mathematics but also in a certain

sense among the most interesting and significant ones.

Let us review Godel's result? One can write out the conjunction of axioms

of formal number theory—these are essentially Peano's axioms, including
that of mathematical induction, and they employ only one predicate, that of
equality, one function, the successor function, and one constant 0. Godel
constructed a proposition G, which he showed by informal reasoning was
true but which nevertheless could not, either itself or its negation, be derived
in the formal system if the latter were consistent. This proposition G, when
interpreted, is a proposition of arithmetic, of the form 'a certain definite
number does not belong to a certain precisely defined class of numbers'. But
because of the way he constructed this number and this class it could also be
interpreted, metamathematically, as meaning 'G is not formally derivable
from the axioms'.

One's first reaction on meeting this result is that there must surely be some-
thing wrong with the system of inference used. But it has been indubitably
demonstrated that the rules of inference used are such that from true premisses
one is always led to true conclusions—so in that sense all is well with the
logical system. What has gone wrong then? The answer is rather surprising:
if we tried formally to deduce this true proposition of arithmetic G from the
axioms we would in effect be trying to prove far too much; for it can be
shown that if G had been true for all possible interpretations or models of the
axiom system, it would then indeed have been derivable formally. Therefore
there must be one or more models of the axiom system for which G is false.
And these models, clearly, cannot be arithmetic or, at least, arithmetic as we
ordinarily understand it.

So the reason that G could not be proved formally, even although it is true

in arithmetic, was that we were trying to prove it true for a large number (in

fact an infinite number) of other systems than simple arithmetic—and it just

is not true for all these. The modes of inference we were allowing ourselves

were too restrictive—they would only work for such propositions as were true

for all the ̀ pseudo-arithmetics'; they would not work for a proposition true

in our standard arithmetic only, for example. I shall come back to this point.

Godel's original proof was for a formal system embodying a higher-order logic. The

result, however, holds also for a formalization of number theory in the lower predicate

calculus, which is the system we have in mind in the present discussion. It is well known

that all mathematical theories can be formulated in this calculus.
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It is clear then that the axioms do not categorically specify simple arithme-
tic. One might therefore ask whether they cannot be supplemented by others
so as to 'pin down' arithmetic. It can be shown that this is not possible.

Is the existence of undecidable propositions of this kind in formal theories
of merely 'academic' interest? By no means. Undecidable propositions con-
stitute in a sense some of the most important parts of mathematics. To show
this, let me take another discipline, for example, elementary group theory, as
formulated in the lower predicate calculus. The axioms are as follows:.

(x)(Y) P(x,y,f(x,y))
(x) P(e,x,x)
(x) P(g(x),x,e)
(x)(y)(z)(u)(v)(w) P(x,y,u) v P(y,z,v) v P(x,v,w) v P(u,z,w)
(x)(y)(z)(u)(v)(w) P(x,y,u) v P(y,z,v) v P(u,z,w) v P(x,v,w)

Now consider all those propositions which are true only for Abelian
groups, i.e. the groups for which the product of two elements is independent
of their order. In this theory all these propositions are undecidable—which is
remarkable, when one considers the vast number of books and monographs
devoted to their study! One might object that this consideration does not
really amount to much, for if one adds the axiom of commutativity the un-
decidability of many of these propositions vanishes. It is true that in this new
theory, these Abelian theorems are no longer undecidable, but there will be
other undecidable propositions which are true only of certain special sub-
classes of Abelian groups. In parenthesis, let me say that Tarski has shown
that only theories which admit of a finite model, i.e. an interpretation with a
finite number of elements, can possibly be categorical. Undecidable proposi-
tions are the rule over vast territories of mathematics.
To sum up the situation, it has been customary in the consideration of

formal theories to concentrate attention almost exclusively on those proposi-
tions which are true in all models and therefore provable, and those which
are false in all models and therefore disprovable. But the undecidable pro-
positions, those that are true in some models, but false in others, are among
the most interesting in mathematics.

THE MODEL APPROACH

What I wish to do is mainly to present a fresh point of view rather than new
results and facts, though I shall mention one or two of these also. This may
be useful, because so often advances in knowledge come from new points of
view rather than from new facts.
In considering mathematics we must not be dominated completely by the

axiomatic approach, but we should consider the model of our theory, the
actual objects that we are talking about. The study of interpretations or
models of theories was put on a precise rigorous basis by Tarski many years
ago. Let me briefly review the idea. Given a set of sentences of a formal
theory, like the axioms of group theory we considered earlier, we postulate
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some universe of objects—the domain of our interpretation. For example, we
might have in mind some particular group, say the group of symmetry

rotations of a square about its centre. In this case our domain consists of
four elements; the zero, 90 degrees, 180 degrees and 270 degrees anti-clock-

wise rotations. We label the elements by the constants e, a, b and c respec-
tively. To complete the interpretation we need to specify the values of the
functions and the truth values of the predicates appearing in our sentences.
In the present example, for instance, the value of g(a) will be c, g being the
group inverse function. The truth-value of P(e,a,b) will be False, since the
interpretation of the predicate P is that the third argument is the product of
the first two. If the values of the functions for every set of arguments and the
truth-values of the predicates for every set of arguments taken from the
elements of the domain are specified, the interpretation is determined. And
if with this specification of domain, functions, and predicates, the sentences
concerned turn out to have the value True then the interpretation is said to
be a model of the sentences.

One of the most important facts about models, which I have implicitly
used in the earlier discussion, follows from Coders Completeness Theorem.
This is to the effect that for theories formulated in the lower predicate calculus,
if every model of the axioms is a model of a given sentence S, then S is formally
derivable from the axioms.

HERBRAND'S THEOREM AS A LINK BETWEEN THE
AXIOMATIC AND MODEL APPROACHES

Herbrand's 'Recherches sur la theorie de la demonstration', although pub-
lished as long ago as 1930, is only today coming to be recognized for the
seminal work it was. Both logicians and workers in the field of mechanized
mathematics are still discovering in that paper results, hints and anticipations
of great interest. The main theorem of the paper is, as is well known, the basis
of most theorem-proving programs and thinking on the subject.
Herbrand, who died in his early twenties, would most probably have

approved of the uses made of his results in theorem proving, but would
possibly have frowned on the kind of further application of them that I wish
to discuss here. For his attitude was based on a philosophical outlook about

the nature of mathematics, which can be described as 'finitise. He was very
careful to couch all his results in such terms, that all operations and concepts
concerned could essentially be carried out or constructed in a finite number

of steps. He would have had no sympathy with the Tarski model approach,

which freely considers all possible interpretations and models, over domains
of objects of any finite or infinite number, whether constructible or not. It
was indeed this deliberate restriction of his conceptual apparatus which
prevented Herbrand in his paper independently discovering GOdel's Com-
pleteness Theorem.

Nevertheless, the Herbrand approach is in my view to a large extent a
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model approach, and by its careful dovetailing of models with axiomatics it
appears to be most fruitful in methods and ideas.
Let me briefly state Herbrand's main result in the form in which it is used

for theorem proving on computers.
Given a set of axioms of a theory expressed in the lower predicate calculus,

by certain well known transformations one converts them into a logical con-
junction of so-called clauses. Each clause is a disjunction of atomic predicates,
either negated or not, over arguments which are constants or universally
quantified variables. Existential quantifiers will have been got rid of by the
use of what are known as Skolem functions. In our group theory example the
identity element e, the product function f, and the inverse function g can be
looked upon as Skolem functions, e being a function of no variables. The
alleged theorem is negated and the resulting formula put in the same standard
form as the axioms. The aim of a theorem-proving program then is to show
that the conjunction S=A & T, where A represents the axioms and T the
alleged theorem, leads to a contradiction.
One now forms the so-called 'Herbrand universe' of constants, the set of

constants which can be constructed from all the constants appearing in Sand
all the function symbols appearing in S. Herbrand's Theorem states that S is
unsatisfiable if and only if there is a finite set of instantiations of S over the
Herbrand universe (by 'instantiation' we mean the result of consistently
substituting constants of this universe for the variables in S) which is truth-
functionally contradictory, i.e. false in the truth-table sense for all possible
assignments of truth values to these instantiated or ground predicates.
What this amounts to is that a very particular domain of objects, namely

the elements of the Herbrand universe of constants, has been chosen for the
interpretations of the theory. Different choices of truth-values for the ground
predicates correspond to different interpretations all over this same domain.
Thus, Herbrand's Theorem amounts to saying that to show that Tis a theorem
one only needs to show that no models over this domain satisfy S (and since
this domain is by its nature never of cardinality greater than that of the
natural numbers, the relationship between this result and the well-known
Skolem-Lowenheim Theorem is apparent—I am referring to the theorem that
if any set of sentences has a model at all it has a denumerable model).
So, whereas Tarski talks of all possible models, Herbrand in effect talks

only of models over his special domain. And the surprising thing is that this
is quite sufficient for ensuring completeness of proof procedures.

THE USE OF MODELS IN THEOREM PROVING BY
COMPUTER

The general importance of the model approach has now been made clear. To
indicate why it may be important for theorem proving in particular, consider
the following example.
Suppose in trying to prove a theorem in elementary group theory one
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wished to make use of the fact that there was an element of the group which

had an inverse different from itself. In the ordinary axiomatic approach, this
would be impossible, for the existence of such a possibility is an undecidable

proposition, since it would not be true for the group consisting of a single
element or two elements. Thus the mere fact that the axioms apply to such

trivial groups as that consisting of the identity element alone (hardly deserving
the name of a group) hamstrings the process of finding a proof. Again it is

true that one can add an axiom which effectively excludes this case; but this
does not really deal with the fundamental difficulty. There may well be all
kinds of other restrictions imposed on proofs for the structures one is really
concerned with, which one would not know in advance in attempting to

prove a new and complex theorem. The only way of avoiding this difficulty
is somehow to take account of the structure or model directly.

Just how this is to be done most effectively merits research. In his geometry-
theorem-proving programmes Gelernter (1963) used diagrams in a haphazard
and approximate manner for the purpose of testing the truth of formal sen-
tences which one desired to use as legitimate parts of a formal proof. Love-
land made a more essential, and perhaps more interesting, use of models in
the following way: he demonstrated unsatisfiability by actually trying to build
up models, assigning truth-values to successive predicates by a chaining
schema, and showing that these attempts failed. His method incorporates
what is in my view one of the most 'intelligent' features to be incorporated
in any theorem-proving programme. It has a built-in ability to detect the
most 'sensitive' branches of the search tree and to concentrate on these.

MODEL-BIASED RULES OF INFERENCE?

Let us consider again the example previously given of elementary group
theory without the axiom of commutativity. As I pointed out, if one wished
to find theorems or proofs of results true for Abelian groups, one might do
this merely by adding the axiom of commutativity, but this purely formalistic
approach tends to obscure what one is really doing. It is quite conceivable that
one could operate successfully without actually adding any new axioms but
simply by using the facts of assignment of predicates and functions in the
particular interpretation or set of interpretations in which one is interested.-

in this case the interpretations corresponding to Abelian groups. The possi-

bility I wish to raise here is that one might be able to realize this use of a

particular interpretation by formally modifying the notion of 'immediate

consequence' in the formal system. Examples of immediate consequence are

the classical rule of modus ponens, by which from A and AB we conclude
B, and J. A. Robinson's resolution operating on two clauses. But we have

seen that inference systems based on such rules are in a sense far too restric-

tive. For example, in formal number theory, their tailoring was such that one

attempts to prove propositions not only for standard arithmetic but for a vast

number of other ̀ pseudo-arithmetics'. Is it then possible that, with a given
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model or set of models in mind, one could have modified rules of immediate
consequence, which would not suffer—or at least suffer less—from this re-
stricting handicap?
An example of this kind of thing has already appeared in the very interest-

ing treatment of equality, which has been developed at Rice University by
LA. Robinson and E. E. Sibert. Sibert's system uses not only an extended
version of Robinson's resolution but two further inference rules, and what
they effectively do is to allow one to dispense with the troublesome axioms of
equality. Very recently Robinson has improved on this by finding that only
a single inference rule, which is a generalization of resolution, is required. He
discusses this in a paper in this volume.

A METHODOLOGICAL PRINCIPLE FOR MATHEMATICAL
THEORIES

We have seen that it would be desirable in theorem-proving programs to make
direct use of the models in which we are interested. Consequently, it is im-
portant to have methods for restricting the range of models we must consider.
I wish to give here an account of a principle which is of use in this respect.
As before, let S=A & 7' be expressed as a set of clauses using Skolem

functions, where A is the conjunction of axioms of a theory formulated in
the lower predicate calculus, and T a proposition it is desired to prove.
We define an 'Herbrand model' as an assignment of truth values to all the

ground atoms, i.e. atomic predicates of S whose variable places are occupied
by constants of the Herbrand universe. We define a 'test-model' as an Her-
brand model which satisfies the conjunction of axioms A.
Our result then is as follows:
S is unsatisfiable if and only if it is false in all test models.

The proof is immediate. From Herbrand's Theorem it follows that S is
unsatisfiable if and only if it is false in all Herbrand models. But it is certainly
false in all such which are not test-models, since A is false in them; hence the
result.
So, to show that T is a theorem, we must show that no test-model satisfies

A &T, i.e. AT; in other words, we must show that every test-model satisfies
i.e. satisfies T.

Thus we need to prove our theorem only for the category of test-models,
and in identifying this sub-category of all possible models we may—since the
test-models satisfy the axioms—use any knowledge we have of the theory.
As an example of the application of this principle let us consider again

elementary group theory, as earlier axiomatized, with the predicate and
axioms of equality added. Since the latter introduce no new function symbols,
the Herbrand models are unaltered.

Consider the proof of any proposition T which has the prenex form

(x)(E.Y1) • • (EYr) B(x•Y • • Yr)
Tis (Ex)(h) • • (Yr) [ 'B(x • • Yr)]
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The Skolemized form of this is:

(Yi) • • (Yr) [ . yr)]
where a is the constant or function of no variables which has been introduced

to get rid of the existential quantifier (Ex).
The Herbrand universe is therefore constructed from e, a constant a, the

inverse function g and the closure function f.  So the category of test-models
consists of those groups which can be formed from these, i.e. it consists in

effect of the cyclic groups. So Twill need to be proved only for cyclic groups.
If this is done, however, it will be true for all groups, even continuous groups

with a cardinality greater than that of the infinite cyclic group!
I cannot think of any interesting theorem of group theory of this logical

form; but consider the following, which is a starred ('difficult') example in
Birkhoff and MacLane's 'Survey of Modern Algebra':
'Prove that if x2 e for all elements of a group, then the group is
commutative'.

The clauses that have to be added for the negation of this proposition are:
P(x,x,e)
,[f(a,b)=f(b,a)],

so that the test-models are all groups which can be generated by two elements
a and b. The proof proceeds by first showing that every element is of the form
ambn, where m,n are integers, positive, zero or negative, and then by demon-
strating commutativity for two elements of this form. In this case, the proof
is no simpler for a human mathematician than the standard proof with no
model, but it is an open question whether it is simpler for a machine.
The test-model principle, which should be usable in mechanized mathe-

matics once one has developed suitable ways of taking account of the features

of special models, is in a sense a sharpening of the Skolem-Lowenheim

Theorem. It was remarkable enough that to prove a theorem in an axiomatic

theory it was necessary to prove it only for all denumerable models. But it is

still more surprising that one does not even need to do it for all these but only

for a certain quite definitely specified subset of them. The choice of particular

subset is dependent on the logical form of the theorem concerned, but once

this is known, we have the unexpected phenomenon of deducing immediately

very general results from the proofs of very particular ones.
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Some Notes on Resolution Strategies

B. Meltzer
Metamathematics Unit
University of Edinburgh

A RELATIONSHIP BETWEEN SET-OF-SUPPORT AND
P1-DEDUCTION STRATEGIES

The set-of-support strategy, proposed by Wos et al. (1965) and proved
complete by J. A. Robinson, involves carrying out only such resolutions in
which at least one of the parent clauses has an ancestry traceable back to a
clause in the original negated-theorem set. P1-deduction (Robinson, 1965a),
which is also complete, involves carrying out only such resolutions in which
one of the parent clauses is positive, i.e. contains no negated atoms.
P1-deduction can be used with the aid of renaming (Meltzer, 1966) in many

cases to provide a sharpening of the set-of-support strategy. This depends on
the following considerations.
The set of clauses constituting the proper axioms of a first-order theory

often has the following property: either it contains no positive clauses, i.e.
clauses in which every predicate letter is un-negated, or it can be converted
into this form by a consistent renaming of some of its predicates by means of
their negatives. It is actually the case (cf. Meltzer, 1966) that any set of
clauses with this property must be satisfiable, though the converse is not
necessarily true. Nevertheless, for most of the theories to which automatic
theorem proving has been applied, it is the case that the set of axiom clauses
has this property. For example, this is so for the theory of partial order, group
theory and the theory of fields.
Now let So be the set of axiom clauses of a theory with this property and

T the set of clauses equivalent to the negation of the alleged theorem. Then
either So contains no positive clauses or can be made to do so by some re-
naming. On the other hand, if the alleged theorem is a theorem, the union of
So and T remains unsatisfiable after any renaming and therefore (cf. Meltzer,
1966, Theorem 4) must contain at least one positive clause. Let T1 be the
resulting subset of the positive clauses of T.
Now the basic result connected with p1-deduction (cf. Robinson, 1965a)
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is that a set of clauses is unsatisfiable if and only if the empty clause can be

generated by successive resolutions, in each one of which one of the parent

clauses is positive. In fact, such a deduction is what is meant by a P1-deduc-

tion. Therefore, if P1-deduction is applied to the above set, an empty clause
should be generated. Furthermore, clearly every clause in this deduction will

have its ancestry traceable back to some clause in T1, since So, after renaming,
contains no positive clauses. Hence, although P1-deduction has been applied,

the effect is similar to what would have resulted from a set-of-support strategy,
with, however, the following two differences, both of which represent a
sharpening of the strategy. First, 71—which is now the effective set-of-
support—is in general a proper subset of T. Secondly, even with this truncated

set-of-support, only those resolutions having one positive parent clause are
carried out, whereas the ordinary set-of-support strategy would allow resolu-
tions between non-positive clauses, provided only they have an ancestry back
in V. In spite of these restrictions, the method is still complete, as follows
from the fact that P1-deduction is complete (Robinson, 1965).
As an example consider the theorem of elementary group theory treated

by G. A. Robinson et al. (1964):
'Prove that if a non-empty subset of a group contains xy-1 whenever
it contains x and y then the subset is closed under multiplication.
Use the lemma [previously proved on their machine] that the inverse
of the inverse of x is equal to x.'

In their version the axioms consist of 18 clauses and the negation of the

theorem of 6. The straightforward application of set-of-support itrategy
would make all these 6 clauses the set-of-support. But if all three predicates

are renamed by their negatives, only one clause in the set-of-support becomes

positive. Hence the effective set-of-support involved in applying P1-deduction

is reduced to one clause.

FLEXIBLE STRATEGIES

All strategies developed until now, such as unit preference (Wos etal., 1964),

set-of-support (Wos et al., 1965), hyper-resolution (Robinson, 1965a), F,-

deduction (Meltzer, 1966), are fixed ones in the sense that the basic criterion

for choice of pairs of clauses to resolve is never changed throughout the

program, and also no clauses either of the input set or those generated are

discarded. (One qualification, however: those with experience of resolution

programs will know what a vast number of redundant clauses can be

generated, i.e. clauses which are either alphabetic variants or particular cases

of existing clauses. Most programs incorporate subroutines for getting rid of

most of these).
One would, however, without sacrificing completeness, like to have more

flexible strategies, and I wish to report some results in proof theory which

promise developments in this direction.

The procedure these results make possible is of the following kind. Suppose
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one has an unsatisfiable set S of clauses. One divides the set into two disjoint
subsets: an ̀ active' set To and a ̀passive' set So. One then forms the set of
resolvents, for each of which at least one of the parents is in To. Then the set
consisting of So and these resolvents must also be unsatisfiable. Therefore the
active set T, may now be discarded and the new joint set only be used in the
rest of the programme.
So, having chosen on some appropriate criterion an active subset of the

Clauses in hand, one ̀impregnates' the remaining clauses with this active set
and then throws the active set away. In continuing the process, one may use
any other criterion—if one wants to—for choosing the next active set. For
example, in one case one may use unit-preference, in another a choice appro-
priate to P1-deduction, and, in fact, any other criterion suggested even by
arbitrary heuristic considerations. Our results ensure that even if one chooses
an active set on purely heuristic grounds and then throws it away, complete-
ness is not endangered.
Another incidental advantage may occur in the treatment of equality. For

the main thing wrong with treating equality as merely another predicate is
that one usually thereby generates very many trivial, irrelevant equations.
But one could to some extent ensure that this does not happen, or at least
reduce its incidence, by seeing that the axioms of equality are not usually
included in one's choice of active set. There may even be cases where it would
be worth including some of them once in an active set and thereby, when this
set is thrown away, effectively deprive them of most of their deleterious
consequences.
These possibilities arise from the following:

Theorem. Let S be an unsatisfiable set of clauses consisting of two disjoint
subsets To and So. Then there exists an integer n such that SoLi R is un-
satisfiable, where R is the set of all resolvents having at least one parent in
T„, down to the nth level of resolution.
The proof depends on two lemmas:

Lemma 1. Let S be an unsatisfiable set of ground clauses, CeS and So = S—
{ C}. Let R be the set of first level resolvents of C with members of So. Then
S0 UR is unsatisfiable.
Proof
Let A1, A,, . . . , A. be the set of atoms appearing in S.
Let C= {Li, L2, . , Lk}, where k.-<..m and Li is either Ai or A.
Suppose So UR were satisfiable.
Let M be a model satisfying it. M must therefore satisfy So and hence
cannot satisfy C.
Therefore

M= {Li, 1,2, , Lk, J- k+19 • • • 9 491}9
where is either Ai or A.
Now consider the model

M1 = {Li, L2• • • • 9 Lk, 4+1, • • • 4n).
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Every clause D in S, is satisfied by MI, for the following reasons. If D con-

tains either at least one or at least two Li, this is obvious. If D does not, it
must contain one Li since it is satisfied by M. But this would result, by

resolution with C, in a clause in .R which would not contain this Li nor any
other Li or .4 and so would not be satisfiable by M; hence D cannot contain
such a single L.
So S0 is satisfied by MI. But the latter satisfies C also, thus contradicting

the assumption that the full set S is unsatisfiable. Hence SoUR is unsatis-
fiable.
Lemma 2. Let S be an unsatisfiable set of ground clauses consisting of two
disjoint sets T0, containing n clauses, and S0. Let R be the set of resolvents
having at least one parent in T0, down to the nth level of resolution. Then
So R is unsatisfiable.
Proof
Let T0= { CI, C2,. Cn ).

By Lemma 1, if R1 is the set of first-level resolvents of C1 with S — {Ca, then
C2 ..... C,, }'J Sou R1 is unsatisfiable. Similarly, one may single out C2 and

obtain that C3, . . . Cn }US0U R1L) R2 is unsatisfiable, where R2 is the set of
first-level resolvents of C2 with Cs, , C„ So RI. Repeating this process
with the successive Ci a total of n times, one obtains the following unsatis-
fiable set:
Sou Riti R2u, . , R„.

But Rik-) R2U, R„C R.
Hence Sou R is unsatisfiable.
Proof of Theorem. Since S is unsatisfiable, by Herbrand's Theorem, there is
a finite set of instances of clauses of S which is unsatisfiable. Let T'0 be the
subset of these which consists of instances of the set T0, and S'0 the subset
which consists of instances of S. Let n be the number of clauses in T'0.
Let R' be the set of resolvents of these ground clauses, down to the nth

level of resolution, which have at least one parent in T'0. By Lemma 2,
S'ou R' is unsatisfiable.
Every clause in S'0 is an instance of a clause in S0. That also every clause

C' in R' is an instance of a clause in R, can be shown by mathematical induc-

tion as follows.
Suppose first the resolution level of C' is I. It is therefore a resolvent of a

clause A' in T'0 and B' in T' oUS' 0. A' is an instance of a clause A in T0, and

B' is an instance of a clause B in ToU So. Therefore, by Robinson's funda-

mental result (1965), there is a resolvent C of A and B such that C' is an

instance of C. But C is in R. Therefore C' is an instance of a clause in R.

Now assume that this result is true for clauses of levels 1, 2, . , i. Let C'
be any clause in R' of level 1+1. It is therefore a resolvent of a clause A' in

T'0 and a clause B' which is of level i in R'. B' is thus an instance of a clause

in R and A' is an instance of a clause in T0. Therefore by Robinson's result

there is a resolvent C of A and B such that C' is an instance of C. But Cis in R.

74



MELTZER

Therefore C' is an instance of a clause in R.
Hence a set of instances of Sou R is unsatisfiable, and therefore Sou R is

unsatisfiable.
The converse of the Theorem is obvious, since resolution is a valid form of

inference.
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The Generalized Resolution Principle

J.A.Robinson
College of Liberal Arts
Syracuse University, N.Y..

1. INTRODUCTION

The generalized resolution principle is a single inference principle which
provides, by itself, a complete formulation of the quantifier-free first-order
predicate calculus with equality. It is a natural generalization of the various
versions and extensions of the resolution principle, each of which it includes
as special cases; but in addition it supplies all of the inferential machinery
which is needed in order to be able to treat the intended interpretation of the
equality symbol as 'built in', and obviates the need to include special axioms of
equality in the formulation of every theorem-proving problem which makes
use of that notion.
The completeness theory of the generalized resolution principle exploits the

very intuitive and natural idea of attempting to construct counterexamples
to the theorems for which proofs are wanted, and makes this the central con-
cept. It is shown how a proof of a theorem is generated automatically by the
breakdown of a sustained attempt to construct a counterexample for it. The
kind of proof one gets depends entirely on the way in which the attempt to
construct a counterexample is organized, and the theory places virtually no
restrictions on how this shall be done. Consequently there is a very wide
freedom in the form which proofs may take: the individual inferences in a
proof may be very 'small' or very 'large' (in a scale of measurement which,
roughly speaking, weighs the amount of computing necessary to check that
the inference is correct). It is even correct to infer the truth of a true proposi-
tion in just one step, but, presumably, to offer such a proof to someone who
wishes to be convinced of the proposition's truth would not be helpful
epistemologically. His conviction would come, not from contemplating the
proof itself, but rather from examining the computation which shows the
correctness of its single inference step.
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2. QUANTIFIER-FREE FIRST-ORDER PREDICATE CALCULUS
WITH EQUALITY

2.1. Syntax

The expressions of the calculus are either simple or composite, and if they are
composite they have a unique applicative structure consisting of two parts, an
operator and an operand. The intention is that, when it is interpreted as ex-
plained in 2.2 below, every expression shall denote something, and that the
entity denoted by a composite expression AB (where A is the operator, and B
the operand, of AB) shall always be the result of applying the entity denoted
by A to the entity denoted by B. The expressions are all built up from primi-
tive symbols in a systematic way explained below.
2.1.1. Vocabularies. A vocabulary is a set V of symbols, partitioned into dis-
joint subsets as follows: /( V) is the set of individUal symbols in V; and, for
each natural number n 0, the set F„( V) is the set of function symbols of
degree n in V, and R,,(V) is the set of relation symbols of degree n in V. It is
possible that some, and even all but finitely many, of the sets /( V), F0(V),
R0( V), F1(V), Ri(V), . . ., should be empty; but we assume that at least one
of them is not. We shall usually employ lower case letters for individual sym-
bols and upper case letters for function and relation symbols.
2.1.2. Expressions over a vocabulary. Let V be a vocabulary. Then the expres-
sions over V are the terms, sentences, sequences of terms, sets of terms and
sets of sentences defined below, together with the members of V themselves.
In these definitions, the references to individual, function and relation symbols
are to be taken as restricted to V.
2.1.2.1. Terms. A term is either an individual symbol or else has the form FT
where F is a function symbol of degree n and T is a sequence of n (not
necessarily distinct) terms.
2.1.2.1.1. Sequences of terms. A sequence of n terms is simply the empty
string when n =0. When n >0, a sequence of n terms is a parenthesized list
(T1,. T,,) each component in which is a term. It is not necessary that all of
the components be distinct.
2.1.2.2. Atoms. An atom either has the form RT where Ris a relation symbol
of degree n and T is a sequence of n terms, or else is an equation =S where =
is the equation symbol and S is a nonempty set of terms.
2.1.2.2.1. Sets of terms. A set of terms is a list of terms enclosed in a pair of
braces: {7'1, . TO. When no terms at all appear between the braces the set
is said to be empty. A term is said to be in a set if and only if it is one of the
components of the list, and two sets are regarded as being the same if every
term which is in one of them is also in the other. In other words, the order
and multiplicity of terms in a set is irrelevant.
2.1.2.3. Literals. A literal is either an atom or has the form —A where --I is
the negation symbol and A is an atom. The literals A, —IA are complementary,
and each is the complement of the other.
2.1.2.4. Sentences. A sentence is either an atom, or a conjunction IDC where
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is the conjunction symbol and C is a set of literals; or a disjunction DC
where 0 is the disjunction symbol and C is a set of literals; or a negation
where S is a sentence.
2.1.2.4.1. Sets of sentences. A set of sentences is a list of sentences enclosed in
a pair of braces, exactly as in 2.1.2.2.1 above.
2.1.3. We will usually write an equation = { T1, T2}, having only two com-

ponents, in the more conventional fashion as: Tv= T2. Also a conjunction

SO will usually be written: (SIA . . . ASS) or even simply as

S1A • • . ASS. Likewise a disjunction will usually be written with the familiar
V interposed between its components. However the empty conjunction and
the empty disjunction will always be written respectively as: El, ID, omitting
the pair of braces enclosing nothing.

2.2. Semantics

2.2.1. Terms and sentences become meaningful only when an interpretation
is provided for the symbols in the vocabulary over which they are written.
Thereupon, as explained in detail below, each term and each sentence acquires
a denotation, that is to say something which it denotes, under that interpreta-
tion. Sentences always denote one or other of the two truth values true, false.
Terms always denote some specific object in the so-called universe of the
interpretation.
2.2.2. Interpretations. Formally, an interpretation is a mapping g of a vocabu-
lary V (called the vocabulary of the interpretation) onto a collection of
entities all of which are constructed out of a certain set D (called the universe
of the interpretation). Specifically, g maps each individual symbol in V onto

a member of D, each function symbol of degree n in V onto a function from
D" to D, and each relation symbol of degree n in V onto a function from Dn to

(true, false). The entity g(E) onto which each symbol E in V is mapped by g
is said to be denoted by E under g or to be the denotation of E under g.
2.2.3. Denotations of logical symbols, sets and sequences. The logical symbols
0, 0, and = always denote the same entities, under every interpretation.

Indeed, the negation symbol denotes that function from truth values to truth
values which when applied to true gives false and conversely; the conjunction

symbol and the disjunction symbol each denote a function from sets of truth

values to truth values, with 13 denoting the function which gives false when

applied to a set containing false, and giving true when applied to other sets;

and 0 denoting the function which gives true when applied to a set containing

true, and giving false when applied to other sets. The equation symbol always
denotes that function from nonempty sets to truth values which gives true

when applied to sets containing exactly one object, and which gives false
when applied to other nonempty sets. A set or sequence of expressions is

always taken to denote the set or sequence of things which are denoted by the
constituent expressions.
2.2.4. In general, an expression with operator A and operand B denotes,
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under an interpretation g of the vocabulary in which the expression is written,

the entity which the function g(A) gives when it is applied to the entity
g(B) which is denoted by B under g.

2.2.5. By virtue of the above explanations, we can regard any interpretation g
as automatically extended to the set of all expressions over the vocabulary of
g. In particular each sentence over the vocabulary of g denotes either true or
false under g, and we say that the sentence is true under g, or that g satisfies it,
in the first case, and that the sentence is false under g, or that g falsifies it, in
the second case.
From our explanations above it is easy to verify that the empty conjunction

is true under every interpretation and that the empty disjunction is false
under every interpretation.
An interpretation can neither satisfy nor falsify a sentence which is not

among the sentences over its vocabulary, for there must occur in such a sen-
tence at least one nonlogical symbol which is without any denotation.
Whenever, in the remainder of this paper, we speak of an interpretation and a
sentence in the context of inquiring whether the former satisfies or falsifies the
latter, we should be understood as taking it for granted that the vocabulary
of the interpretation is large enough to contain each nonlogical symbol which
occurs in the sentence.
2.2.7. It sometimes happens that an interpretation g not only satisfies a sen-
tence S, but that also it would satisfy S, no matter what other members of the
universe of g were to be denoted by the individual symbols in the vocabulary
of g. We can express this situation more precisely with the help of the concept
of structurally equivalent interpretations. Two interpretations are said to be
structurally equivalent if their universes and vocabularies are the same and if
each assigns the same denotation to the function symbols and relation symbols
in their common vocabulary. Thus, the only way in which structurally equiva-
lent interpretations can differ at all is in the denotations they assign to indivi-
dual symbols.
Then the situation might arise that not only does g satisfy S, but every

structural equivalent of g satisfies S.
We shall say that g strongly satisfies S if, and only if, every structural

equivalent of g satisfies S. Obviously, if g strongly satisfies S then g satisfies S,
because g is certainly a structural equivalent of itself. But the converse is not
in general true.

Intuitively, g strongly satisfies S only when g satisfies the result of universally
quantifying S with respect to all of the individual symbols that it contains.
What S says about the objects denoted under g by those individual symbols is
true of all of the objects in the universe of g. In the present quantifier-free
system, it is the notion of strong satisfaction which fills the gap left by doing
away with the device of quantifiers.
In a similar way we say that g strongly falsifies S if, and only if, every

structural equivalent of g falsifies S. A little reflection shows that g strongly
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falsifies S only when, intuitively, g satisfies the result of universally quantifying
--IS with respect to its individual symbols.
In the quantifier-free predicate calculus, individual symbols are not

variables. They always denote particular, fixed objects under an interpreta-
tion, as indeed do all nonlogical symbols.
2.2.8. If Xis a set of sentences and g is an interpretation, we shall say that
g (strongly) satisfies A' if, and only if, g (strongly) satisfies each sentence
in X.

2.3. Propositions

The point of the whole enterprise of logic is to be able to formulate, investi-
gate and settle, any proposition which asserts that a sentence Y follows from a
set A' of sentences. (To facilitate our discussion we shall say that Y is the
conclusion, and the members of A' the premisses, of the proposition P). Now
there are two senses in which follows from can be taken, in our present system.
The first sense, which we shall call the ground sense, is explained by saying
that:
2.3.1. Y follows from A' if, and only if, among the interpretations which
satisfy A', there is none which falsifies Y.
The second sense, which we shall call the general sense, is explained by saying
that:
2.3.2. Y follows from A' if, and only if, among the interpretations which
strongly satisfy A', there is none which falsifies Y.
In order to help keep the distinction between these two senses of follows

from clear, we adopt the following notation for propositions: we write X Y
to represent the proposition that Y follows from A' in the ground sense, and
we write X-■ Y to represent the proposition that Y follows from X in the
general sense. We say that X Y is a ground proposition and that X-*. Y is a
general proposition.
2.3.3. From the definitions 2.3.1 and 2.3.2 it can be readily checked that if
Xr Y then X-■ Y. This is so because the interpretations which strongly
satisfy X are all contained in the set of interpretations which merely satisfy A'.
The converse is untrue, however. For example, {P(x)}-.P(y), but it is not
the case that {P(x)}P(y).
2.3.4. It is not hard to show that if X-. Y then any interpretation which
strongly satisfies A' will also strongly satisfy Y (although, in the definition
2.3.2, it is only formally necessary that it merely satisfy Y). For if g strongly
satisfies A', then so does h, where h is any structural equivalent of g, and hence
h also satisfies Y; therefore any structural equivalent of g satisfies Y, and
therefore g strongly satisfies Y.
2.3.5. A counterexample to a ground proposition P is an interpretation which
satisfies the premisses of P but falsifies its conclusion. Similarly, a counter-
example to a general proposition is an interpretation which strongly satisfies
its premisses but falsifies its conclusion. Intuitively, a proposition says of
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itself that it has no counterexample, and it is true if this is in fact the case, and

false otherwise.
A proposition which is true is also called a theorem.

2.4. Ground propositions are decidable

As we have seen, a proposition is an intuitively meaningful assertion, which

says something quite concrete and specific about all of the ways in which inter-

pretations can affect the premisses and the conclusion of the proposition. As

such it is either true or false according as what it asserts to be the case is the

case or not. Strictly speaking, a proposition is an assertion of the semantical
metalanguage of our system, and is not to be counted among the sentences of

the object language as characterized in 2.1. However, even though a proposi-

tion is always either true or false it is not always by any means obvious which.
Fortunately, in the case of ground propositions, there is an algorithmic way of
correctly deciding the truth or falsehood of them, which we now go on to
explain.
2.4.1. The method of denotation tables. From the definition 2.3.1 it looks as if,

in order to decide whether or not a ground proposition P is true, we would
have to examine all interpretations whatsoever of its premisses and conclusion.
This would of course be quite out of the question, as there are at least
as many interpretations of a vocabulary as there are sets to act as their
universes.
However, it is not in fact necessary to do this. For the only way in which an

interpretation can affect the premisses and conclusion of P is by providing a

truth value as denotation for each of the atoms which appear in any of them.
Since there can be only finitely many (say, n) such atoms there can be only

finitely many (at most 2^) different ways in which the set of them can be

mapped by an interpretation onto truth values. We can list all of these ways

in a denotation table, in just the same way as is done in constructing a truth

table in the propositional calculus. Indeed, if we first construct a truth table

for the set of atoms involved, and then remove from it any mapping which

'violates the semantics of the equation symbol' in the way explained precisely

below, then we in fact get the denotation table for the set of atoms. Once we

have the denotation table, we can easily check mechanically to see whether

any of the mappings in it corresponds to a counterexample for P, and thereby

settle whether P is true or false. Herein consists the decision procedure for

ground propositions.
2.4.2. Constructing a denotation table for a set of atoms.

2.4.2.1. Conflation. Let T be a set of terms, and K be a partition of T. Then

we say that two expressions Q and R are conflated by K if, for some (relation

or function) symbol S, Q is S(Ai, . • •• As), R is S(.131, • . BO, and for each

j, j= 1, . . n, Al and 131 lie in the same block of K. Two blocks of K are said

to overlap if there are two terms, one in each of the blocks, which are con-

flated by K. By the closure of K we mean the partition which is obtained from
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K by repeatedly merging (i.e., forming the union of) pairs of blocks which
overlap, until there are none left which do.
2.4.2.2. Admissible mappings. A mapping g of a set A of atoms onto truth
values is admissible if, and only if, for the partition K defined below, g maps
atoms, which are conflated by K, onto the same truth value; and g maps an
equation = S onto true only if S is included in some block of K.
In the above definition, K is the partition of the set T of all terms which

appear in any of the atoms in A, determined as follows: first we let M be the
partition of Tin which two terms lie in the same block if, and only if, g satisfies
some equation = S in A whose S contains both of the terms: then we let K
be the closure of M.
2.4.2.3. The denotation table for a set A of atoms is then the set of all map-
pings g of A onto truth values, such that g is admissible.

2.5

Because of the method of denotation tables one can always, at least in principle,
directly determine whether a ground proposition P is true or not. Of course
the amount of computing involved in carrying out the method on P will (no
matter how efficiently the work of constructing the denotation table and
checking each map in it might be organized) increase as P becomes 'larger'.
There will indeed be a 'size' of P which is as large as can feasibly be managed,
using this method, for every computing agency, man or machine, with a fixed
amount of computing power. Furthermore there is a point beyond which a
human is not well served epistemologically by merely being informed that a
Proposition is true, or that it is false, even if his informant is entirely reliable
and is somehow known to be so. Ondwants to be told not only that a proposi-
tion is true or false, but also, so to speak, why. It would surely be most un-
satisfying intellectually to be told by an omniscient demon that, for example,
Fermat's Last Theorem is indeed true, if he did not also provide us with a
proof of it which we could understand. We go on, therefore, to discuss infe-
rence and proof in the present system and in general.

3. INFERRING CONSEQUENCES AND PROVING THEOREMS

3.1

To prove a proposition is to show that it is true. Presumably, for someone
Who can see directly that a proposition is true, a proof of that proposition is
unnecessary. If he cannot see directly that the proposition is true, however,
then he must be given a way of doing so which requires that he see directly the
truth only of propositions which he can directly settle, without mediation.
The following fundamental consequence principle provides the framework
Within which this might be done: if Y follows from Z, and if each sentence in Z
follows from X, then Y follows from X.

It is straightforward to check that the consequence principle holds if
follows from is construed in either the ground sense or the general sense of 2.3.
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But it is important to realize that the consequence principle holds when

follows from is simply taken in the unformalized sense of ordinary mathe-
matical usage.
The proposition that Y follows from X can be seen to be true, therefore,

by one who can see that Y follows from Z and that each member of Z follows

from X. If there are k sentences in Z then the original problem (to see that Y

follows from X) can be replaced by k +1 problems of exactly the same sort

as the original one. Obviously, if the reduction is to have any point, each of

the k +1 problems must be, in some sense, easier to solve than the original

one. However, it is not at all necessary to treat the reduction itself as a problem,

for the consequence principle requires no justification either in general or in

any particular application.
These general remarks supply the motivation and background for the formal

concept of proof which is introduced below.
3.1.1. A tree of sentences is a tree to each node of which is attached a sen-
tence, which is said to be the sentence at that node. It is possible that the
same sentence should be attached to more than one node in a tree of sentences.
A ground proof is a tree of sentences such that, if Q is the sentence at any
interior node N of the tree, and P1, . . Pk are the sentences at the nodes
which are immediately outward from N in the tree, then the proposition at N,
{P1,. . Pk} = Q, is true. A general proof is defined in exactly the same way
except that -+ replaces z in the definition.
Every ground proof is also a general proof, by 2.3.3, but not necessarily

conversely.
If all of the sentences at the tips of the proof P are in X, and if the sentence

Y is at the root of P, then P is a proof of the proposition that Y follows from

X, in the ground or the general sense according as P is a ground proof or a

general proof.

3.2

In order to see, then, that a tree of sentences is in fact a proof, one must be

able to see that the proposition at each of its interior nodes is in fact a

theorem. We now describe a method which automatically produces proofs for

ground theorems, in which the interior theorems are necessarily 'obvious' to

the agent (man or machine) with the computing power that must have been

available in order that the proof could have been produced at all. An agent

having only very little computing power can produce only proofs which have

interior theorems of an extremely simple kind. An agent with greater comput-

ing power can produce proofs with fewer, but 'larger' interior theorems. An

agent with sufficiently great computing power will be able to prove the theo-

rem itself in a single ̀ obvious' step.

3.3. Semantic trees

Let K be the set of atoms in the premisses or the conclusion of a ground pro-

position P. Let T be a tree of sentences, each one of which is a conjunction
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whose literals are all atoms, or complements of atoms, in K. Then T is a
semantic tree for P if the following four conditions are satisfied at each node
N of T, where C is the conjunction of all the literals in all of the conjunctions
at the nodes on the branch of T down to and including N, and C1, . . Ck

are the conjunctions at the nodes of T immediately outward from N:
3.3.1. there is no atom L in K such that both C -L, and
3.3.2. C(CIV . VC7c);
3.3.3. there is no literal M in C5 such that CM (for 1 -<_j<k);
3.3.4. if N is a tip of T, then either CL or C —IL for each L in K.

3.4. Discussion of this definition

The intuitive idea behind the definition of 3.3 is that as we move down a
branch of a semantic tree for P we encounter, at each node, a further quantum
of information in an increasingly more complete description of an interpreta-
tion of the vocabulary in which the premisses and conclusion of P are written.
The conjunction C of all the literals in all of the sentences on a branch of T is
a complete description of an interpretation in the sense that it portrays one
possible way in which an interpretation g can make each sentence S over that
vocabulary denote a truth value: if S is true under g then CS, and if S is
false under g then --IS. Conditions 3.3.1 and 3.3.4 are imposed in order to
ensure just this. Condition 3.3.3 is theoretically dispensable. It merely en-
sures that each component of each new quantum is in fact new information,
not deducible from the part of the description which is already given. Condi-
tion 3.3.2 is imposed in order to guarantee that every possible interpretation
is described by some branch of T. For no matter what interpretation g of the
premisses and conclusion of P we consider, the conjunction 1:1 at the root of T
is satisfied by g; and in general, if g satisfies C then g satisfies (C A C5), for
some j, by condition 3.3.2. Therefore there is some branch of T which g
satisfies. But to say that g satisfies C, and to say that C completely describes g,
is to say the same thing, when N is a tip of T.

3.5. Failure points: counterexample trees

A counterexample tree for P, where P is a ground proposition, is a semantic
tree for Pin which certain nodes are classified as failure points as follows (re-
taining the notation of 3.3 and 3.4): the node Nmn a semantic tree T for P is a
failure point of T if C —2 for some premiss Z of P or if C= Y where Y is the
conclusion of P.

Obviously any branch of T which contains a failure point cannot describe a
counterexample for P. Therefore, if P is true, every branch of every counter-
example tree for P must contain a failure point.

3.6. Inference points of counterexample trees

A node N in a counterexample tree T for P is called an inference point of T
if the following two conditions are satisfied:
3.6.1. N is not a failure point of T;
3.6.2. each of the nodes immediately outward from N is a failure point of T.
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3.7. Standard form for propositions

We obtain considerable simplification in the subsequent discussion if we are
able to assume that the propositions P we deal with are all in a certain stan-
dard form, namely, the form in which P satisfies the two conditions:
3.7.1. the conclusion of P is E];

3.7.2. each premiss of P is a disjunction.
There is no loss of generality involved in this assumption since every proposi-

tion is equivalent to a proposition in this standard form in the strict sense that
every counterexample of the one is also a counterexample of the other. To see
this, it is enough to note that {Xi, X„). Y is equivalent to { X1, 
Y} 0; that replacing --,P{S„ . . S„} by u{—,s1, —1S„} or replacing

S„ . S.} by 0 {-1S1, ..., —S} anywhere in a proposition produces
an equivalent proposition; that deletion of anywhere in a proposition

produces an equivalent proposition; and finally that replacing, on the left
hand side of a proposition, the conjunction 0{4 . S.} by then disjunc-
tions 051, • • 0S,, produces an equivalent proposition.

3.8. Making inferences at inference points

Let us now examine more closely the situation at an inference point N in a
counterexample tree T for a proposition P in standard form. Let C, C1,
. • Ck be defined at N as in 3.3, and let F1,. . Pk be premisses of P such
that:

3.8.1. {C, C,}=.—,P, for each], 1 < j<k.
Since Pj is a disjunction, and since Nis not a failure point of T, we can write
Pi as (AiV Bi), where Ai and B, are disjunctions, and where
3.8.2. for each j, 1 jk
but
3.8.3. for no], I
It is possible that Al is empty, but not that A is. Because of 3.8.1 and
3.8.2. we have

3.8.4. {C, Ci} -113, for each], 1 < j <k
and by definition of a counterexample tree we have:

3.8.5. C..(Ci V ... V Ck).
From 3.8.4 and 3.8.5 it immediately follows that:

3.8.6. {B1,. .

and that therefore there is at least one choice of a disjunction B (namely the
disjunction of all the complements of literals of C) such that:
3.8.7. {B1, Bk}B and
Now let Q, for any B which satisfies, 3.8.7, be the disjunction:
3.8.8. (A1 V .. • V Ak V B);
then it readily follows that

3.8.9. {PI, • •
and also that
3.8.10.
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For from the second part of 3.8.7 we know that and this, with
3.8.2, immediately gives 3.8.10; while the first part of 3.8.7 immediately
gives 3.8.9. Suppose that the proposition P is: XED.
If we add the sentence Q to the set X, to obtain the set X', and define the

tree T' to be the result of classifying as extra failure points the nodes of Tat
which Q is false, then T', as it stands, is a counterexample tree T' for the pro-
position X' =- 0. Now, since Xg_ X', every failure point of T is a failure point
of T'. However, the node N is certainly a failure point of T', because of 3.8.10,
but not of T, by 3.6.1. If we define the size of a counterexample tree to be the
number of nodes in it which are not failure points of it, then we can express
the above situation by saying that the size of T' is strictly less than the size of T.
Now if XE::) is true, every branch of T contains a failure point, and therefore
T contains an inference point, unless the root of T is itself a failure point.
Hence the same will be true of T'. Therefore the above construction can be
iterated to produce a sequence of counterexample trees T, T', . . n) for a
sequence X=-0, X'=-, X()=D of theorems each of which is equiva-
lent to X.0 and therefore true; with the sizes of the successive trees forming
a strictly decreasing sequence of numbers 2:- 0. Hence, for some n, the size of
T() will be zero. This means that the root of T(") is a failure point for
X('') 0, which can happen only if D was inferred at some inference point
in T(n-1), and added to X(n-1) to form X('). If we attach to each of the failure
points of T, a sentence in X which is falsified at that point; and then thereafter
attach, to each of the new failure points in T', the sentence Q which is added
to X to get X', and so on, through the sequence to T("); then T(") will
actually be a proof of J. Each of the inferences in this proof will have
been made automatically, from the materials available in the immediate
neighbourhood of the corresponding inference point. Notice that a special
case of a counterexample tree for any theorem { X1, . . 0 is the tree
having just k +1 nodes, namely a root N and k tips N1, . . Nk immediately
outward from N, with the conjunction Ci attached to N, and the conjunction
Ci attached to N, i=1,...,k, where Ci is just the conjunction of all the comple-
ments of literals in Xi. Then each of NI, . . Nk is a failure point, and the
construction of the present paragraph shows that 0 would be inferred directly
from { X1, . . Xk). Of course, to know that this simple tree is a counter-
example tree for { X1, Xk} *- 0 is already to know that { Xk} 0,
because this is the content of 3.3.2 in this case. The upshot of this paragraph is
therefore this; that from any counterexample tree T for a theorem X=.0, we
automatically get a proof of X=- 0, in which each inference is an application
of the following principle:
3.8.11. from (A1 v B1), . . (Ak v Bk) one may infer the 'resolvent' (A1
V . . . V Ak V B), whenever {B1, . . . , B, where B is a
disjunction.

It is this principle which we call the generalized ground resolution
principle.

87



THEOREM PROVING

3.9. Discussion of the generalized ground resolution principle

The principle 3.8.11 specializes, in various ways, to all of the various versions
of the ground resolution principle (Robinson, 1965), when B is D. When B is
not 0, 3.8.11 condones inferences of a rather more general character, includ-
ing all those which involve the notion of equality in an essential way. It is to
be noted that in applying 3.8.11 one has to discover a B satisfying the side
condition {B1, . . In the construction of proofs described in 3.8,
this discovery is done automatically, and emerges from the information avail-
able at an inference point of a counterexample tree. There is, however, a more
subtle way of selecting B in that construction than the one there mentioned,
which we now explain.
3.9.1. Selecting a B. It is possible to make a better choice of B than simply
(as was indicated in 3.8) to set it equal to the disjunction of all the comple-
ments of the components of C. The conditions which B has to satisfy, in order
that the argument of 3.8 go through, are (in the notation of that argument):
3.9.1.1. {B1, ..., and
Now it is possible to consider the set M of all disjunctions whatever, in which
there occur only the equality symbol, relation symbols and terms that occur
in B1, . . Bk, and C. There are only finitely many of these. A denotation
table for the set of atoms in M can be constructed, and with its help, one can
compute all of the disjunctions B in M satisfying 3.9.1.1, and then choose the
simplest of these with which to construct the resolvent Q 3.8.8. In order that
this be done mechanically one must of course specify a computable measure
of the simplicity of B, such as: the number of symbols in B, or the number
of components in B.

4. GENERAL PROOFS

Now that we have the facility, given a ground proposition D which is
true, to construct automatically a proof of Xr El by using the method ex-
plained in 3.8 of converting a counterexample tree for X=- D, we go on to
consider next the question of constructing, given a general proposition X-. D
which is true, a proof of X-0.0.

4.1. Variants, instances, and substitutions

4.1.1. A substitution is an operation 0 which can be performed on an expres-
sion E to obtain another expression EU; the operation consists of replacing
each occurrence in E of each of a list x1,. . x, of distinct individual symbols
by an occurrence of the corresponding term in a list t1, t. of (not neces-
sarily distinct) terms. It is always assumed that ti is different from xi. We
write 0=(t1lx1, t./x„). The empty substitution, conventionally denoted by
E, is the (null) operation on E of replacing nothing in E. Thus, EE=E for all
E. The composition OA of two substitutions is the substitution p, such that
Eiz=(E0)A for all E. The components of OA are easily obtained from those
of 0 and A: indeed, if 0= ( tdx,i) and A=
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. . tnAlx„, . . umly.)* where * indicates the operation

of deleting any component tjA/xi in which t5A=x5, and any component udyi
such that yi is among x1, . . xn. Composition of substitutions is associative,

and e is both a left and a right identity:
4.1.1.1. (OA) it= 0 (4.) for all 0, A,
4.1.1.2. ee= ee= 0 for all 0.
4.1.2. Instances. An expression Y is an instance of an expression X if Y= X0

for some substitution O.
4.1.3. A substitution 0= ( . t,,/x,) is invertible, and has the inverse

0-1 =(xilti, ..,xnitn),if x,/t,,) is a substitution, that is, if t1, . t.
are distinct individual symbols.
4.1.4. Variants. An expression Y is a variant of an expression X if Y is an
instance XO of X for some invertible 0 such that X= Y0-'.,

Obviously, if Y is a variant of X then Xis a variant of Y; if Xis a variant
of Y and Y is a variant of Z then Xis a variant of Z; and Xis a variant of X.

4.2. Lemma

For any expressions X1, . . ., X,, and substitutions 01, . . On, we can find

variants X1', X„' of X1, . X„, and a substitution 0, such that:

(X101, X„0„).(X1'0,.., X„'0)

(i.e., X101 = Ifi'0 for all 1=1, . . .,n).
The proof is very easy.

4.3

If Xis a set of expressions and 0 a substitution, then by XO we mean the set of
all expressions E0, where E is in X.

4.4

Let X be a set of expressions and 0 a substitution. Let P be the partition of X
determined by the rule that E and F are in the same block of? if and only if
E0=FO. We say that P is induced in X by 0.

4.5

Let X be a set of expressions and P a partition of X. We say that P is a

unifiable partition of X if and only if there is some substitution 0 which induces

Pin X.

4.6

Two substitutions are said to be equivalent over a set X of expressions if they

induce the same partition in X.
4.6.1. Comment. There is obviously an equivalence class of substitutions

over X for each unifiable partition of X. If X is finite, there are then clearly

only finitely many such partitions and hence only finitely many such equiva-

lence classes of substitutions.
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4.7

Let X be a finite set of expressions. A set {01, On} of substitutions is said
to be a basis of X if for each unifiable partition P of X there is exactly one Bi

in the set which induces P in X.

4.8

Prime bases of sets of expressions. Let X be a finite set of expressions. A basis
an) of Xis said to be a prime basis of X if, for any basis {01, ..., 0,,)

of X, we have
4.8.1. { Or,. ., 0 = {crik, ., an AO for some set (AD ..., An) of substitutions.
Comment. Every finite set X of expressions has a prime basis. Moreover,
given X, we can compute a prime basis of X; and given a prime basis of X we
can compute, for any other basis of X, the substitutions Ai of 4.8.1. These
computations are made by means of the prime basis algorithm, explained in
the next paragraph.

4.9. The prime basis algorithm

Given the finite set X of expressions as input, we can, for each partition P of
X, calculate the substitution a(P) by applying to P the unification procedure
described in 4.9.1 below.
Then let {0.1, . . a,,) be the set of all a(P) such that a(P) induces P in X.
This set is a prime basis for X.
4.9.1. Unification procedure. Given a partition P of a set X of expressions, we
compute a substitution a(P) as follows:

Step 1. Put /30= e, k=0, and go to step 2.
Step 2. If BA is a singleton for each block B of P, put a(P)= 13k and

halt. Otherwise:
Step 3. let B be any block of P such that Bigk is not a singleton, let E, F

be two distinct expressions in Bigk, and let W, Y be the two
distinct expressions obtained by analyzing E, F as:
E=AWR, F=AYS

for some (possibly empty) string A of symbols and some
strings (possibly empty) R and S of symbols.

Step 4. If one of Y, W is an individual symbol x and the other is a
term t in which x does not occur, put plc= (t/x), 13k1=p k Pk,
add 1 to k, and return to step 2. Otherwise, put a. (P)=13k, and
halt.

4.9.2. Comment. The freedom of choice (of B, E, F, and x) in steps 3 and 4 of
the unification procedure will of course be removed in some fixed way in any
mechanization of the procedure. For our present purposes we assume the
method of choice fixed but we do not insist on any one way of fixing it. On
this assumption, the sequences fl,. f3k and po, tik...1 of substitutions,
generated as the procedure returns repeatedly to step 2, are fixed functions of
P which we call the unification sequences for P. It is straightforward to show
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that if 0 is any substitution which induces P in X, then a(P) induces P in X
and that moreover 0 = a(P) A, where A = A/C, the final member of the sequence

Ao, • . Ak of substitutions determined as follows: put A0= 0, and then for
0, solve the equation Ai for 4E1. For then the equation e=p, Aj is

easily seen by induction to be satisfied for j= 0,. . k. For j= 0, the equation

holds because 0=EP and A0=0. And if the equation holds for j<k it must

hold for j+ 1, because /3/1-1A/1-1= (P1 tza)Ai+i =Pi( Pi ARO = PI AP
4.10

Now let 11, X„ be sentences and 01, 0„ be substitutions, and consider

the instances 1101, . • ., xne,„ of xi, x„ by these substitutions. By Lemma
4.2 we can find variants 11',. • ., In' of Xi, • . X,,, and a substitution 0,

such that 1101, . X„0„= 11'0, X„'0. If Y is any sentence such that

{,(3.01, • • ., Arnen} Y, then { X1'0, X„10}=. Y. Let T be the set of all of the
terms which occur in any of the sentences Xi', . In', Y. Suppose that the
sentence Y has the form YitiO . . . Ynt„OZ, where each of the terms t1, . • ., tn
is in T and none of the strings 1'1, . . Y„, Z contains a term to, with t in
T. Then put Y'= Ynt„Z, so that if we apply the substitution 0 to Y'
we obtain the sentence Y back again. Thus, {X'0, Y'0. However,
the denotation table for { . . X„'0} -Y'0, and that for { . .

Y'01, where 0' is any substitution equivalent to 0 over T, are com-
pletely isomorphic; and in particular we have that { . . Y'a,
where a=a(P), P being the partition induced in T by 0. Recalling that we
can find A such that 0 = aA, and remarking that for each i, we con-
clude that the following is the case (putting Y'a= X):
4.10.1. If {XO, . . Y then we can find a sentence X such that
{ 11,. . X„}....Y and a substitution A such that Y= IA.

4.11

The ̀lifting lemma' 4.10.1 can be used to obtain, from any ground proof of a
theorem { X101, . . Y, a general proof of a theorem { 1k,. X„},-0,X
with the property that Y is an instance of X. One simply takes the given ground

proof and applies 4.10.1 repeatedly, from the tips inward.

4.12

But a more general conclusion can be drawn from the discussion in 4.10.

Let Xi, X„ be (not necessarily distinct) sentences, and let X11, X„'

be variants of Xi, . . X„ no two of which have an individual symbol in

common. Let T be the set of all terms which occur in any of Xi',. . X„',

and let S be a prime basis of T. If a is any substitution in S and Y' is any

sentence, we can determine whether { Y'a, and, if so, obtain

by means of 4.10.1 a general theorem of the form {XI, . X0}-0,X, where
X= Y'a. The general theorems which are obtainable in this way are all of the

general theorems which can be obtained by applying 4.10.1 to ground theo-

rems of the form { . X„0„}- Y. We can make special use of this in

order to arrive at the generalized resolution principle, in the next paragraph.
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4.13. The generalized resolution principle

A special case of the discussion in 4.12 arises when 1" a comes from Xiscr,
. . X n'a by the generalized ground resolution principle 3.8.11. In this case
we have a general theorem {X1, . . X„}-.X in which Xi is (Aev Be), i=1,
. . n and Xis the sentence (Ai' v v An' v B')a, where (Ai' v Bi'), .
(A v Ba') are the variants Xi', . . ., X,' and B' is any disjunction which
satisfies the condition that {131'0., . . Bn' a}=-B' a.

4.13.1. If, therefore, we apply 4.11 to a proof of {X101, ..., X„0,2)=.0, each
inference in which is an application of the generalized ground resolution
principle, we get a proof of { Xi, . . Xn}-.0, each inference in which is an
application of the generalized resolution principle stated as follows:
4.13.2. Generalized resolution principle
From (A1 v Bi), • • (Any Bn) one may infer the 'resolvent' (A1' v
. . . v An' V 131)a, provided that {Bi'a, . . Bn'a}=-B'a, where
(A1' v B1'), . (An' v B„') are variants of the sentences (A1 v B1),
. . (An V Bn), a is a member of a prime basis of the set T of all
terms which appear in (Ai' v BI!), • • (An' v Bn'), and B', where B'
is a disjunction.

Comment. It is not necessary that (A1 v B1), • • (Any Bn) all be different
from each other. The intention behind our formulating the principle in this
way is to emphasize that the several premisses of an application of the genera-
lized ground resolution principle may well include distinct instances of one
and the same sentence. Such inferences, when 'lifted' to the general level,
correspond to applications of 4.13.2 in which the same sentence appears more
than once in the listing of the premisses. The ground principle 3.8.11 is simply
the special case of 4.13.2 for a= e and (As' v Be')=(Ae v Be), 1=1, . .,n.

4.14. The completeness theorem for the generalized resolution principle

The fundamental theorem of logic, in our present notation, states that:
4.14.1. For any finite set X of sentences: if I—p, then, for some k >1
(X01, ..., XkOk) 0, where Xi, . . Ai-k are in X and 01, Ok are substitu-
tions.
From this proposition, the construction of 3.8, and 4.13.1, we obtain the
completeness theorem for the generalized resolution principle:
4.14.2. For any finite set X of sentences: if X.4.0 then there is a proof of
X-. El in which each inference is an application of the generalized resolution
principle.
4.14.3. Comment. Indeed, if X-■ 0 then the immediate inference of 0,
directly from X, is an application of the generalized resolution principle.

4.15

If, in the construction of 3.8, we impose further restrictions on the form of the
counterexample trees which may be used, we obtain corresponding restric-
tions on the forms of the inferences which will be made when the counter-
example trees are converted by the construction into proofs. To each such set
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of restrictions on the form of counterexample trees will correspond a system
of logic with a single inference principle that is a correspondingly restricted
form of the generalized resolution principle, and the entire argument will
provide the completeness theorem for that particular system of logic.
4.15.1. Pairwise resolution. The original resolution principle of Robinson
(1965) corresponds to the restriction that (in the notation of 3.8) we always
have k=2 and that C1, C2 are always L, for some atom L in K. Actually
this restriction gives rather more, in that the resulting system (as have all
systems obtained in this way) 'has equality built in'.
4.15.2. Resolution with set of support. Example 2: If we restrict the counter-
example tree for X=. Lj in such a way that, for some satisfiable subset Y of X,
the negation of the conjunction C at an inference node N never follows from
Y (as may always be done) then the inferred sentence Q at N in the resulting
proof will never follow from Y alone (for Q; and if we would
have —,C) and will thus be a proof with set of support X— Y. In this way
we obtain the systems (Wos, Carson and Robinson, 1965) in which the set of
support principle is always observed, and we therefore have the completeness
theorem for any such system.
4.15.3. Clash resolution. If all but one of C1,. . Ck always contain a single
literal, and the remaining one contains the complements of all of these literals,
then we obtain the clash resolution system (Robinson, 1967), of which the
system of 4.15.1 is a special case.
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Some Tree-paring Strategies for
Theorem proving

David Luckham
Department of Mathematics
University of Manchester

ABSTRACT

Proofs of theorems from elementary algebra and number theory have been
obtained using a resolution program with a memory capacity limited to 200
clauses. The object has been to study the effectiveness of model partition
strategies in cutting down the number of deductions considered. For this
reason proofs were obtained without the unit preference strategy where
possible. Our results indicate that these strategies are certainly useful but
often have the unfortunate consequence of excluding the shortest proof from
consideration. The question of which is the best such strategy for a given
problem is not straightforward.

What we shall describe here is essentially a pilot study towards the goal of
developing a flexible theorem-proving system. The first step in building a
program capable of dealing with elementary propositions from different
areas of mathematics is to choose a good basic procedure for first-order
proof theory. There now exists a wide selection of procedures, most of them
differing greatly in both formulation and implementation, so that accurate
comparison of any two from the selection is usually difficult. The choice,
therefore, has to be made on the basis of partial answers to practical questions
of the following sort. (i) For what domains of reasoning is the mechanical
proof procedure likely to be practicable? (ii) How complicated a task is it to
program the procedure? (iii) What are the possibilities for improving the
procedure, in general, or for special classes of propositions? That is to say,
one's natural inclination is to take as first choice the simplest procedure for
which there is any really encouraging evidence in reply to question (i), and
which presents good chances for improvement.
From this point of view, the Resolution Principle (Robinson, 1965) seems

a good choice, since its application to elementary group theory has been
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quite successful (Wos, Carson and Robinson, 1965), and the possibility of

more powerful efficiency strategies is indicated in Robinson (1965a). There
is an initial question of whether to program this procedure in its simple form
or in the hyper-resolution form (Robinson, 1965a). However, it is easily seen
that a program for the simple form can be extended (in more than one way)
to the hyper-resolution form if need be. At the outset perhaps one should try
to write a simple and flexible program with an eye to being able to make
additions and modifications easily and, of course, correctly.
On the basis of such considerations we chose to program a simple form of

the Resolution Principle (let us call it ̀ pairwise-resolution' since the program
only computes resolvents of pairs of clauses and does not try to do anything
more general). This, we recall (see Robinson, 1965 and Luckham, 1967), is
a refutation procedure: to prove a theorem T of an elementary theory from
axioms (or starting hypotheses) A1,. ., An the program starts with the set of
clauses {A1, ., A,, —X}, and computes all resolvents of pairs of clauses in
the starting set (call these the level 1 deductions), adds these to the set of
clauses, computes all further resolvents (level 2 deductions) and repeats this
process indefinitely. The empty clause, NIL, will eventually turn up precisely
in the case that T is a theorem of the theory, and if it occurs among the level k
deductions, we shall say that the program has found a level k proof of T.
Figure 1 represents a tree of all possible deductions from a set of four initial
clauses (a node at level 1 represents the finite set of resolvents of two level 0

clauses).

level 0

level 1

level 2 • • • • • • • • •

Figure 1

• • •

If D is a clause occurring in the tree of all deductions, we may define the
proof-tree (or the proof), Tr(D), of a particular occurrence of D as the least

set of clauses satisfying, (i) D is in Tr(D), and (ii) if C is in Tr(D) and C
is a resolvent of A and B then A and B are in Tr(D). A proof is simply the set

Tr (NIL) for some occurrence of NIL, and we shall refer to the level-0 clauses
in Tr(NIL) as a proof set.
Now, the primary problem with a procedure of this type is one of memory

space. The tree of all possible deductions grows so rapidly that it would not be

realistic to attempt to generate proofs using such a procedure without incor-
porating additional strategies for reducing the number of deductions which
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must be considered. So, first of all, we turn our attention to the problem of
finding effective ways of 'paring down' the tree of deductions to manageable
proportions—or more accurately for the theorems we have in mind, that part
of the tree containing the deductions up to about level 6 or 7.
The basic flow diagram of a resolution program is given in figure 2; the

CHOICE subroutine chooses the next pair of clauses to resolve from the tree of
all clauses so far generated and retained, RESOLVE generates the resolvents (or
deductions); and EDIT attempts to throw away as many of these as it can
without excluding the chance of finding a proof. BOOK-KEEP adds the re-
maining deductions to the tree, and if NIL occurs among them, the proof
which has been found is recovered by tracing back the 'ancestors' of NIL in
the tree.

choice

book-keep

resolve

edit

Figure 2

Thus efficiency strategies for theorem proving fall naturally into two classes:
choice strategies for deciding the order in which the deduction tree is to be

generated, and more strongly, for deciding which part of the tree may be
ignored altogether, and edit strategies for eliminating trivial or superfluous

deductions.
First a brief word about the latter class of strategy which is very elementary

and was held constant throughout the experiments reported below. Deductions
were discarded at the edit stage of the program on the basis of two types of

consideration. First, gross estimates about the probable simplest form of a
proof: a clause was eliminated if (i) it contained more than 1 literals or (ii)

it contained a term with a depth of nesting of function symbols greater than d.
In the examples (appendix B with the exception of 4) 1= 5 and d=3. Such

strategies are of course logically incomplete in that if the gross estimate is
wrong and the parameters 1 or d set too low then all possible proofs will be
excluded. Secondly, simple logical criteria for unnecessary deductions: a
clause was eliminated if it was (iii) a tautology, (iv) obtainable from another
clause by a (1-1) change of variables, (v) subsumed by another clause. The
alphabetic variants test (iv) was made only on clauses of length less than 3,
and test (v) was made on a clause only with respect to unit clauses, in order
to reduce the computation time. In practice the gross strategies were
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important in reducing the deduction trees in the algebra examples (1-5) to a
manageable size, but less so in the number theory theorems. It is certainly
true that more sophisticated edit strategies can be formulated which would
result in a further large decrease in the number of unnecessary deductions
made by the program, and we shall say a little more about this later on.
We turn now to our main consideration, the choice strategies. A good

example of the 'weak' form of choice strategy which affects only the order in
which deductions are made, is the Unit Preference of Wos, Carson and Robin-
son (1964). This, very simply, is as follows. The program generates the deduc-
tion tree in a level-wise order with the exception that those deductions which
follow from a 'new' deduction ( of level n, say) and the set of unit clauses are
generated first as far as level n+k. (Here k has a previously fixed value; if k
was not predetermined, the strategy would be incomplete because it would be
possible for the program to 'run away' down a useless branch of the tree.)
Since a number of the end deductions of a proof usually involve a unit clause
this allows the program to 'look ahead' and find a level n +k proof without
generating all of the levels n, n +1, . . . , n + k. Obviously such a strategy can be
crucial (as it was in our example 4(b)) but we have done without it as much
as possible because our primary interest has been to study the effectiveness of
other ways of paring the levels of the deduction tree. (Notice that proofs of
example 1 could be obtained using only unit preference!)
The first example of a 'strong' choice strategy is the Set-of-Support (Wos,

Carson and Robinson, 1965) which depends on the following theorem.

Theorem 1. Let S be an inconsistent set of clauses and T a subset of S such
that S—T is consistent. Then a proof will occur in that part of the tree of all
possible deductions from S which contains at level 1 only those deductions
that follow from at least one of the clauses in T.
For example in figure 1, if T is the level 0 clause indicated, then only the

marked level 1 clauses and those clauses of higher level which do not depend
on any of the unmarked level 1 clauses, need be generated. Tis said to support
this part of the tree. The effect of applying this theorem is to delay the expo-
nential growth of the number of deductions generated by the program until
level 2, provided a suitable set T can be found. In the simple examples so far
considered where one expects to find short proofs (say level 5 or 6) this
strategy has been shown to be very useful and the choice of T to be sometimes
critical (see Wos, Carson and Robinson, 1965, for details). The theorem it-
self is really a statement about the way in which proof-trees may be reordered
so as to preserve the property of being a proof: clearly if S—T is consistent,
deductions from clauses of T must occur at some level in any proof-tree; the
theorem simply states that there exist proofs all of whose level 1 deductions
follow from at least one clause of T. (In fact, any set T ES will provide a
logically complete strategy when used as the Support set if it contains a clause
occurring in a proof.) Hence there is the possibility that this strategy may
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sometimes exclude the shortest proofs from consideration and thus defeat
itself by forcing the program to search deeper levels of the deduction tree;

however, the use of unit preference will tend to counter this effect.
It is natural to ask if more powerful choice strategies can be found which

restrict the exponential growth of the deduction tree at every level. Towards
this goal, J. A. Robinson has suggested the method of P,-deduction (Robin-

son, 1965a); a clause is called positive if it contains no negated atoms:

Theorem 2. If S is an inconsistent set of clauses then there is a proof in that

part of the tree of all deductions from S consisting of only those deductions

that follow from a positive clause.
This appears to be a very useful fact to know, for now one can choose to

compute at each level in the deduction tree only those resolvents of pairs of
clauses one of which is positive (Robinson calls these P,-deductions). So one
might expect the strategy to yield a significant paring down of the deduction
tree, and initial computations with elementary group theory examples
support this (a sceptic would point out that the axioms here have a very
special form), but one might also expect the problem of having to search
deeper levels of the tree. However, leaving practical considerations aside for
the moment, it is clear that this theorem is capable of generalization so as to
yield a family of choice strategies, and we consider next a very simple-minded
extension of it.'
We adopt the notation and terminology of Luckham (1967) and Robinson

(1965). The following symbols denote the concepts indicated: S, a set of
clauses; H, the Herbrand domain of terms composed from the variables and
function symbols in S; K, a subset of H; H(S), the set of all instances of S
obtained by substituting terms from H (i.e. the Herbrand expansion of S);2
R(A,B), a resolvent of clauses A and B. As before, R(S) denotes the set of
all clauses in Sand all resolvents of pairs of clauses in S; Rn+1(S)= R(Rn(S)).
We shall sometimes treat a clause C (i.e. a disjunction of literals) simply as a
set of literals; e.g. Ain C=ç6 denotes that none of the literals in C occurs in M.
In the following we deal with a special class of models, relational systems

on H.

Definitions

(i) M is a model =df. M is a non-empty set of literals occurring in H(S),
no two of which are complementary.
(ii) M is a model for clause C (notation MC) —df.
MflCr s6 for all Ci e H(C).
(iii) (M1,M2> is a model partition of H(S) =df.

(a) M1 and M2 are models,

(b) M1 UM2 is the set of all literals in H(S),

An extension has been suggested by B. Meltzer (1966).
2 Notice that this is not the set of ground instances of S defined in Robinson (1965).
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(c) m1r1M2=0,
(d) for all n, if CeRn(S) and C NIL, then

either M1 C and H(c)r, M2= 0
or M2 C.

(iv) Rin (S) df. {CICeRn(S) & M11=C & H(C)r) M2= caS)
R2" (S) ==df. {CICeRn(S) & M2 C).

Remarks (a). If NIL 4 Rn(S) then Re (S) UR2n(S)=Rn (S).
(b) The conjunction of clauses in S is satisfiable if and only if there is a model
M (in our sense) such that MS (this is usually called Herbrand's theorem).
(c) If S is not satisfiable then Rj"(S)ç6 and R2n(S) sb; in particular (for
the case n=0) S100 and S2 0 0.
(d) Condition (d) places a strong restriction on the class of pairs of models
that form partitions. The simplest example of a partition (when S is unsatis-
fiable) is to take as M1 the set of all positive literals in H(S), and as M2 the
set of all negated literals in H(S). More generally, if the set of literals in S is
partitioned into two sets U1 and U2 such that H(U1) and H( U2) are disjoint
and neither contains a complementary pair, then <H( U1), H( U2)) is a
model partition; in this case the models are closed under substitutions from H
and it is easily seen that (d) is satisfied. Thus, if S consists of the six clauses

1. P(x)v L(1g(x))
2. P(x)vL(g(x)x)
3. --IP(x)v—ID(xa)
4. --IL(1 x)vP(f (x))
5. --IL(1 x)v D(f(x)x)
6. --IP(a)

one example of a partition is
= H({-7P(x) --ID(x a) L(1 g(x))})

M2=11({P(x) D(f(x)x) L(g(x)x) x)});
here, SI= { 3,6} and S2 = {1,2,4,5}.
Definition. Corresponding to each partition (MI,M2 > there is a restricted
tree of resolvents defined by:

i(S)df. Su{CIC=R(A,B) & AeSi & B eS2}

An+1(S)=df. An(S)U{CIC=R(A,B) & A e (S) & B e.k2n(S)}.

Remarks. Clearly An (5)g R" (S). But if a partition is to be useful its restricted
tree must contain somewhat fewer deductions at each level (or at the lower
levels) than the general tree; e.g. at level 1, (S)0 R(S) if and only if
--1(R(S2)g.A(S)).
Now, whenever <M1,M2 is a model partition of H(S), the choice strategy

of generating the restricted tree, A(S),A2(S), . . . , of deductions from S is
complete:

Theorem 3. There exists an n such that NIL E Rn (S) if and only if there exists
an m such that NIL e (S).
The proof has been relegated to appendix A.
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• As corollaries of Theorem 3 we have the completeness of the strategies
suggested in Robinson (1965a) (i.e. Theorem 2) and Meltzer (1966), since
these are particular model partition strategies. Also, the proof in appendix A
contains some extra information: given any R-proof in the tree of all deduc-
tions, there is a corresponding .-proof in the restricted tree (no matter which
model partition is chosen) having the same proof set (not counting repeti-
tions) and containing only terms occurring in the given proof. This does not
say that if we take the shortest R-proof then the corresponding .-proof will
be the shortest kproof But it does at least tell us that some of the gross
editing strategies will not interact unfavourably with the model partition
strategies if they have not already excluded all proofs.

Returning to a practical point of view, we now ask how best to make use of
Theorem 3. We need to know if proofs can be generated efficiently (in some
sense) by using model partition choice strategies, and, if so, how to find a
strategy that works well on a given problem. These questions depend on the
relation between n and m (for clearly m n, and in the case of most partitions
we must expect m>n) and on the growth of the levels (5). Unfortunately,
useful information about these factors is hard to come by, and the best plan is
simply to run some programs and see what happens.
Appendix B contains a sample of results obtained by running a resolution

program with a small selection of model partition choice strategies. The edit
strategies were the same in all cases except example 4(b). The program con-
formed to the basic flow diagram of figure 2, was written in LI sP ( McCarthy
1962) and run on an IBM 7090. The memory capacity was only 200 clauses,
a severe limitation. All the model partitions used were pairs of models closed
under substitutions obtained by the simple procedure outlined in remark (d)
above. Thus in the group theory examples 1-4 two models were used,
M+=H({P(x y z)}), M- = H({-113(x y z)}),1 which result in two partitions,
(M-F,M-- > and (M-,M>. The first strategy (called + P deduction) generates
Robinson's P1 deductions, and the second (called —P deduction) generates
those deductions that follow from a clause containing only negated literals.
The strategies in the number theory examples were equally simple: e.g. in
example 7, {+L, —P, +D} refers to the strategy obtained by using the
partition M1={L(xy), D(xy)} and M2 7= {--IL(xy),P(x)—ID(xy)};
this generates those deductions depending on a clause containing only positive
occurrences of relation symbols L,D and negated occurrences of P.
The use of only these choice strategies, without unit preference except in

4(b), enabled proofs to be obtained within the limitations of the program, so
that one may conclude that these strategies are of practical value (certainly
the program could not have obtained proofs using only the editing strategies).
It is interesting to compare the statistics given here with those in Wos, Carson
and Robinson (1965) where a program with a much larger memory capacity

1 Henceforth all the models discussed are closed under substitutions, so we omit the H.
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and roughly the same editing strategies, but using as choice strategies unit pre-
ference and set of support, was tried on similar problems. We note that all of
the examples given here have short proofs (about level 5) so that the effect of
unit preference, when it was used, on the speed and efficiency in finding a
proof, was significant. The question of which partition is best for a given
problem is not so easy to answer. It is tempting to choose the one such that
(S) is smallest, but this does not guarantee that the proof generated will be

the shortest or the most efficient in terms of the efficiency ratio of appendix B
(see examples 6-8). However, the best practical suggestion at the moment is
to use this choice strategy together with unit preference (e.g. example 4).
The translation of resolution proofs given here into a more natural form is

easy. It will be seen that the steps in the number theory proofs correspond to
the steps in the proofs generated by Wang's natural deduction system (Wang,
1965). We conjecture that the two systems will yield roughly the same proofs
of elementary theorems with about the same efficiency. If this is true, then a
resolution procedure (which is much simpler) seems to be a good choice for
the basic logical part of a 'stock-in-trade' theorem-proving system.

Lastly, a few words about three of the possible improvements. An imme-
diate improvement can be made to the editing strategies. Many of the deduc-
tions retained by the program are trivial in the sense that all further deduc-
tions depending on them are either trivial or already known (and this fact can
be determined by looking ahead a few levels in the deduction tree). For
example, the clause, --IP(g(xi) x8 e)v P(e xs x1) (ex. 3, proof (b), line 7), is
non-trivial in example 3 but is clearly trivial in the converse problem (i.e. to
prove the existence of right inverses from the left inverse and identity axioms)
although it would not be eliminated at the moment. This situation can be
improved by a combination of ̀lookahead' and 'reduction to normal form'
procedures. Secondly, the addition of the equality relation to the resolution
procedure in a sensible way (see J. A. Robinson, this volume) would enable
the sort of theorems dealt with in Norton (1966) to be obtained by a very
limited program. Finally, the use of efficient decision procedures for classes of
sets of clauses of length 2 (see Krom, 1967) could provide a good improve-
ment on the unit preference strategy.

APPENDIX A

Let K be a subset of H. In the proof below we shall use the notions of resolu-
tion and model restricted to a set K of terms. Let Ube a subset of the clauses
of S.

Definitions

(i) K(U1K)=df. the set of instances of clauses of U containing only terms
in K.
(ii) R(UIK)=df. the subset of R( U) consisting of those clauses containing
only terms in K.
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(iii) M is a model restricted to K for clause C (notation MI= C)'-df.
mn c‘oq for all substitution instances Ci of C containing only terms in K.
Proof of Theorem 3. Let A be associated with the model partition (

If NIL E Am (S) then NIL e Rm(S), so in one direction the theorem is trivial.
Assume NIL e Rn(S), and let U be the proof set of a proof-tree and K be

the finite set of terms used in obtaining that proof-tree. Note that NIL E
Rn(UIK).
We restrict consideration to. Ui K); below we shall write Aji to denote
Ul K).

CLAIM: if NIL 4 Ai (OK) then Ai+1 (OK) 0 'Ai (On

In order to prove this claim, let us first consider the set K(UIK). Rn(UIK) is
obtained from K(UIK) by complementary literal elimination (c.l.e.) on
pairs of clauses without making any further substitutions. If there is a
model M containing a literal from each clause in K(UIK), it is not possible
to obtain the empty clause by c.l.e. Therefore, for every model M there is a
clause C in K(UIK) such that Mn c =0. Furthermore, because Ug. IV, for
every model M there is a clause C in Ai and a substitution a such that the
terms of Ca belong to K and Mn Ca =0.
Let M' be a model restricted to K for Ali having a maximal intersection

with M2; M' satisfies

(i) M'

(ii) (VM) (11I'n M25 A I (") Ai)).
Consider any Ca (as above) such that M'n Ca = qS. This means that M' is not
a model restricted to Kfor C, so that C 4k'. Thus C4 A21 ( because Alt u-K21=
Ai), and therefore m2n ca 0.
Choose such a C and a so that M2n Co is minimal. Let L e M2n Ca. Then L

is a literal (containing only terms in K) such that L e M2— M'. This implies
that —IL EM' because m'n M2 is maximal: indeed there must be a clause D
in ki which 'forces' —IL to be in M' in the sense that there is a substitution 0
such that the terms of DO belong to K and DO n m' ={—,L}; if this were not
so, —IL could be omitted from M' without spoiling condition (i), and L
introduced instead, thus contradicting condition (ii).
Hence there is a resolvent R of the above C and D which has an instance

expressible in the form (neglecting separation of variables), ET = (Ca — (L)) LI
(DO—{--,L)). It is clear that E cki+1(U1K). So it remains only to argue
that E is not already in Ai:
(a) if E=9 then E4 Ai by hypothesis
(b) ET n = 0, therefore E411'
(c) Suppose Eek; DO n M2= qS (because D e ki) so that

m2nET5M2nca, which contradicts the minimality of M2n Ca.
This proves the claim.
Now, starting with U, compute successively Al (OK), A2 (Ul K), . . . .

This process must 'close' after a finite number of steps since restriction to the
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finite set of terms Kmeans that only a finite number of clauses can be generated.
Thus there must be an m such that NIL c RP. (OK), which implies that NIL
Am(S). Q.E.D.

Corollary. Given any proof in the tree of all deductions, R"(S), n= 1,2 
and any model partition, there is a proof in the restricted tree, A" (S),
n=1,2, . . . , having the same proof set and containing only terms occurring
in the given proof.

APPENDIX B

Some examples of proofs

Here are some examples of resolution proofs of theorems from elementary
algebra (previously considered by Wos et al., 1965) and elementary number
theory (based on an analysis of proofs of such theorems given by Wang
(1965). Each line in a proof is a disjunction of literals (the disjunction con-
nective is omitted), and each step in a proof is made from the preceding lines
indicated by pairwise resolution. The efficiency ratio (e.r.) of a proof is the
ratio of the number of deductions in the proof to the total number of deduc-
tions retained in memory when the proof was found. This is a somewhat hasty
measure of performance, but will serve to give the reader a rough idea of
what the program did. It will be noticed in some of the proofs that some
deductions can be eliminated; this is because the machine remembers only
the first way it finds of making a deduction.

Example Strategy e.r. e.r.(u.p.) Level
1 +P 1/12 1/2 4
1 —P 115 1 4
2 —P 117 3/7 6
3 —P 1/17 1/7 7
3 +P 1/13 1/5 5
4 —P — 1/4 10
4 +P 1/10 1/7 6
5 —P,+S,—R 1/12 — 4
6 +P,+M,— D 1/9 1/4 4
6 -FP,— M,— D 1/15 1/4 6
7 +L,—P,+ D 1/3 — 7
7 +L,+P,+ D 115 — 5
8 +P,+L,+ D 115 5
8 —P,+L,+ D 1/2 — 7

Example 1

'In a closed associative system with left and right solutions to equations there
is an identity element.'
Two proofs were found without using unit preference; proof (a) using +P
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deduction (positive clauses against non-positive clauses), and proof (b)

using —P deduction (negative clauses against non-negative clauses). In this

case the —P strategy gave a more efficient result.

1. P(g(xl x2) xi x2)
2. P(xl h(xi x2) x2)
3. P(xl x2f(x1 x2))
4. ---,13(x1 x2 x3) —1P(x2 xfi x5) --P(xi x5 xfi)

P(x3 x4 x6)
5. —43(xi x2 x3) —43(x2 x4 x6) .-1P(x3 x4 x6)

P(xi x5 xfi)
6. —Ai (xi) xi :00)
Proof (a)
7. P(x6 h(xi x2) X9) —13(X4 x2 x9) —IP(X4 x1 x13)
8. --IP(g(xl x2) xs x12) P(x2 h(xi x5) x12)
9. P(x5 h(x4 x4) x5)
10. NIL
Proof (b)
7. —1P(x3 x7 j(x1)) --IP(x4 x1 x7) —1P(x3 x4.1(x1))
8. —,P(x1 xfi x10) --1P(g(x1 j(x4)) .00)
9. ---LP(x4 x4)
10. NIL

(left solutions)
(right solutions)
(closure)

(associativity)

(no right identity)

from 4, 2
from 7, 1
from 8, 1
from 9, 6

from 4, 6
from 7, 1
from 8, 1
from 9, 2

Example 2

'In a group the right identity element is also a left identity.'
Using —P deduction, a level 6 proof was found without unit preference

(with 47 uneliminated deductions in memory). A similar attempt using +P

deduction did not yield a proof after 150 deductions were generated and

kept.

1. P(xig(xi)e)
2. P(xlexi)
3. —13(x1 x2 x3) —1P(x2 xfi x5)

4. —,P(x1 x2 x3) —1P(x2 xfi x5)

.X5 X6)

P(X8 X4 X6)
--1P(X8 X4 X6)

P(x1 x5 xfi)
5. —1P(e a a)
Proof
6. —IP(x4 x5 a) —1P(x3 xfi a) —1P(e x3 x4)
7. —113(e x7 a)
8. —IP(x1 x5 a) --IP(x2 xfi x5) —1P(x1 x2 e)
9. —113(a x4 e) —IP(x4 x6 e)
10. —,P(a e)
11. NIL
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Example 3
'In a group with right inverses and right identity every element has a left
inverse.'
Two proofs were obtained without unit preference using (a) -P deduction

(giving a level 7 proof) (b) +P deduction (a level 5 proof). The rate of
growth of the deduction tree in each case was as follows:
Level 1 2 3 4 5 6
Number of retained clauses (proof (a)) 7 14 22 35 64 100
Number of retained clauses (proof (b)) 17 35 38 97 —
1. P(x2 g(x2)e)
2. P(x2 e xi)
3. -,P(xi x2 x3) -1P(x2 x4 x5) P---,(x1 x5 x6)

P(x3 x4 x6)
4. --1P(xi X2 X3)—d)(X2 X4 X2) —1.15(X3 X4 X6)

P(x2 x5 x6)
5. -113(x2 a e)
Proof (a)
6. --1P(x5 x6 e) -11)(x4 x6 a) -,P(x2 .x4 x5)
7. --,P(e x, a) -,13(x2 x8 e)
8. ---,P(e g(xi) a)
9. -7P(x1 x5 a) -,P(x2 g(x s) x5)
10. -,P(a x4 e) g(x10) e)
11. --1.13(a xis e)
12. NIL
Proof (b)
6. P(x5 x6 xi) --1P(x4 x6 e) --IP(xi x4 x5)
7. -1P(g(x2) x8 e) P(e xs x1)
8. P(xi x7 x8) --IP(x1 x6 x9) -,P(e x6 x7)
9. P(e g(g(x3)) x3)
10. -IP(e g(x2) x9) P(xl x9 e)

11. P(g(x9) x, e)

-11)(x2 xs e)

12. NIL

(right inverses)
(right identity)

(a has no left inverse)

from 5, 4
from 6, 2
from 7, 1
from 8, 3
from 9, 2
from 10, 1
from 11, 1

from 2, 3
from 1, 6
from 2, 4
from 1, 7
from 1, 8
from 9, 10
from 11, 5

Example 4

'If an associative system has an identity element and the square of every
element is the identity, then the system is commutative.'

Two proofs were obtained; proof (a) using +P deduction without unit
preference was found at level 6; proof (b) using -P deduction was found at
level 10 only by using a special unit preference ̀ lookahead' on clauses of
length 4.
1. P(e x2 x1) (left identity)
2. P(x2 e x1) (right identity)
3. —1/3(X1 X2 Xs) —1/5(X2 X4 X4) —1.P(X2 X2 X6)

P(x3 x4 x6) (associativity)

106



4. —1P(x1 x2 x3) --IP (x2 x4 x5) --IP (x3 x4 x8)
P(xl x5 x6)

5. P(x x1 e)
6. P(a b c)
7. —,P(bac)

Proof (a)
8. P(x5 x1 x8) e x8) --IP(x3 x1 xs)
9. P(xi x7 x8) ---IP(e x6 x8) xs x7)
10. P(c x5 x7) --Y(a x6 x7) —IP(b xsxs)
11. --IP(x3 x1 x8) P(x3x9 x1)
12. —113(x7 .X3 x1) P(; x3 x7)
13. --IP(a e x8) P(c b x8)
14. P(c b a)
15. P(cab)a b)
16. P(b a c)
17. NIL
Proof (b)
8. --P(x4 x5 c) ---1P(x3 x5 a) --IP(b xs xs)
9. --,P(b x, a) --IP(e x, c)
10. --1P(b c a)
11. —,P(xi x, a) --,P(x2 c x5) —IP(xi x2 b)
12. ---IP(x5 c x12) ---,P(x1 x12 a) --IP(x3 x4 b)

—1P(x2 x4 x5) -",P(X1 x2 xs)
13. —11)(x1 e a) —1P(x3 x4 b) --IP(x2 x4 c)

—,P(x1 x2 x3)
14. ---IP(x3 x4 b) ---IP(x2 x4 c) -IP(a x2 x3)
15. --1P(x2 b c) x2 e)
16. --,P(a b c)
17. NIL

LUCKHAM

(every element has order 2)
(elements a,b
do not commute)

from 5, 3
from 5, 4
from 6, 3
from 1, 9
from 2, 8
from 5, 10
from 2, 13
from 14, 11
from 15, 12
from 16, 7

from 7, 4
from 5, 8
from 1, 9
from 10, 3

from 11, 4

from 12, 5
from 13, 2
from 14, 1
from 15, 5
from 16, 6

Example 5

'If S is a non-empty subset of a group such that if x,y belong to S then x.y-i
belongs to S, then the identity e belongs to S.'
A level 4 proof was obtained (46 clauses generated and retained) without

unit preference, by using the model partition: M1={--IP(x y z) y),
S(x)}, M2={P(x y z), R(x y) --,S(x)}.
1. P(e xi xi)
2. P(xi e x1)
3. P(xi g(xi) e)
4. P(g(xi) x1 e)
5. P(xi x2f(xi x2)) (closure)
6. R(xi x1) (equality axioms)

(identity axioms)

(inverses)

7. —1R(x1 x2) —IR(x2 x3) R(xi x3)
8. —1/2(x1 x2) R(x2 x1)
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9. --IP(x2 x2 x3) --1P(x1 x2 x4) R(X3 X4)

10. —1P(X1 X2 Xs) —IP(X2 x4 x5) --1P(X1 X5 X6)
P(X3 X.1 x6)

11. --IP(x2 x2 x3) --1P(x2 x4 x5) —,P(x3 x4 x6)
P(x2 x5 x6)

12. --IR(x2 x2) .--,P(x3 x4 x2) P(x3 x4 x2)

13. --J2(x2 X2) --IP(X2 X1 X4) P(X3 x2 x4)
14. --IR(x2 X2) —11)(X1 x3 x4) P(X2 x8 x4)
15. --1R(x2 x2) R(f(x2 xi) f(x3 x2))
16. —IR(x2 X2) RCAXI X3)/(X2 x3))
17. —IR(xi X2) R(g(X1)g(X2))
18. --1S(x2) —1S(x2) g(x2) X3) S(x3)

19. --1S(x1) --S(xl x2) S(x2)
20. S(a)
21. --S(e)

Proof
22. S(x3) —1P(x1 g(a) x3) —1S(x1)
23. --IP(a g(a) x4) S(x4)
24. S(e)
25. NIL

Example 6
b2

'If a is a prime number and a.—then a divides b.'
C2

(premisses of the
theorem)

(negation of
theorem)

from 20, 18
from 20, 22
from 23, 3
from 24, 21

This is the first step in the proof that the square root of any prime is irra-

tional, and is shown here to be easily deducible from Euclid's theorem: if a

prime divides the product of two integers then it must divide at least one of

the integers. The choice of 'starting hypotheses' is motivated by the analysis

in Wang (1965) of the proof of the irrationality of the square root of a prime.

Two proofs were obtained without unit preference: proof (a) (level 4) using

the model partition

M2={P(x), M(x y z), D(xy)), M2=(---1P(x), y z), D(x y)),

and proof (b) (level 6) using the model partition

M2={P(x), —1M(x y z), D(x y)), M2={--IP(x), M(x y z), D(x y)}.

The growth of the deduction trees was as follows:

Level 1 2 3 4 3

Number of clauses retained (proof (a)) 16 31 35 — —

Number of clauses retained (proof (b)) 11 18 19 29 78

(Below, interpret P(x) as 'x is a prime', M(x y z) as ̀ x x y =z', D(x y) as

`x divides y', and S(x) as x2.)

108



1. P(a)
2. M(a S(c) S(b))
3. M(xi x1 S(x1))
4. --IM(xi x2 x3) M(x2 x1 x3)
5. -,m(xl x2 x3) D(xi x3)
6. -1P(x1) -IM(x2 x3 x4) x4) D(xi x2)

D(xi x3)
7. -,D(ab)
Proof (a)
8. D(x3 x1) -1D(x3 S(xi))
9. --,P(a) -1D(a S(b))
10. --ID(a S(b))
11. D(a S(b))
12. NIL
Proof (b)
8. D(a X2) Xi) -1111(x2 b x4)
9. --,P(a) -1M(b b x5) -1D(a x6)
10. --ID(a x6) b x6)
11. ---M(b b x3) -01(a x2 x3)
12. --LM(a x4 S(b))
13. NIL

from 3, 6
from 7, 8
from 1, 9
from 2, 5
from 10, 11

from 7, 6
from 7, 8
from 1, 9
from 5, 10
from 3,11
from 2, 12

LUCKHAM

Example 7

'Any number greater than 1 has a prime divisor.'
We give two proofs obtained without unit preference: a level 7 proof (a)

was found using model partition Mi.----{L(x), D(x y)), M2=
P(x), -113(x y)); a level 5 proof (b) was found with Mi=fL(x),

P(x), D(x y)), M2={--IL(x), -,P(x), -113(x y)}. The starting hypotheses
(lines 1-9 below) include the least number principle; interpret D(x y) as 'x
divides y', L(x y) as ̀ x<y', and P(x) as ̀ x is a prime'. The growth of the
deduction trees was as follows:

Level 1 2 3 4 5 6 7
Number of clauses retained (proof (a)) 14 17 24 29 35 41
Number of clauses retained (proof (b)) 24 34 69 93 — —
1. D(xi
2. --ID(xi x2) --ID(x2 x3) D(xi x3)
3. P(xi) D(g(xi) xi)
4. P(x1)L(1 g(xi))
5. P(xi) L(g(x0
6. L(1, a)
7. --,P(xi) --,D(x1 a)
8. -IL(1 x1) --1(x1 a) P(f (xi))
9. --1L(1 x1) --IL(xi a) D( f (xi) x1)
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Proof (a)
10. --IP(a)
11. L(g(a) a)
12. D(f(g(a)) g(a)) g(a))

13. L(1, g(a))
14. D(g(a) a)
15. D(f(g(a)) g(a))
16. --ID(xj. g(a)) D(xi a)

17. —,L(1 g(a)) P(f(g(a)))

18. D(f(g(a)) a)
19. --IP(f(g(a)))
20. P(f(g(a)))
21. NIL
Proof (b)
10. P(a) D(f(g(a)) g(a)) --1(1 g(a))
11. P(a) P(f(g(a))) —1(1 g(a))
12. D(f(g(a)) g(a)) P(a)
13. D(x3 x1) --ID(x3g(x1)) P(xi)
14. P(f(g(a))) P(a)
15. D(f(g(a)) a) P(a)
16. P(a) —,D(f(g(a)) a)
17. P(a)
18. --IP(a)
19. NIL

from 1, 7
from 10, 5
from 9, 11
from 4,10
from 3,10
from 13, 12
from 2, 14
from 8, 11
from 16, 15
from 18, 7
from 13, 17
from 20, 19

from 9, 5
from 8, 5
from 4,10
from 3, 2
from 4,11
from 13, 12
from 7, 14
from 15, 16
from 7, 1
from 17, 18.

Example 8

'There exist infinitely many primes.'
Several proofs of this theorem have been obtained with different strategies

(without u.p.) and sets of 'starting axioms'. In most cases the previous
Theorem (example 7) and some properties of the factorial function were
assumed at the start. Proof (a) below was obtained starting with the eight
'starred' axioms using M1={+P, +L, + D}. Proof (b) was obtained using

M1= (—P, +L, + D} and starting with either the eight starred axioms or all
twelve axioms listed.

Level 1 2 3 4 5 6 7 Total Generated
(a) 8 axioms 16 24 38 55 — — — 112 clauses
(b) 8 axioms 10 14 19 23 30 37 — 78 clauses
(b) 12 axioms 15 20 30 39 49 60 — 114 clauses

Interpret L(x x) as ̀ x<x', D(xy) as
f(x) as ̀ x!+1'.
1*. --1(x x)
2*. --IL(x y) --1(y x)
3. D(x x)
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4. --ID(x y) z) D(x z)
5. y) x)
6*. L(y x) —1D(x f(y))
7*. L(x f(x))
8. P(a) (negation of
9*. —,P(x) x) L(f(a) x) theorem)

10*. P(x) D(h(x) x)
11*. P(x) P(h(x)) (previous theorem)

12*. P(x) L(h(x) x)
Proof (a)
13. P(x3) L(f(a) h(x3)) h(x3)) from 9, 11

14. P(f(xi)) L(x1 h(f(x0)) from 6, 10

15. L(f(a) h(f(a))) P(f(a)) from 13, 14
16. P(x2) h(x2)) from 2, 12

17. P(f(a)) from 15, 16
18. L(f(a) f(a)) —1P(f(a)) from 7, 9
19. L(f(a) f(a)) from 17, 18
20. NIL from 19, 1

Proof (b)
13. L(f(a) f(a)) —1P(f(a)) from 7, 9
14. L(f(a) f(a)) D(h(f(a)) f(a)) from 10, 13
15. L(f(a) f(a)) L(h(f(a)) f(a)) from 12, 13

16. L(f(a) f(a)) L(a h(f(a))) from 6, 14

17. L(h(f(a)) f(a)) from 1, 15
18. L(f(a) f(a)) ---IP(h(f(a)))

L(f(a) h(f(a))) from 9, 16

19. —,L(f(a) h(f(a))) from 2, 17
20. —1P(f(a)) from 1, 13
21. --IP(h(f(a))) L(f(a) f(a)) from 18, 19
22. P(h(f(a))) from 11, 20

23. L(f(a) f(a)) from 21, 22

24. NIL from 23, 1
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Automatic Theorem Proving with Equality
Substitutions and Mathematical Induction

J. L. Darlington
Rheinisch-Westfalisches Institut Mr
Instrumentelle Mathematik
Bonn

Many theorem-proving programs now in existence employ a matching algo-
rithm that determines whether two or more literals or atomic predicate
expressions, belonging to formulae in conjunctive normal form, have com-
mon substitution instances (see Guard et al., 1967, pp. 16-18). According to
this algorithm, two literals beginning with the same n-place predicate P will
match if the remainders of the two formulae, which may consist of variables,
constants and functional expressions of these, are either identical or can be
made so under some set of substitutions for the variables. The output of this
algorithm is the answer ̀match' or ̀no match' and, in the event of a successful
match, a ̀sublise, or set of substitutions that will make the two literals equal.
If L1 matches L2, and if L1 and 4 (the negation of L2) belong respectively to
two formulae F1 and F2 in conjunctive normal form, then a ̀resolvent' (see
Robinson, 1965) of F1 and F2 may be generated by 'cutting' L1 and La from
F1 and F2, and combining the remainders into a single formula

F3 = F1' V F2'

where F1' results from making the substitutions on ̀ sublise throughout
F1—L1, and F2' is generated analogously from F2 —L2. Let us take, for example,
the Euclidean theorem 'if x is a prime that divides y.z then x divides y or z',
write it in conjunctive normal form as

P(x) v D(x, y.z) v D(x,y) v D(x,z)

and resolve it against the atomic formula

15(a,b) (a is not a divisor of b).

Two obvious consequences or resolvents of (i) and (ii) are

(iii) P(a)v 15(a, b.z) v D(a,z)
(iv) P(a)v 15(a, y.b) v D(a,y)
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obtained by matching (ii) against the third and fourth literals respectively of
(i). A third resolvent

(v) P(a) v D(a, b.b)

may be generated by matching (ii) against the third literal of either (iii) or
(iv), or directly against the third and fourth literals of (i). The ̀ sublists'
generated by these three matchings are (x=a, y=b), (x=a, z=b) and
(x=a, y=b, z=b).
The matching process just described is defined for first-order functional

logic, where the variables range over individuals. We next describe an exten-
sion of matching to second-order logic, where the variables may take predi-
cates as values. The need for such an extension is obvious if we wish to formu-
late axioms such as Bl and B7 in the following system B of Hilbert-Bernays
(1934) for order theory, cited by Hasenjaeger (1950).

B1 (x=y)-÷(f(x)-÷f(y))
B2 — (x < x)
B3 (x<y) & (y<z)--).(x<z)
B4 x<Sx
B5 (x<y)-÷(Sx=y V Sx <y)
B6 0=0
B7 f( 0 ) & (f(x)->f(Sx))-)f(y).

The function ̀little f of x' used in B1 and B7 is a second-order function of
one argument, whose introduction into resolution-type theorem proving may
be explained as follows. There is a well-understood sense in which a predicate
expression such as ./xx= e (which might be interpreted as ̀ x-inverse times x
equals e') is a function of the free variables occurring in it. Thus we may
write

f(x)=.lxx=e.

Logicians since the days of Frege have referred to such entities as 'proposi-
tional functions', since they become 'propositions' upon quantification or
instantiation of their free variables. Universally quantifying x in the above
formula yields the general proposition ̀ for any x, I of x times x equals e',
whilst instantiation of x by a yields the specific proposition ̀ I of a times a
equals e'. Propositional functions are distinguished from functions such as
Ix or x2.y, which may occur within propositional functions and which do not
become propositions when their variables are instantiated. We now generalise
the notion of a propositional function, so that a predicate expression is a
function not only of its free variables but also of any well-formed formula
(wff) occurring in it. Thus ./xx = e may be regarded as a function of ./xx, Ix, x
(first occurrence), x (second occurrence) and e. As a further generalisation,
a predicate expression may be regarded as a function not only of any wff
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occurring in it but also of any wff that matches any wff occurring in it, so that
we may write not only

f(.Ixx)= .Ixx=e
f(Ix) = .Ixx = e
f(x) =.Ixx=e
f(e) = .lxx=e

but also

f(..lyy)= .Ixx=e
1(z) = .lxx=e
f(Huv)= .Ixx=e

etc. Note that 'little f' is a function of one argument, though that one argu-
ment may be quite a complicated function of several variables and constants.
Let us now rewrite axiom Bi of Hilbert-Bernays in conjunctive normal

form,

(vi) X5 y v f(x) v f(y)

and resolve it against

(vii) .ez= z

which is a statement of left identity for a group, written with a z so that (vi)
and (vii) will have no variables in common, a condition required by the
matching algorithm. Matching (vii) against the first literal of (vi) in the
conventional way yields

(viii) f(.ez) v f(z)

and a second formula

(ix) f(z) v f(.ez)

if equality is taken to be symmetrical, but using the new 'f-matching' techni-
que, (vii) may be matched also against the second literal f(x) of (vi), as
follows. Scanning from left to right, the x off(x) matches in turn .ez, e, z and
z, generating in turn the sublists

(x=.ez, f(q)=q=z)
(x=e, f(q)= .qz= z)
(x= z, f(q)..eq=z)
(x=z, f(g)= .ez=q)

which are interpreted as follows. Any equality whose left-hand side is not
f(q) represents a substitution that will make the argument off equal to a well-
formed piece of the literal being matched, in this case (vii). (A sublist may of
course contain more than one such equality, in which case all the substitu-
tions must be made in order, for the argument of f to equal a well-formed
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piece of the literal.) The last equality in each sublist is a pseudo-formula in
which the q merely marks the place where a well-formed piece of the literal
has been matched by the argument off. These f-equalities generate specific
equalities upon replacement of q by actual wff's, such as a, x,P(x,y), etc. The
four sublists are then applied in turn to

(vi') x y v f(y)

which results from cutting f(x) from (vi), to generate the four resolvents

(x) .ezOy v y= z
e0y v .yz=z
zOy v .ey= z
zOy v .ez= y.

The reader may verify that these clauses are intuitively valid consequences of
(vii), obtainable by letting y stand in turn for the various well-formed bits of
(vii).
The resolvents (x) are 'normal' clauses, in the sense that they do not con-

tain f. In conjunction for example with

(xi) ./xx =e

which is a statement of left inverse in a group, they yield the following unit
clauses (assuming equality to be symmetrical):

(xii) ../xxz=z, .ee = .Ixx, .e.Ixx=e,
.e.Ixx=e, .ee = .Ixx

of which the latter two are redundant. The set (xii), generated from (vi), (vii)
and (xi) via (x), may also be generated from these same three clauses in a
second way:
(vi) and (xi) yield

f(../xx) v f(e)
(xiv) f(e) v f(.Ixx)

assuming equality to be symmetrical. The first literal of (xiii) matches (vii)
in two ways, generating the sublists

(z=.Ixx, f(q)=.eq=z)
(z..Ixx, f(q)..ez=q)

while the first literal of (xiv) matches (vii) in three ways, generating the
sublists

(f(q)..qz=z)
(z=e, f(q)=.eq=z)
(z=e, f(q)..ez=q).
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The first set of sublists is applied to f(e), in the way described earlier, gene-
rating

.ee=.lxx, .e.Ixx=e

while the second set of sublists is applied to f(ixx), generating

../xxz = z, .e../xx = e, .ee = .Ixx

which together amount to the set (xii).

Formula (vi) is thus seen to be a general axiom for equality substitutions: it
enables one to substitute equals for equals no matter where they may occur
in a formula, and in fact does the job of an infinite number of particular
equality substitution axioms, such as

x0y v Fi(x)v F1(y)
x0y v F2(x,z) v F2(y,z)
x0y v F2(z,x) v F2(z,y)

I

x0y v Fi(Sx)v F(Sy)
x0y v Fi(SSx) v Fi(SSy)

x0y v F2(Sx,z)v F2(Sy,z)
x0y v F2(SSx,z) v F2(SSy,z)

etc.
As a further proof of the power of axiom (vi), we next show how it may be

used to generate the reflexive, symmetric and transitive properties of the
equality relation. To generate reflexivity, one must start with a premise such
as (vii), .ez=z. This clause, together with (viii), f(.ez) v f(z), which is a
direct consequence of (vi) and (vii), yields

(xv) z=z.

This deduction is intuitively valid, since (viii) says in effect that any occur-
rence of .ez may be replaced by z; and making this change in (vii) yields (xv).
'What the matching algorithm in fact does is to match the first literal, f(.ez),
of (viii) against .ex = x, which is merely a transliterated form of (vii), generat-
ing the sublist

(x=z,f(g)=q=x)

which, applied to f(z), yields ( xv). Symmetry of equality follows easily from
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(vi) and (xv): the second literal of (vi), f(x), matches z=z in two ways,
generating the sublists

(x=z,f(q)=q=z)
(x= z, f(q)=z=q)

the first of which, when applied to x0y v f(y), yields

(xvi) z Oy v y= z.

And transitivity of equality follows easily from (vi) and (xvi), since an
immediate resolvent of these two clauses is

yOx v f(x) v f(y)

which, together with any pair of unit clauses

a=b,b=c

will generate

a=c

via the intermediate clause

f(b) v f(a).

We next show how the f-matching technique may be used to formulate a
principle of mathematical induction, such as axiom B7 of Hilbert-Bernays.
What is required is a principle that will enable one to deduce a unit clause of
the form f(x) from two clauses of the form f(0) and f(x) v f(Sx), where the
f has of course the same interpretation throughout. The following pair of
clauses will do the trick:

(xvii) f(0) v f(gx) v f(x)
(xviii) f(0) v f(Sgx) v f(x)

where gx is a Skolem function standing for an existentially quantified variable
and Sx stands for 'successor of x'. These two axioms will enable one to deduce,
for example, F(x,b) from F(0,b) and (Px,b) v F(Sx,b), via the following
argument:

(1) f(0) v f(gx) v f(x)
(2) AO) v f(Sgx) v f(x)
(3) F(0,b)
(4) P(x,b) v F(Sx,b)
(5) F(gx,b) v F(x,b) (1)&(3)
(6) RSgx,b) v F(x,b) (2)&(3)
(7) F(Sgx,b) v F(x,b) (4)&(5)
(8) F(x,b) (6)&(7)
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Thef-matching technique is employed in steps (5) & (6), where in each case
F(0,b) matches f(0), generating the sublist

f(q)=F(q,b).

F(x,b) could also be proved by reductio ad absurdum from F(a,b), as follows:

(1) f(0) v f(gx) v f(x)
(2) f(0) v f(Sgx) v f(x)
(3) F(0,b)
(4) F(x,b) v F(Sx,b)
(5) F(a,b)
(6) F(gx,b) v F(x,b) (1)&(3)
(7) F(Sgx,b) v F(x,b) (2)&(3)
(8) F(ga,b) (5)&(6)
(9) F(Sga,b) (5)&(7)
(10) F(Sga,b) (4)&(8)
(11) contradiction (9)&(10)

Formulae (xvii) and (xviii) taken together amount to a general axiom for
mathematical induction, which in fact does the job of art infinite number of
particular mathematical induction axioms, such as:

F1(0) V Ft(gx) v F1(x)
F1(0) v Fi(Sgx) v Fi(x)
F1(S0) v Fi(Sgx) v Fi(Sx)
F1(S0) v Fi(SSgx) v Fi(Sx)

F2(0,Y) V F2(gx,Y) V F2(x,Y)
F2(0,y) v F2(Sgx,y) v F2(x,Y)
F2(S0,y) v F2(Sgx,y) v F2(Sx,Y)
F2(S0,Y) V F2(SSgx,y) v F2(Sx,y)

F2(Y,0) V F2(Y,gx) v F2(y,x)
F2(Y,0) V F2(Y,Sgx) v F2(y,x)
F2(Y,S0) v F2(y,Sgx) v F2(y,Sx)
F2(Y,S0) v F2(Y, SSgx) v F2(y,Sx)

etc. In a similar way, the two clauses

(xix) f(0) v f(gx) v f(x)
(xx) f(0) v — (x<gy) v f(x) v f(y)

formulate a general principle of strong induction that does the job of an in-
finite number of specific axioms.
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In order to test the usefulness of the new f-matching technique, the author
incorporated it into a COMIT theorem-proving program, written at the
Rheinisch-Westfalisches Institut fiir Instrumentelle Mathematik in Bonn and
currently running on the Institute's IBM 7090. An earlier version of this pro-

gram was coded in pop-1 and run on the University of Edinburgh Experi-
mental Programming Unit's Elliott 4120 during the summer of 1966. The

results obtained so far have been quite encouraging, in that the new technique
has enabled the program to produce shorter and more elegant proofs of

various theorems than those previously obtained by conventional resolution-

type methods. A good example of a proof requiring both equality substitu-
tions and mathematical induction is the proof by Hasenjaeger (1950) that
axiom B5 in the afore-mentioned system B of Hilbert-Bernays is deducible
from the others if axiom B6, 0= 0, is replaced by the general axiom of reflexivity
of equality,

B6' x=x.

Using two special definitions:

K(y)= df (x <y)->(Sx= y v Sx <y)
L(x,y)=df- (x<Sy) v x=y v x<y

the following four cases are proved, which together amount to a proof of the
dependence of B5:
(1) K(0)
(2) L(0,x)
(3) K(y)->(L(x,y)-q,(Sx,y))
(4) K(x)->K(Sx)
(2) and (3) entail K(y).+L(x,y), a result which is useful in proving (4), and
(1) and (4) entail K(x), whence B5 follows directly. The four cases were

proved by the program using reductio ad absurdum, as follows:

Proof of Hasenjaeger Teitrag'

Case 1
(1) x0 y v f(x)v f(y) B1

(2) - (x<x) B2

(3) - (x<y) v - (y<z) v x<z B3

(4) x<Sx B4

(6) x=x B6'

(7) f(0) v f(gx)v f(x) B7
(8) f(0) v f(Sgx)v f(x)
(9) a<0
(10) Sa0 0
(11) -(Sa<O)

assumptions for reductio

(12) a<gx v a<x (7)&(9)
(13) - (a <Sgx) v a <x (8)&(9)

(14) a<ga (2)&(12)

120



(15) — (a<Sga)
(16) —(ga<x)v a<x
(17) a<Sga
(18) contradiction

Case 2
(1) —(8)
(9) x<y v x0y
(10) x <3) v — x<y)
(11) —(x<y)v x=y V x<y
(12) —(0<a)
(13)x<x
(14) 0<gxv 0<x
(15) —(O<Sgx)v 0<x
(16) 0<ga
(17) —(0.4 Sga)
(18) —(O<Sga)
(19) —(0<S0) v O<Sgga
(20) —(0<S0) v —(O<SSgga)
(21) O<Sgga
(22) —(O<SSgga)
(23) —(0<x) v —(x<SSgga)
(24) —(Sgga<SSgga)
(25) contradiction

Case 3
(1) —(8)
(9) —(x<b) V Sx=b v Sx<b
(10) —(a<Sb) v a=b V a<b
(11) Sa<Sb
(12) Sa0b
(13) — (Sa<b)
(14) ax V Sx<Sb
(15) —(x<Sa)v x<Sb
(16) —(a<b)v Sa=b
(17) a<Sb
(18) ab
(19) —(a<b)
(20) —(a<Sb) V a<b
(21) a<b
(22) contradiction

Case 4
(1) —(8)
(9) —(x<b)v Sx=b v Sx<b
(10) —(x <Sb) v x=b V x<b

DARLINGTON

as in Case 1

definition of x<y

assumption for reductio
(6) & (9)
(7) &(13)
(8) & (13)
(12) & (14)
(12) &(15)
(10) &(17)
(7) &(18)
(8) &(18)
(4) &(19)
(4) &(20)
(3) &(22)
(21) & (23)
(4) & (24)

as in Case 1

assumptions for reductio

(1) & (11)
(3) &(11)
(9) &(13)
(4) & (15)
(2) &(14)
(12) & (16)
(10) & (18)
(17) & (20)
(19) & (21)

as in Case 1
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(11) a<Sb
(12) Sa0Sb
(13) —(Sa<Sb)

assumptions for reductio

(14) x0b V Sa0Sx (1) &(12)

(15) xob v —(Sa<Sx) (1) &(13)
(16) —(Sa<x)v —(x<Sb) (3) &(13)

(17) Sa0b (4) &(15)

(18) —(Sa<b) (4) &(16)

(19) a0b (6) &(14)
(20) —(a<b)v Sa=b (9) &(18)

(21) —(a<Sb) v a<b (10) & (19)
(22) a<b (11) &(21)
(23) —(a<b) (17) & (20)
(24) contradiction (22) &(23)

The proofs of the above cases took 27,205, 150 and 182 seconds, respectively,
and there were 25, 89, 87 and 77 clauses left in memory at the time the proof
was obtained. The unit preference, set of support and literal bound strategies
of Wos et al. (1964, 1964a, 1965) were employed, in addition to a 'non-unit
deletion strategy' that eliminates every non-input non-unit clause that appears
in the i-th generation, after the i+ 1-th generation. The machine proofs by
and large gave no unexpected results save in Case 2 which the program proved
without axiom B1 even though B1 was available. The original paper-and-
pencil proof of Case 2 used one application of B1 and one of B7, while the
machine proof used instead two applications of B7; but when the proof was
attempted without the non-unit deletion strategy the program reproduced
the proof using Bi. For purposes of comparison, the latter proof is given below.

Case 2 (using B1)
(1) —(18)
(19) 0=ga v 0<ga
(20) x ga v —(O<Sx)
(21) —(0<x) v —(x<Sga)
(22) 0 Oga
(23) —(0<ga)
(24) 0<ga
(25) contradiction

The two different ways of proving
in conjunction with

B1
and
B4
yields

x0y v fix) vf(y)

x<Sx

00ga

as in first proof
(11) & (16)
(1) &(18)
(3) &(18)
(4) &(20)
(4) &(21)
(19) & (22)
(23) & (24)

Case 2 arise from the fact that —(0 <Sga)

122



DARLINGTON

while the same unit clause, —(0 <Sga), in conjunction with

117 f(0) V f(gx) V f(x)
f(0) v f(Sgx) v f(x)

and B4 yields

0 <Sgga, — (0 < SSgga).

The first proof employs an f-match between — (0 <Sga) and the third literal

of al generating the sublist

(y=ga, f(q)=O<Sq)

while the second proof employs an f-match between —(0 <Sga) and the
third literals of B7, generating the similar sublist

(x=ga, f(q)=0 <Sq)

and either inference leads to a proof.
Though the machine was able to prove the four cases, it would be incorrect

to say that this constitutes a completely mechanical proof of the dependence
of B5, since the division of the proof into the four cases was done by hand.
Furthermore, a key role was played by the definitions of K(y) and L(x,y),
and also by the combination of x=y and x<y into a single predicate x y.
The present author has not seen any discussion of the importance of defini-
tions of this sort for automatic theorem proving, much less a description of
any program or algorithm that can mechanically construct such useful defini-
tions without generating at the same time a great mass of trivial ones.
The program was next given the job of proving four standard examples

taken from group theory. In example G1 , the program was given .Gxyx=y
(existence of left solution) and .xHxy=y (existence of right solution) in
addition to axiom (vi), the general equality substitution axiom. It then
proceeded to generate .xHyy=x (existence of right identity), .Gxxy=y
(existence of left identity) and Gxx= Hyy (left identity equals right identity),
all in the same run. This proof differs from previous machine proofs of these
same propositions in not employing reductio ad absurdum and in proving
them in the same run rather than separately. The same holds true of example
02, in which the program was given .ex= x (left identity) and .Ixx=e (left
inverse) in addition to axiom (vi), and proceeded to generate .xe=x (right
identity), .x/x = e (right inverse) and //x=x (double inverse of x equals x),
among other clauses. In example G3, the program was given .ex=x, .xx = e
(the square of every element is the identity) and .ab 1 .ba (assumption that
the group is not commutative) in addition to axiom (vi), and generated a
contradiction. And in example G4, the program proved by reductio the
theorem, cited by Wos et al. (1964a) and by Meltzer in his contribution to
this volume, that a non-empty subset that contains .xly whenever it contains x
and y is closed under multiplication. The original statement of this problem

123



THEOREM PROVING

contained 24 clauses, a large number of which were merely special equality
axioms which our program was able to replace by the single axiom (vi). The
program also dispensed with /ix =x, a lemma used in the original version, as
well as two four-literal clauses formulating associativity of group multiplica-
tion, and consequently required only seven clauses to formulate the same
example. The program is able to dispense with special axioms for left and
right associativity, since it handles these instead by a rule which automatically
associates everything to the right as far as possible and takes this to be the
standard form for products. Thus, if ..Ixxy= y is generated it will automati-
cally be stored in the form .1x.xy=y. The program, however, is capable of
associating to the left during a resolution, so that .1x.xy=y in conjunction
with axiom (vi) will generate

.1xxOz v .zy=y

and other clauses depending on the left-associated form, as well as

.1x0z v .z.xy=y

and other clauses depending on the right-associated form. This feature is
particularly useful in step (13) of example G3, where .a.bb a is generated in
one step from .a.ba b and .xy0 z v .xz= y by employing first a left and then
a right association.
The program employs standard forms to reduce the variety of clauses in

two further ways. Alphabetic variance is diminished considerably by a rule
which writes the variables in each clause in the order x,y,z,u,v,w, and equali-
ties are written so that the left side contains at least as many terms as the
right side.
Examples G1 —G4 are given below.

Example ol
(1) .Gxyx=y
(2) .xHxy=y
(3) x0y v f(x) v f(y)

existence of left solution
existence of right solution
eq sub axiom

(4) f(Gxyx) v f(y) (1)&(3)

(5)1(x) v f(.Gyxy) (1)&(3)

(6) f(xHxy) v f(y) (2)& (3)

(7) f(x) v f(.yHyx) (2)& (3)

(8) .Gxy.xHyz=z (2)& (5), r assoc

(9) .Gxy.zHzx=y (1)&(7)

(10) .xHyy=x (right identity) (4)& (9), 1 assoc

(11) .Gxxy=y (left identity) (6)&(8)

(12) f(.xHyy) v f(x) (3)&(10)
(13) Gxx=Hyy (left identity (11) & (12)

equals right identity)
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(1) .ex=x
(2) .lxx=e
(3) x0y v f(x) v f(y)
(4) f(./xx) v f(e)
(5)1(e) v f(.lxx)
(6) .Ix.xy=y
(7) .IIxe=x
(8) f(fx.xy) v f(y)
(9) .Ilxy=.xy
(10) f(fIxe) v f(x)
(11) .xe=x (right identity)
(12) .x.Ixy=y
(13) .x/x=e (right inverse)
(14) //x=x (double inverse of x

equals x)

Example G3
(1) .ex=x
(2) .xx=e

(3) x0y v f(x) v f(y)
(4) .abO.ba

(5) f(.xx)v f(e)
(6) f(e) v f(.xx)
(7) .x.xy=y
(8) .xe=x
(9) .xy0z v .xz=y
(10) .a.ba0b
(11) x0e ■./ .yx=y
(12) .x.yy=x
(13) .a.bbOa
(14) contradiction

Example G4
(1) .ex=x
(2) ./xx=e
(3) x0y v f(x) v f(y)
(4)xvOyv0.xIy

left identity
left inverse
eq sub axiom
(2) &(3)
(2) &(3)
(1) & (5), r assoc
(4) &(6)
(3) & (6)
(6) &(8)
(3) &(7)
(9) &(10)
(8) &(9)
(4) & (9)
(10) & (11)

left identity
square of every element
is the identity
eq sub axiom
assumption for reductio:
group is not commutative
(2) &(3)
(2) &(3)
(1) & (6), r assoc
(5) &(7)
(3) &(7)
(4) & (9)
(3) &(8)
(2) & (11)
(9) & (10), 1 & r assoc
(12) & (13)

left identity
left inverse
eq sub axiom
special assumption:
if x and y belong to
subset 0, then x times •
y-inverse belongs to 0
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(5) Oa
(6) Ob
(7) b.ab
(8) f(.ex) V f(x)
(9) f(./xx) v f(e)
(10) f(e)v f(.Ixx)

(11) .Ix.xy=y
(12) Ox v 0.alx
(13) Ox v 0.blx
(14) Ox V 0.xlb
(15) x0b V 0.ax
(16) 0.bIb
(17) .Ilxe=x
(18) f(../x.xy) v f(y)
(19) .11xy= .xy
(20) O.a.11be
(21) .b/bOx v Ox
(22)1(.1Ixe) v f(x)
(23) .xe = x
(24) .x/x = e
(25) .1lbeOx v O.ax
(26) 0.allb
(27) Oe
(28) 0.elb
(29) 0/b
(30) Olb
(31) contradiction

assumptions for reductio:
subset 0 is not closed
under multiplication
(1) &(3)
(2) &(3)
(2) &(3)
(1) & (10), r assoc
(4) &(5)
(4) & (6)
(4) &(6)

(3) &(7)
(6) &(13)
(9) &(11)
(3) &(11)
(11) &(18)
(15) & (17)
(3) &(16)
(3) &(17)
(19) & (22)
(9) &(19)
(3) &(20)
(23) &(25)
(21) & (24)
(14) & (27)
(12) & (26)
(8) &(28)
(29) & (30)

The running times for GI, G2 and G3 were under five minutes apiece, with
fewer than 50 clauses retained in each case, mainly because of special deletion
heuristics that were employed, such as deleting clauses that contain triple or
quadruple inverses, or that contain .ee, etc. Even with these special rules,
however, and despite the fact that only 121 clauses were retained, the program
required over 22 minutes to prove G4. The proofs of G1 — G4 are similar in

spirit to those obtained by Guard et al. (1967), though simpler in the sense

that our proofs are produced without going into triple and quadruple inverses

and without using a special axiom for associativity.

Other proofs obtained by the program include example Q1 of Wang (1965),
which requires equality substitutions, and a simpler proof of the number-
theory proposition (see Darlington 1968) that the square root of a prime is
irrational. Our proof of Wang's Qi is superior in terms of formulation to that
obtained by Veenker (1967), who used specific equality substitution axioms
instead of a general axiom like ours, though Veenker's proof, produced by a
machine-language program, is far shorter than ours in terms of running time.
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Plans for the future include the production of an on-line version of the
program for the IBM 360/50 recently installed at the iim in Bonn, and the

incorporation into it of new techniques, such as those presented by Luckham,

Meltzer, and Robinson in their contributions to this volume.
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On Representations of Problems of
Reasoning about Actions

Saul Amarel
RCA Laboratories
Princeton, N.J.

1. INTRODUCTION

The purpose of this paper is to clarify some basic issues of choice of represen-
tation for problems of reasoning about actions. The general problem of re-
Presentation is concerned with the relationship between different ways of
formulating a problem to a problem solving system and the efficiency with
which the system can be expected to find a solution to the problem. An under-
standing of the relationship between problem formulation and problem solv-
ing efficiency is a prerequisite for the design of procedures that can automati-
cally choose the most ̀ appropriate' representation of a problem ( they can
find a ̀point of view' of the problem that maximally simplifies the process of
finding a solution).
Many problems of practical importance are problems of reasoning about

actions. In these problems, a course of action has to be found that satis-
fies a number of specified conditions. A formal definition of this class of
problems is given in the next section, in the context of a general conceptual
framework for formulating these problems for computers. Everyday examples
of reasoning about actions include planning an airplane trip, organizing a
dinner party, etc. There are many examples of industrial and military prob-
lems in this category, such as scheduling assembly and transportation pro-
cesses, designing a program for a computer, planning a military operation, etc.

The research presented in this paper was sponsored in part by the Air Force Office of
Scientific Research, under Contract Number A F49(638)-1184. Part of this work was
done while the author was on a visiting appointment at the Computer Science Depart-
ment of the Carnegie Institute of Technology, Pittsburgh, Pa. At Carnegie Tech. this
research was sponsored by the Advanced Research Projects Agency of the Office of the
Secretary of Defense under Contract Number s D-146.
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We shall analyze in detail a specific problem of transportation scheduling—
the ̀missionaries and cannibals' problem (which is stated in section 3)—in or-
der to evaluate the effects of alternative formulations of this problem on the
expected efficiency of mechanical procedures for solving it, and also in order
to examine the processes that come into play when a transition takes place
from a given problem formulation into a better one. After the initial verbal
formulation of the missionaries and cannibals problem in section 3, the
problem undergoes five changes in formulation, each of which increases the
ease with which it can be solved. These reformulations are discussed in sec-
tions 4 to 11. A summary of the main ideas in the evolution of formulations,
and comments on the possibility of mechanizing the transitions between
formulations are given in section 12.

2. PROBLEMS OF REASONING ABOUT ACTIONS

A problem of reasoning about actions (Simon, 1966) is given in terms of an
initial situation, a terminal situation, a set of feasible actions, and a set of
constraints that restrict the applicability of actions; the task of the problem
solver is to find the ̀ best' sequence of permissible actions that can transform
the initial situation into the terminal situation. In this section, we shall specify
a system of productions, P, where problems of reasoning about actions can be
naturally formulated and solved.
In the system P, a basic description of a situation at one point in time is a

listing of the basic features of the situation. The basic features are required
for making decisions about actions that can be taken from the situation.
We call a situation a state of nature (an N-state). The language in which N-
states are described is called an N-state language. Such a language is defined
by specifying the following:

(i) a non-empty set U0 called the basic universe; this set contains the
basic elements of interest in situations (the individuals, the objects,
the places);

(ii) a set of basic predicates defined for elements of U0 (properties of
elements and relations between elements);

(iii) a set of rules of formation for expressions in the language.
The rules of formation determine whether an N-state language is a linear
language, a two-dimensional (graphic) language, or it has some other form.
Regardless of the form taken by an expression in an N-state language, such an
expression is meant to assert that a given element in U0 has a certain property
or that a given subset of elements in Uo are related in a specified manner.
Thus, an expression in an N-state language has the logical interpretation of a
true proposition about a basic feature of the situation. A finite set (possibly
empty) of expressions in an N-state language is called a configuration. The
empty configuration will be written A. In the logic interpretation, a (non-
empty) configuration is a conjunction of the true assertions made by
its component expressions. The set union of two configurations is itself a
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configuration. If a and fi' are configurations, then their union will be written a,
13. A basic description, s, of an N-state is a configuration from which all true
statements about the N-state (that can be expressed in the terms of the N-
state language) can be directly obtained or derived. Thus a basic description
completely characterizes an N-state. Henceforth we shall refer to an N-state
by its basic description.
A derived description of an N-state at one point in time is a listing of com-

pound features of the N-state. Compound features are defined in terms of the
basic features, and they are intended to characterize situations in the light
of the problem constraints, so that decisions about the legality of proposed
actions can be made. We denote by d(s) a derived description that is asso-
ciated with an N-state s. The language in which derived descriptions are
formulated is an extension of the N-state language, and it is called the extended
description language. Such a language is defined by the following:

(i) a set U, called the extended universe, where U0 c U1 (this is not
necessarily a proper inclusion); the extension of U, contains com-
pound elements of interest (definable in terms of the basic elements
in U0), and possibly new elements (not obtainable from (J0) that
are used for building high level descriptions;

(ii) a set of new predicates defined for elements of U1 (properties and
relations that are required for expressing the constraining
conditions of the problem);

(iii) a set of rules of formation for expressions in the language.
The rules of formation in this language are identical with those of the N-state

language. Each expression in the extended description language has the logical
interpretation of a proposition about a compound feature in a situation. A
derived description d(s) is a set of expressions in the extended description
language (it is a configuration in the language). In the logical interpretation,
d(s) is a conjunction of the propositions that are specified by its constituent
expressions.
The rules of action in the system P specify a possible next situation (next

in time with respect to a given time scale) as a function of certain features in
previous situations. The complexity of a problem about actions is determined
by the nature of this dependence. There is a sequential and a local component
in such a dependence. The sequential part is concerned with dependencies of
the next situation on features of sequences of past situations. We will not be
concerned with such dependencies in this paper. The local part is concerned
with the amount of local context that is needed to determine a change of a
basic feature from one situation to the next.
In the specification of a rule of action, an N-state is given in terms of a

mixed description s', which is written as follows:

s'= s; d(s), (2.1)

where s is the basic description of the N-state, and d(s) is its associated
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derived description. Let A be a feasible action and let (A) denote the rule of
action that refers to A. A rule of action is given as a transition schema be-
tween mixed descriptions of N-states, and it has the following form:

(A): sa; d(sa)-* sb; d(sb) (2.2)

The feasible action A is defined as a transformation from the N-state sa to the
N-state Sb. If A is applied at sa, then the next N-state will be sb. The rule (A)
specifies the condition under which the application of A at sa is permissible.
This is to be interpreted as follows: 'If d(s0) and d(sb) are both satisfied, then
the application of A at s0 is permissible.' A derived description d(s) is satisfied
if it is true under the logical interpretation. The rule (A) imposes a restriction
on the mapping A: sa-->sb, i.e. it restricts the domain of the feasible action.
Thus, given an N-state sa for which A is a feasible action, A can be applied
at s0 only if the N-state Sb that results from the application of A has certain
compound features that are specified in d(sb).

Let {(A)} be the (finite) set of rules of action and let {s} be the set of all
possible N-states. The set {(A)} specifies a relation of direct attainability
between the elements of {s}. Given any two states s, s, from {s}, the N-state
sy is directly attainable from sz if and only if there exists a permissible action
in {(A)} that can take sz to s„. Let us denote by T the relation of direct attain-
ability.' The expression szT sy asserts that the N-state sz can occur just earlier
than sy in a possible evolution of the system. Thus, the relation T represents
local time order for the system P.
A trajectory from an N-state sa to an N-state sb is a finite sequence sl, s2,

. . 5. of N-states such that si=sa, st...--sb, and for each I, 1<i<m, si is
directly attainable from si_2. For any pair of N-states sa, Sb, we say that
Sb is attainable from sa if and only if s.=sb or there exists a trajectory from sa
to sb. We denote the relation of attainability from sa to sb by sa sb. The
notion of a schedule is close to the notion of a trajectory; it is the sequence of
actions that are taken in moving over the trajectory.
Now a problem of reasoning about actions can be formulated in the

system P as follows: Given
(i) an N-state language
(ii) an extended description language
(iii) a set of rules of action
(iv) an initial N-state and a terminal N-state,

find the shortest schedule (or the shortest trajectory) from the initial N-state
to the terminal N-state (if a schedule exists at all).

The set of all N-states, partly ordered under the relation T, defines a space
a that we call the N-state space. The search for a solution trajectory takes place
in this space.

1 This relation is very close to the relation ̀ earlier' introduced by Carnap (1958), and
denoted T, in his language for space-time topology. In Carnap's case, T represents time
order between two world points that are on the same trajectory.
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Commonly, the initial formulation of a problem of reasoning about
actions is a verbal formulation. Given the initial verbal formulation, there are
several possible N-state languages and extended description languages that
can be used for formulating the problem in the system of productions P. The
choice of the universe U1 and of the features in terms of which situations are
described can strongly influence the amount of effort that is needed in order to
find a solution in the formulation P. Here is an important decision point
where problem solving power is affected by the choice of a problem represen-
tation. In addition, strong improvements in problem solving power may result
from the discovery and exploitation of regularities in N-state space. The dis-
covery of such regularities is facilitated by appropriate representations of
N-state space. We shall illustrate these points by discussing in detail in the
following sections a sequence of formulations of an extended version of the
Missionary and Cannibals problem.

3. TRANSPORTATION PROBLEMS: INITIAL FORMULATION,

Fi, OF M&C PROBLEMS

Many transportation scheduling problems are problems of reasoning about
actions. Such problems can be formulated as follows. Given a set of space
points, an initial distribution of objects in these points, and transportation
facilities with given capacities; find an optimal sequence of transportations
between the space points such that a terminal distribution of objects in these
points can be attained without violating a set of given constraints on possible
intermediate distribution of objects.
An interesting subclass of these transportation scheduling problems is the

class of 'difficult crossing' problems, typified by the 'Missionaries and Canni-
bals' problem. This problem appears frequently in books on mathematical
recreations. It has also received attention in the dynamic programming
literature (Bellman and Dreyfus, 1962) and in the literature on computer
simulation of cognitive processes. (Simon and Newell, 1961). The following is
a verbal formulation of the 'missionaries and cannibals' problem (we call it
formulation F1). Three missionaries and three cannibals seek to cross a
river (say from the left bank to the right bank). A boat is available which will
hold two people, and which can be navigated by any combination of mis-
sionaries and cannibals involving one or two people. If the missionaries on
either bank of the river, or 'en route' in the river, are outnumbered at any
time by cannibals, the cannibals will indulge in their anthropophagic ten-
dencies and do away with the missionaries. Find the simplest schedule of
crossings that will permit all the missionaries and cannibals to cross the
river safely.
In a more generalized version of this problem, there are N missionaries and

N cannibals (where N3) and the boat has a capacity k (where k)2). We
call this problem the NI & c problem. We shall refer to the specific problem that
we have formulated above (where N= 3, k =2) as the elementary NI & c problem.
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4. FORMULATION F2 OF THE M&C PROBLEM IN

ELEMENTARY SYSTEMS OF PRODUCTIONS

We shall formulate now the Ni &c problem in a system of productions of the
type described in section 2. We start by specifying a simple but straightforward
N-state language.
The universe Uo of the N-state language contains the following basic

elements:
(i) N individuals ml, m2,. . mN that are missionaries and N individuals

cl, c2, . • , CN that are cannibals,
(ii) an object (a transportation facility)—the boat bk with a carrying

capacity k,
(iii) two space points p1, PR for the left bank and the right bank of the

river respectively.
The basic relations between basic elements in U0 are as follows:

(i) at; this associates an individual or the boat with a space point
(example: at (m1, PL) asserts that the missionary m1 is at the
left bank),

(ii) on; this indicates that an individual is aboard the boat (example:
on (c1, bk) asserts that the cannibal c1 is on the boat).

A set of expressions, one for each individual and one for the boat (they
specify the positions of all the individuals and of the boat) provides a basic
description of a situation, i.e. it characterizes an N-state. Thus, the initial
N-state for the Id & c problem can be written as follows:

so=at(bh,PL), at(mi, PL), at(m2, P1), at(mN, p,), at(cl, p„),
at(c2, p,), . at(cN, p,). (4.1)

The terminal N-state is attained from (4.1) by substituting pR for p , through-
out.
The verbal statement of the M &c problem induces the formulation of an

extended description language where a non-empty extension of U0 is intro-
duced together with certain properties and relations for the elements of this
extension. The compound elements in the extension of U0 are defined in terms
of notions in the N-state language. These compound elements are the follow-
ing six subsets of the total set {m} of missionaries and the total set {c} of
cannibals:

{m}L={x I x e{m}, at (x, p,)}; the subset of missionaries at left,
{m}R = {xfx e{m}, at (x, pR)}; the subset of missionaries at right,
{m}o ={x I x e{m}, on (x, bk)} ; the subset of missionaries aboard the boat.

The three remaining compound elements {c},, {c}R, {c}b are subsets of the
total set of cannibals that are defined in a similar manner.
In the NI & c problem, the properties of interest for the specification of per-

missible actions are the sizes of the compound elements that we have just
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introduced, i.e. the number of elements in the subsets {m}L, {mR}, etc. Let

MD MR, Mb) CD C, Cb denote the number of individuals in the sets {m}L,
{c}b respectively. These are variables that take values from the

finite set of nonnegative integers JoN= {0, 1,2, ..., N}. These integers are also

elements of the extension of 110. They bring with them in the extended des-

cription language the arithmetic relations = , >, <, as well as compound

relations that are obtainable from them via the logical connectives V, A,
and also the arithmetic functions +, —. A derived description d(s) which is

associated with an N-state s is a set of expressions that specify certain arith-

metic relations between the variables My, MR, etc. whose values are obtained

from s.
The rules of formation that we shall use for description languages are of

the type conventionally used in logic; they yield linear expressions. Expres-

sions are concatenated (with separating commas) to form configurations. The

basic description given in (4.1) is an example of a configuration in the linear

language.
The verbal statement of the M & c problem does not induce a unique choice

of a set of feasible actions. We shall consider first a 'reasonable' set of ele-

mentary actions that are assumed to be feasible and that satisfy the given con-
straints on boat capacity and on the possible mode of operating the boat. The

set of permissible actions is a subset of this set that can be obtained by speci-
fying the appropriate restrictions on the relative number of missionaries and

cannibals in the two river banks as well as 'en route'.
1(21)1: Elementary feasible actions in Formulation F2 that are sensitive to

boat constraints. In the following transition schemata, a denotes an arbitrary
configuration that completes a basic description of an N-state :

Load boat at left, one individual at a time (LBL)'
For any individual x,
(LBL)': cc, at(bk, PL), at(x, Pi.); (Mb +Cb.<k-1)--> cc, at(bk, PL),
on(x, bk); A
Move boat across the river from left to right (MBLR)'
(M BL R)' : cc, at(bk, PL); (Mb+ Cb>0)---> cc, at(bk, PR); A
Unload boat at right, one individual at a time (UBR)'.
For any individual x,
(UB R)': cc, at(bk, p,), on(x, bk); cc, at(bk, p R) at(x, pR); A

In addition, we have the three following elementary actions in { ( A )/1 'Load

boat at right one individual at a time (LB R)', 'Move boat across the river

from right to left (MBRL)', and 'Unload boat at left one individual at a
time ( UBL)'. The definitions of these actions are obtained from the previous

definitions by substituting pLforpR and PR forpL in the corresponding actions.
For example, the definition of (MBRL)', is as follows:

(MBRL)' : cc, at(bk, PR); (Mb+ Cb>0)--> cc, at(bk, PL); A
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The six elementary actions that we have just introduced can be used together
in certain sequences to form macro-actions for transfering sets of individuals

from one river bank to the other. A transfer of r individuals from left to right,
where 1 <r<k; can be effected by a sequence

(LBL)', (LBL)', . . (LBLY,
Y 
(UBR)', (UBR)', (UBR)'

(MBLR,, 
r times r times

(4.2)

This sequence of actions starts with an empty boat at left and ends with an
empty boat at right.
We can view the sequence of elementary actions in (4.2) as a transfer

macroaction that is composed of two parts: the first part consists of the ini-
tial loading sequence for the boat, or equivalently the unloading sequence for
the place that is the origin of the transfer. The second part starts with the
river crossing and is followed by an unloading sequence for the boat, or
equivalently by the loading sequence for the place that is the destination of
the transfer. Since the constraints of the problem are given in terms of the
relative sizes of various sets of individuals at points that can be considered as
ends of loading (or unloading) sequences, then it is reasonable to attempt the
formulation of actions as transitions between such points. We use these
considerations in the formulation of a set of feasible compound actions that
are only sensitive to boat constraints.
{(A)12: Compound feasible actions in formulation F2 that are sensitive to boat
constraints,

Load empty boat at left with r individuals, 1<r <k,r(LiBL)P.

Here we have a class of transition schemas that can be specified as follows:
For a set of r individuals x1, . . x,, where 1 <r<k,

(L'BL)' : cc, at (bR, PL), PL), ot(xr, Pi); (Mk+ C2=0)-+
a, at(bk, Pt), on(xl, bk), • • on(x„ bk); A

In these transitions, r is the number of individuals from the left bank that

board the boat for a crossing.

Move boat (loaded with r individuals) across the river from left to right and

unload all its passengers at right (MBLR+U'BR)'.

Here also we have a class of transition schemas which is defined as follows:
For a set of r individuals x1,. . x,, 1

(M BLR+U'BR)' : [e], at(bk, PL), on(xi bk), . . on(x,., bk); A-+ [e],

at(bk, PR), at(xi, PR), • •, at(x„ pit); A,

where a [e] stands for a configuration that is constrained by the condition e,

which is as follows: no expression in the form on (y, bk), for any individual y

is included in ix. This is a way of saying that, after the crossing, all the r
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passengers that have initially boarded the boat in the left bank, have to leave
the boat and join the population of the right bank.
In addition to the two compound actions defined above, we have the two

following compound actions in ((A)')2: 'Load empty boat at right with r

individuals, (L"B 1?)' ,' and 'Move boat (loaded with r individuals) across the

river from right to left and unload all its passengers at left (M B RL+U'BL)".

The definitions of these compound actions are obtained from the definitions

for (L'BL)' and (MBLR+VB 12)' by substituting PL for PR and pi? for PL

in the corresponding compound actions.
The compound actions that we have just introduced define the feasible

transitions between N-states that are constrained only by the conditions on the

transportation facility. Consider now a restriction on these compound actions

that provides a set of rules of action where consideration is given to all the

constraints of the M & c problem.
((A))2: First set of rules of action in formulation F2.

(L'BL).
For a set of r individuals x„ . . xr, where 1 r 4 k,
(LTBL): a, at(bk, at(xl, Pi.), • • at(xr, PL); (Mb + Cb =0)-3.

a, at(bk, PL), "(xi, b2), • • on(x„bk);((ML=0)V(ML>CL)),
((Mb-0) v (Mb% CO).

These compound actions are a subset of the compound actions (L`BL)' ,
where a valid next N-state is such that if any missionaries remain in the left
bank then their number is no smaller than the number of cannibals remaining
there, and also if any missionaries board the boat, then their number is no
smaller than the number of cannibals that have also boarded the boat. Note
that if an individual, say a missionary, is aboard the boat and the boat is at
PL, then the individual is not considered as a member of {mh, and therefore
he is not counted in ML.

(MBLR+U'BR).
For any r, where 1 < r
(MBLR+U'BR): oc [e], at(bk, on(xi, bk), • • •,on(x,., bk); A-÷ cc [e],

at(bk, PR), at(xi, PR), • • •,at(xr,PR),
((MB=0) v (MB> CB)).

Here the restricted configuration [e] has the same meaning as in (MBLR+
UPB R)1. The present compound actions are a subset of (MBLR+VBR)P,
where a valid next N-state is such that if any missionaries are present in the
right bank then their number is no smaller than the number of cannibals
there.
In addition to the transitions (L'BL) and (M BL R+ U'BR), we also have

the two transitions (L'BR) and (MB RL + U'BL), that are obtained from the
previous ones by appropriately interchanging the places pz, and PR throughout
the definitions.
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With the formulation of the permissible transitions between N-states, it is
now possible to specify a procedure for finding a schedule of transfers that
would solve the general M &c problem. Each transfer from left to right will be
realized by a sequence (LTBL), (MBLR+VBR), and each transfer from

right to left will be realized by a sequence (LIB R), (M BRL+ U'BL). Essen-
tially, the selection of compound actions for each transfer amounts to finding

r-tuples of individuals from a river bank that could be transferred to the
opposite bank in such a way that cannibalism can be avoided in the source

bank, in the destination bank and in the boat; i.e. the non-cannibalism
conditions

((ML=0) v (ML>CL)), ((Mb=0) v (Mb% Cb)), ((MR---0) v
(MR> CR)) (4.3)

are all satisfied at the end of each of the two compound actions that make a
transfer.
The formulation of compound actions and of problem solving procedures

can be simplified via the utilization of the following property of our problem:
Theorem. If at both the beginning and the end of a transfer the non-canni-
balism conditions ((ML O) v (ML>CL)) and ((MR=0) V (MR> CR))
are satisfied for the two river banks, then the non-cannibalism condition for
the boat, i.e. ((Mb = 0) v (Mb Cb)), is also satisfied.
Proof. At the beginning and the end of each transfer we have ML+MR=
CL+CR=N; also, by supposition, the following two conditions hold simul-
taneously both at the beginning and at the end of a transfer:

(1) ((AlL=0) v (ML=CL) v (ML>CL)),
(2) ((N—ML=0) v (N—ML=N—CL) v (N—ML>N—CL)). (4.4)

The conjunction of the above two conditions is equivalent to the following
condition:

• (ML=0) v (ML=N) v (ML=CL). (4.5)

But now in order to maintain this condition over a transfer, the boat can

either carry a pure load of cannibals (to conserve (ML=0) or (ML=N)) or

a load with an equal number of missionaries and cannibals (to conserve

(ML=CL)) or a load with a number of missionaries that exceeds the number

of cannibals (for a transition from (ML=N) to (ML=CL) or (ML= 0), or a

transition from (ML=CL) to (ML =0)). This conclusion is equivalent to

asserting the non-cannibalism condition for the boat, i.e. ((Mb=0) v

(Mb%Cb)).
The previous theorem enables us to eliminate the non-cannibalism con-

dition for the boat when we formulate permissible actions for realizing a

transfer from one side of the river to the other. This permits the introduction
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of a single compound action per transfer. We can write then a new set of rules
of action as follows:
{(A)}3: Second set of rules of action in formulation F2

Transfer safely a set of r individuals from left to right (TrI,R).
For a set of r individuals x1,. . xr, where 1<r ‘.k,
(TrI,R): a, at(bk, P L), at(xi, PL), • • ., at(xr, P L); (Mb+ Cb=0)-+

ai(bloPR), al(xl, PR), •••, at(xf, PR); (Mb+ Cb =0),
((ML=0) V (ML?.. CL)), ((MR=0) v (MR> CR))

Transfer safely a set of r individuals from right to left (T'RL).

The definition of this transfer action is obtained from (LR) by interchanging
the places pr. and pit throughout the definition.

It is clear that the formulation of the second set of rules of action has the
effect of appreciably reducing the size of the N-state space that has to be
searched, relative to the search space for the first set of rules of action. The
transfers act as macro-actions, on basis of which the solution can be construc-
ted without having to consider the fine structure of their component actions
(loading the boat, unloading, crossing the river), thus without having to
construct and consider intermediate N-states that are not needed for the key
decisions that lead to the desired schedule.
Note that the reduction of the search space becomes possible because of

the use of a formal property of our problem that enables the elimination of a
redundant condition. The examination of the set of conditions of a problem,
with the objective of identifying eliminable conditions and of reformulating
accordingly the N-state space over which search proceeds, is one of the impor-
tant approaches towards an increase in problem solving power.

5. FORMULATION Fs OF THE M&C PROBLEM IN AN
IMPROVED SYSTEM OF PRODUCTIONS

The notions that we have initially introduced in the description languages of the
production systems of the previous sections reflect a general a priori approach
to problems of reasoning about actions (i.e. consider as basic elements the
individuals, the objects and the places that are specified in the problem, and
consider as basic relations the elementary associations of individuals to places,
etc), and also a problem—specific process of formulating concepts and attri-
butes that are suggested from the verbal statement of the problem and that
appear necessary for the expression of permissible transitions in the N-state
space (notions such as My, CL, etc. and the associated integers and arithmetic
relations).

After several formulations of the problem, it becomes apparent that the
description languages can be restricted and the formulation of N-states and of
transitions between N-states can be considerably simplified. First, it is
obvious that there is no need to use distinct individuals in the formulations.
It suffices to use the compound elements, i.e. the sets {m)L, {m)R, {m}b, {C}L,
{OR, {ch. Furthermore, since the conditions of the problem are expressed as
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arithmetic properties of the sizes of the compound elements, it suffices to
consider the entities ML, MR, Mb, CL, CR, Cb, the set of integers Jon and the
arithmetic relations and operations. The main idea in this language restric-
tion is that only those elements are to remain that are necessary for expressing
the rules of action—that define the permissible transitions between N-states.

Because of the conservation of the total number of missionaries and the
total number of cannibals throughout the transportation process, we have for
each N-state (i.e. for each beginning and end of a transfer action) the follow-
ing relationships:

ML+MR=CL+CR=N. (5.1)

Thus, it is sufficient to consider explicitly either the set My, Mb, Cy, Cb or the
set MR, Mb, CR, Cb; we choose to consider the former. Finally, we introduce
two variables BL, BR in the restricted language such that

at(bk,PL)=-(B L=1)E(BR=0)
at (bk, PR)=4-(BL=0)=-(BR= 1). (5.2)

In the restricted N-state language the basic description of an N-state has the
form

(ML= (CL=i2), (BL= is),

where lj, i2 are integers from 4, and i3 is 1 or 0. Such a description can be
abbreviated to take the form of a vector (MD CL, BL), whose components are
the numerical values of the key variables. The vector description shows
explicitly the situation at the left river bank. Thus, the initial N-state of the
M&C problem—expressed in the abbreviated vector notation—is (N,N,1), and
the terminal N-state is (0,0,0).

We can now express the rules of action as follows:

{(A)}4: Set of rules of action in Formulation Fg.

Transfer safely a mix (Mb, Cb) from left to right (TLR, Mb, Cb).
Any pair (Mb, CO such that 1 ‘. Mb+ C,, k, specifies a feasible action;
for each such pair, we have a transition:

(TLR, Mb, CP): (ML, CL, 1); A -.(ML-M,,, CL— Cb, 0);
((ML—Mb=0)V (ML—Mb>CL—Cb)),
((N—(ML—Mb)=0)v (N—(ML—Mb)› N —(CL— CO)).

Here Mb, Cb are the number of missionaries and the number of cannibals
respectively that are involved in the transfer.

Transfer safely a mix (Mb, Cb) from right to left (TRL, Mb, CO.
Again, any pair (Mb, CO such that 1
specifies a feasible action; for each such pair, we have a transition:
(TRL, Mb, CO: (ML, CL, 0); A (AIL +Mb, C5+ C,,, 1);

((ML+Mb=0) V (ML+ Mb CL+ Cb)),

((N—(ML+Mb)=.0)V(N—(ML+ Mb) N—(CL+ Cb))).
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The restriction of the N-state language, and the introduction of new basic
descriptions for N-states and of new rules of transitions between N-states has
a significant effect on the relative ease with which a solution of the M &C
problem can be found. The irrelevant variety of transitions that is possible
when individuals are considered, is now reduced to a meaningful variety that
depends on the relative sizes of appropriately defined groups of individuals.
In reasoning about the M&C problem, a completely different viewpoint can
now be used. We do not have to think of individuals that are being run
through a sequence of processes of loading the boat, moving the boat, etc.
but we can concentrate on a sequence of vector additions and subtractions
that obey certain special conditions and that should transform a given initial
vector to a given terminal vector. The construction of a solution amounts to
finding such a sequence of vector operations. The transition to the present
formulation of the M &c problem illustrates an important process of improv-
ing a problem solving system by choosing an ̀ appropriate' N-state language
and by using this language in an 'appropriate' way to define N-states and
transitions between them.

B. FORMULATION F4 OF THE M&C PROBLEM IN A

REDUCTION SYSTEM

The previous formulations F2 and F3 of the M & c problem were in systems of
productions. A solution to our problem in these systems amounts to finding
the shortest schedule (or the shortest trajectory) from the intial N-state to the
terminal N-state, if there exists a trajectory between these states (i.e. if there
exists a solution at all). Note that this is a typical problem of derivation.
Let us formulate now the problem in a form that will permit us to specify a

reduction procedure 1 for its solution. To specify the search space for the
reduction procedure we need the notions of problem states (P-states) and
the set of relevant moves—terminal and nonterminal. These notions correspond
respectively to formulas, axioms and rules of inference in some natural in-
ference system (Amarel, 1967).
P-states are expressions of the form S= (sa=-sb). In its logic interpretation,

such an expression is a proposition that means 'Sb is attainable from sa'. Thus,
it is equivalent to the logical notion CAN (se, Sb) that has been used by Mc-
Carthy (1963) and Black (1964) (in their formalization of problems of
`ordinary reasoning'), and that has been recently discussed by Newell (1966)
and Simon (1966).
In the following, we consider the formulation F3 in the improved system of

1 We have studied previously reduction procedures in the context of theorem-proving
problems (Amarel, 1967) and syntactic analysis problems (Amarel, 1965). In these cases,
the initial formulation of the problem was assumed to be in a system of productions.
However, in the tvi &c problem, a formulation in a system of productions is a derived
formulation that results from the translation of an initial verbal formulation.
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productions as the starting point for the present formulation F4. Thus, the

initial P-state for the general NI &c problem is

Sa = ((N,N,1 ) ( 0,0,0 )). (6.1)

A relevant nonterminal move corresponds to the application of a permissible

action at the left N-state of a P-state. Thus, given a P-state S = (sa=.4), and

a permissible action A that takes sa to;, then the application of the action at

sa corresponds to the application of a move (call it A also) that reduces Si

to the P-state ,S1=(sc sb). We can represent such a move application as

follows:

Si=(sa sb)
$ A (a permissible action that takes sa to so)

SJ=.(so sb)

In the logic interpretation, such a move corresponds to the inference 'Si

implies Si' (this is the reason for the direction of the arrows). In other words,

`if Sb is attainable from Sc, then Sb is also attainable from sa (because so is

known to be attainable from se)'.
A terminal move in the present formulation, is a move that recognizes that

the left and right sides of a P-state are identical; we call it'll,. Logically, such

a move corresponds to the application of an axiom scheme for validation in

the natural inference system.

A solution is a sequence of P-states, attained by successive applications of

nonterminal moves, starting from the initial state and ending in a state where

the terminal move applies. In the logic interpretation, a solution is a proof

that the initial P-state is valid, i.e. that the terminal N-state is attainable from

the initial N-state. From a solution in the reduction system, it is straight-

forward to attain a trajectory in the system of productions or the schedule of

actions that is associated with such a trajectory.

7. THE SEARCH FOR SOLUTION IN THE REDUCTION

SYSTEM

A simple search process by successive reductions can be used to obtain the

solution. All relevant nonterminal moves are taken from a P-state. If a new

P-state is obtained which is identical to a parent P-state in the search tree,

then the development below that P-state stops. This guarantees the attainment

of a simplest schedule if one exists and it provides a basis for a decision

procedure, i.e. if all possible lines of development from the initial P-state

are stopped, then no solution exists.

The search graphs for the cases (N=3, k=2) and (N5, k = 3) are shown

in figure 7.1. These are condensations of search trees that are obtained by

retaining only one copy of a P-state and its continuations. For simplicity,

except for the initial and terminal P-states, all the P-states are represented by

their left N-states (they all share the same right side; i.e. the desired terminal
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N-state). The branches of the graphs represent move applications. The arrows
indicate the direction of transfer actions for move applications. A solution
is indicated in figure 7.1 by a path in heavy lines. The schedule associated
with a solution path is shown at the left of each graph as a sequence of transfer
actions. Thus one (of the four possible) optional schedules for the elementary
M&C problem (N = 3, k=2) reads as follows:
(1) Transfer two cannibals from left to right.
(2) Transfer back one cannibal to the left.

(6) Transfer one missionary and one cannibal from right to left.

(11) Transfer two cannibals from left to right.

(1) TLR,0,2

(2) TRL,0,1

(3) TLR,0,2

(4) TRL,0,1

(5) TLR,2,0

(6) TRL,1,1

(7) TLR,2,0

(8) TRL,0,1

(9) TLR,0,2

(10) TRL,0,1

(11) TLR,0,2

((331)(000))

(310) (320) (220)

(321)

if
(300)

if
(311)

if
(110)

if
(221)

(020)

if
(031)

(010)

(021) (111)

((000)(000))

I Mt
(a) Search graph for m &c (b) Search graph for M&C

problem with N=3, k=2

Figure 7.1. Search graphs for m & c problems in formulation F4
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In each case shown in figure 7.1 there is more than one solution. How-
ever, it is interesting to note that even if there is a certain amount of
variety at the ends of the solution paths, the central part of the path has no
variety (in the cases presented here, the center of the path is unique, in some
other cases there may be two alternatives at the graph's neck, as we shall see in
a subsequent example for N=4, k-3).

It should be evident from these search graphs that the M & c problem is a
relatively simple problem that can be easily handled in an exhaustive search
with a procedure of reduction type. There is no need for heuristics and com-
plex rules for selecting moves and organizing the search. It is noteworthy that
such a problem, while easily handled by computer procedures, is a relatively
difficult problem for people. If one's approach is to try alternative sequences
in some systematic manner (the computer approach that was just described)
he becomes quickly memory limited. Also, people tend not to consider moves
that, even though applicable to a situation, appear to be a priori bad moves
on basis of some gross criterion of progress. In the elementary /44 & c problem,
the sixth move in the schedule is such a stumbling block—yet it is the only
move applicable.
Because of the one-sided development of the solution (from the initial N-

state forward in time), and because of the exhaustiveness of the search, the
process of searching for a solution would be the same if a reduction procedure
(as described here) or a generation procedure, based directly on the formula-
tion Fs, were used. In a generation procedure, all the sequences of N-states that
are attainable from the initial N-state are constructed. The system is actually
made to run over its permissible trajectories. The reduction approach was
introduced at this stage, in order to show the equivalence between the genera-
tional approach (where the system is made to run between two given points)
and the reductionist-logical approach (where essentially a proof is construc-
ted that a trajectory exists between the two given points). While the reduction-
logical approach has no advantage over the generational approach in the
present formulation, there are cases where such an approach is especially
useful. For example, in the next stage of formulation of the M &c problem it is
convenient and quite natural to develop the approach to solution via a reduc-
tion procedure and its associated logical interpretation.

8. DISCOVERY AND UTILIZATION OF SYMMETRIES IN THE

SEARCH SPACE. FORMULATION F. OF THE M&C PROBLEM

From an analysis of the search graphs for NI & c problems (such as those in
figure 7.1), it becomes apparent that the situation in search space is symmetric
with respect to time reversal. Roughly, if we run a movie of a schedule of
transportations forwards or backwards, we can't tell the difference. Consider
two N-states (ML,CL,BL) and (N-ML,N-CL,1-BL) in N-state space. When the
space is viewed from the vantage point of each N-state in this pair, it appears
identical, provided that the direction of transitions is 'perceived' by one N-
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state as opposite to the direction 'perceived' by the other N-state. For example,

consider the points (311) and (020) in the elementary m & c problem (see

figure 7.1(a)). If we consider (311) on a normal time path, then it is reached
via (TRL,0,1) and it goes to the next state via (TLR,2,0); if we consider (020)

under time reversal, then it is reached via (TRL,0,1) and it goes to the 'next'

state via (TLR,2,0). We shall consider now this situation more formally.

In our previous formulations of the M&C problem within production

systems, the rules of action define a relation of direct attainability T between

successive N-states (see section 2). Thus, for any two N-states sa,sb, the ex-

pression saTsb asserts that the N-state sa occurs just earlier than Sb on a

trajectory in N-state space. Consider now the converse relation 1'. The expres-
sion sat'sb asserts that sa occurs just after Sb on a trajectory.
We shall consider specifically in the following discussion the formulation

of the m &c problem in the improved system of productions, i.e., the formula-
tion F3. Let a be the space of N-states, partly ordered under the relation T,
and *,!, its dual space (i.e., has the same elements of a, partly ordered under

7'). Consider now the following mapping e between N-states:

e: (ML,CL,BL) ---> (N-ML,N-CL,1-BL) (8.1)

We can also write e as a vector subtraction operation as follows:

(8.2)

Theorem. For any pair of N-states so, Sb the following equivalence holds:

saTsb -=- e(sa) 7'0 (Sb),

or equivalently

saTsb---e(sb) T e(s0);

i.e. the spaces a, are anti-isomorphic under the mapping e. Furthermore, the
move that effects a permissible transition from sa to Sb is identical with the

move that effects a permissible transition from e(sb) to e(s0).
Proof. Consider any permissible N-state (i.e. the non-cannibalism conditions
are satisfied at this state) with the boat at left; suppose that this N-state is

described by the vector sa=(ML, CL, 1). Corresponding to sa we have an
N-state described by e(sa)=(N-ML,N-CL, 0). Note that, in general, the non-

cannibalism conditions (stated in (4.4)) are invariant under e. Thus, the
N-state described by e(s) is also permissible. We can also write in vector

notation,
(8.3)

Consider now a transition from left to right at sa, defined by some pair

(Mb, CO such that 1 < Mb+ Cb'4k. A transition of ths type is always a priori

possible if M L+ CL 0 0 in so (i.e. if there is somebody at left when the boat is

there—a condition which we are obviously assuming); however the a priori

possible transition is not necessarily permissible—in the sense of satisfying the
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non-cannibalism conditions at the resulting N-state. The transition defined by

(Mb, Cb) yields a new vector Sb that is related to sa by vector subtraction as
follows:

Sb=Sa —(Mb)&b,1). (8.4)

This can be verified by examining the rules of action. Corresponding to sb we
have via the mapping e,

=e(s.)+(mb,cb,i). (8.5)

Suppose first that sb is permissible (which means that the move defined by
the pair (Mb, Cb) is permissible, and the relation sa 7' Sb holds); then e(sb)
is also permissible because of the invariance of the non-cannibalism condi-
tions under 0. Now in the N-state described by e(sb) the boat is at left and a
left to right transition defined by (Mb, Cb) is possible (in view of (8.5) and
noting that the components of e(sa) cannot be negative). This transition
yields a vector e(sb)—(mb, Cb, 1), which is identical with 0(s.). Since e(sa)
is permissible, then the transition defined by (Mb, Cb) (which takes 0(Sb)
to e(sa)) is permissible, and the relation 0(50 T e(sa) holds. It is inherent
in this argument that the same move that takes sa to sb, also takes e(sb) to

e(sa).
Suppose now that sb is not permissible (which means that the relation sa

Sb does not hold); then e(sb) is not peimissible either, and the relation
e(si,) T e(sa) does not hold.
A similar argument can be developed for a right to lett transition. This.

establishes the anti-isomorphism and the relationship between symmetric
moves.
The situation can be represented diagramatically as follows:

0

T Tt

(8.7)

Corollary. For any pair of N-states sa,sb, the following equivalence holds:

(sa sb).-=-(e(sb)e(sa)).

The proof is an extension of the previous proof.

The recognition of the anti-isomorphism permits us to approach the pro-
blem simultaneously, and in a relatively simple manner, both in the space a
and in its dual space. The reasoning behind this dual approach relies on the
logical properties of the attainability relation and on the properties of the
anti-isomorphism.
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Consider an attainability relation (so sb), where so is the initial N-state
and Sb is an arbitrary N-state such that S b So. Let us denote by {Si} the set of
all N-states that are directly attainable from so; thus

{si}={slsoTs holds). (8.8)

We have then

(se>sb) v (s=>sb). (8.9)
se{h}

If sb st, where st is the desired terminal N-state, then we have as a special
case of (8.9),

(so .st) V (ss). (8.10)
Se{h}

From the previous corollary, and since e(St)=so in the M&C problem, we
can write the equivalence (8.10) as follows:

(so st) v (so e(s)). (8.11)
se{si}

By using (8.9) in (8.11) we obtain:

(S=S) v ( v (sj e(si))). (8.12)
sic{s1} sic{si)

The situation can be shown schematically as follows:

so st

\ /
{h}={sio. p1,2 . s1j e ={0(si,i)*

*1,2) e(s1,0)
find link (8.13)

The terminal N-state St is attainable from so if and only if any of the N-states
from which st is directly attainable is itself attainable from any N-state that is
directly attainable from so.
Now for each growth below sme{si), there is a corresponding image

growth below e(si.i). Let us denote the set of all N-states that are directly
attainable from elements of {si} by {s2}; thus

{s2}={sis„ c {Si), suTs holds). (8.14)
Let us call the image of {s2) under e, e{s2}. Repeating the previous argument
we obtain that st is attainable from so if and only if any of the N-states in
{s2} is attainable from any of the N-states in {s2}. This type of argument can
be continued until either a set {sa} at some level n does not have any new
progeny, or an N-state in e{sn} is directly attainable from an N-state in {s,}.
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From the preceding discussion, it is clear that we can develop the search for
solution simultaneously, both forward from the initial N-state and backward
from the terminal N-state, without having to spend search effort in both sides.
Only the sets {Si}, {s2}, . . . {s„), that represent the forward exploration of the
search space from the initial N-state, have to be constructed. The exploration
from the terminal N-state backwards is directly obtainable as the image of
the forward exploration under time reversal (i.e. under the anti-isomorphism).
This means that the knowledge of the symmetry property permits us to cut
the depth of search by a factor of two — which is a substantial reduction in
expected search effort. Note, however, that as is the case in any two-sided
approach to search, new problems of coordination and recognition arise
because of the need to find links between the forward moving search front and
its backward moving image. In our present problem, because of the relative
narrowness of the moving fronts, this problem of recognizing a linking
possibility is not too difficult.
Let us formulate now a reduction procedure for carrying out the two-sided

solution construction activity that we have just described. We introduce here
a broader concept of a problem state, the total P-state, E:

Ei = ({si} 1=0,1,2, . . .

where i indicates the number of transitions from one of the schedule terminals
(initial or terminal N-state) and the current total P-state. In its logic inter-
pretation, an expression Ei stands for the proposition 'there exists an N-state
in {Si} from which some N-state in O{s} is attainable'.
A nonterminal move in the present formulation is a broader notion than a

nonterminal move in our previous reduction procedure. Here, a nonterminal
move effects a transition between Ei and Ei+i in such a manner that Zia- E.
Such a move represents a combination of parallel transfers, half of which are
source-based and they are found by direct search, and the other half are desti-
nation-based and they are computed on basis of the symmetry property.
A terminal move in the present formulation establishes links between N-

states in {si} and N-states in O{s} that are directly attainable from them.
A solution (or correspondingly an attainability proof) has the form of a

chain of total P-states that start with E0= (s0 st) and that ends with a total
P-state Et, where a terminal move applies. A trajectory (or a schedule) is
obtained from this solution by tracing a sequence of N-states that starts with
s0; it is followed by a directly attainable N-state in {si); it continues this way
up to {s,}, and then it goes to e{s„}, e{sn_i}, . . up to e(s0)=s.
The development of the solution for the elementary NI 8cc problem in the

present formulation is shown in figure 8.1.
The total P-state E5 is valid because there is a link (via T RL, 1,1) between

110 and 221. The darkened path shows a solution trajectory. The schedule
associated with the trajectory is given at left. The same transfer actions apply
at points of the trajectory that are equidistant from the terminals. Thus, in the
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Figure 8.1. Search graph for the elementary NI &c problem in the formulation F5

present case, we have a schedule which is symmetrical with respect to its middle
point. Note that the solution development given in figure 8.1 is a folded
version of the solution development which is given in figure 7.1(a).

It is of interest to develop the solution for the case N=4, k= 3 within the
present formulation; this is given next in figure 8.2.

441

TLR,0,3 TLR,0,3

420 410 330
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400 220
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4.
041 221

030 110
 1
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Figure 8.2. Search graph for the id &c problem (N=4, k = 3) in the formulation F5

The total P-state E4 is valid, since a terminal move composed of two links
applies at E4. The darkened path in figure 8.2 shows one solution trajectory.
The schedule associated with the trajectory is shown in the sides of the
solution graph. Note that in the present case the trajectory is not symmetrical.
While the two halves of the search graph are images of each other under e,
the two halves of a trajectory are not. Roughly the situation is as follows:
Two main sequences of N-states grow from each of the two sides; these two
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sequences are images of each other under e; a solution trajectory starts with
one of these sequences from the one side, and then at its middle point, rather
than continuing with the image of the initial sequence, it flips over to the
image of the second sequence.
In the present formulation, it is possible again to develop a solution via a

generation procedure that would operate in an equivalent manner to the
reduction procedure that we have described here. However, the direct corre-
spondence between the logic of the solution and the elements of the reduction
procedure make the latter more convenient to use.

9. DISCOVERY OF SOLUTION PATTERNS IN AN

APPROPRIATE REPRESENTATION OF N-STATE SPACE

One of the significant ways of increasing the power of a problem solving
system for the M & c problem is to look for some characteristic patterns in its
search space that go beyond the properties that we have discussed so far. To
this end, it is extremely important to find a representation of the search space
that enables a global view of the situation, so that reasoning about a solution
can first proceed in broad terms and it can then be followed by the detailed
scheduling of actions. We shall present next such a representation of the space
of N-states. This representation utilizes the basic description of N-states that
was introduced in the formulation F3 of the NI & c problem.
The number of possible N-states for an M & c problem equals the number of

possible valuations of the vector (ML, CL, BL); this number is 2(N+1)2. We
represent the space of N-states by a limited fragment of three-dimensional
space with coordinates ML, CL and BL. This fragment consists of two parallel
square arrays of points, that are disposed as follows: One array is on the
plane BL= 0 and the other on the plane BL =1; the points on each array have
coordinates (ML, CL), where the values of ML, CL are 0, 1, 2, . . ., N. Thus,
each point corresponds to a possible N-state. Such a representation for the
N-state space of the elementary M & c problem is shown in figure 9.1. The
blackened points stand for non-permissible N-states (i.e. the non-cannibalism
conditions are violated in them). The feasible transitions from an N-state s
in a given BL plane to other N-states in the same plane are shown in figure 9.2.
These feasible transitions reflect mainly boat capacity. A feasible transition is
not permissible if it leads to a non-permissible N-state. Thus, starting from an
N-state in the BL= 1 plane, a transition can be made to any permissible point
within a 'distance' of 2 lattice steps in the plane, in a general southwestern
direction; after the movement in the plane is carried out (it represents 'load.
in the boat' at left) a left-to-right transfer action is completed by jumping
from the Bi =1 array to the BL= 0 array in a direction parallel to the Bz, axis.
A right-to-left transfer starts from an N-state in the BL= 0 plane; a transition
is first made to a permissible point within a 'distance' of 2 lattice steps in the
plane, in a general northeastern direction; after this transition, the transfer is
completed by jumping across to the BL= 1 array.
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By=1 plane By=0 plane

Figure 9.1 Feasible transitions in space of N-states

A solution for the elementary M & c problem is shown in figure 9.1 as a path
in N-state space. It is suggestive to regard the solution path as a thread
entering the initial N-state, leaving the terminal N-state, and woven in a
specific pattern of loops that avoids going through the non-permissible points
in N-space. Furthermore, the solution shown in figure 9.1 requires the 'least

MLI

3

BL=l array
enter

B4=1 plane BL =0 array

20

10

0 initial N-state 0

0 0—
terminal
N-state

0

3 exit

BL =0 plane

Figure 9.2. Space of N-states for elementary M & c problem
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amount of thread' to go from the initial N-state to the terminal N-state within
the imposed constraints in the weaving pattern. It is easy to see that the solu-
tion trajectory shown in figure 9.2 is the same as the solution shown in
figure 7.1(a).
We can simplify the representation of N-state space by collapsing it into a

single square array of (N +1)2 points (figure 9.3). This requires a more com-
plex specification of the possible transitions. We represent a left-to-right
transfer by an arrow with a black arrowhead, and a right-to-left transfer by
an arrow with a white arrowhead. In the previous two-array representation, a
black arrow corresponds to a movement in the B L= 1 plane that is followed
by a jump across planes, and a white arrow corresponds to a movement in the
B L= 0 plane followed by a jump across planes. A point in the collapsed space
is given by two coordinates (ML,CL), and it can represent either of the two
N-states (ML, CL, 1) or (ML, CL, 0). The point (ML, CL) in association with
an entering black arrowhead represents (ML,CL,0); in association with an
entering white arrowhead, it represents (ML,CL,1). A sequence of two arrows
--. —0. represents a round trip left-right-left. A sequence of arrows, with alter-
nating arrowhead types, that starts at the initial point (N,N) and ends at the
terminal point (0,0) represents a solution to the lvt &c problem.
The collapsed N-state space for the elementary M&C problem is shown in

figure 9.3. The solution path shown in this figure represents the same solution

3

20

initial N-state
(source)

0

•

1 • 0 0

terminal N-state
/ (destination)

00

Figure 9.3. Collapsed N-space for elementary tst & c problem
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that is shown (in different forms) in the figures 7.1(a) and 9.2. The solution
path in the collapsed N-state space suggests a general movement forward
from the source point to the destination point by a sequence of 'dance steps'
of the type 'two steps forward, one step back' over a dance floor made of
white and black tiles, where black tiles are to be avoided (however, they can
be skipped over).

It has been our experience that when the elementary Yi 8cc problem is
presented to people in the form of pathfinding in the collapsed N-state space,
the ease with which a solution is found is substantially higher than in any of
the previous formulations. It appears that many significant features of the
solution space are perceived simultaneously, attention focuses on the critical
parts of the space, and most often the solution is constructed by reasoning
first with global arguments and then filling in the detailed steps.
One of the features that are immediately noticed in examining the col-

lapsed N-state space is that the 'permissible territory' for any 1%1 &c problem
forms a Z pattern. The horizontal bars of the Z region correspond to the
conditions ML=N and ML = 0, and the diagonal line corresponds to the
condition ML = CL. The conditions that specify the 'permissible territory' can

ML =N ••■••■•• MEMO= OINIMMI• ■■■■•••

ML=CL

terminal
point

•■■• ••••■•

iv
ML=0

Figure 9.4. The 'permissible territory' in the M & c problem
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be obtained directly as consequences of the problem constraints; we have

used them in the proof of the eliminability of the 'boat condition' in section 4,

and it is conceivable that they could be derived mechanically with techniques

that are presently available. Note, however, that the problem of obtaining

these conditions is not a theorem proving task but a theorem finding task.

Let us concentrate now on the Z region of interest in the collapsed N-state

space of an rit &c problem, and let us attempt to find general characteristic
features of solution paths. Since the Z region is the permissible territory, it is
reasonable to expect that features of solution paths are describable in terms

of movement types over this Z. By examining the diagram in figure 9.4 we

shall try first to identify certain properties of solution paths that will permit
us to characterize the solution schema that we have used in the elementary
M&C problem (see figure 9.3).
In the diagram of the Z region, this solution schema can be seen to consist

in general of four main parts, (i) to (iv). An arrow < — — — denotes a
sequence of transitions the last of which brings the boat to the left river bank,
and an arrow 4 - - - denotes a sequence of transitions that terminates with
the boat at right.
The following general properties of solution paths are suggested by examin-

ing the situation in figure 9.4:
(i) On the ML=N line, any of the points (N, x, 1), where 1 <x <N,

are attainable from the initial point (N,N,1) by a 'horizontal'
sequence of transitions of the following type:

./••=.

GO'

(N, x, 1)

for 1<x<N

initial N-state

(N, N, 1)

• More generally, any point (N, x, 1), where 1 < x <N, can be

attained from any other point (N, y, 1), where 1 <y <N, by some

'horizontal' sequence of transitions that is similar to the one just
shown. Roughly, this indicates that 'horizontal' movements over

the ML N line are easily achievable by a known routine of steps.

(ii) If k is the boat capacity, and if k 2, then any of the points

(N, N—x, 1), where 0 <x < k, can reach, via a single transition

(TLR, x, 0), a point (N—x, N—x, 0) on the diagonal of the Z
region. From this point, a (TRL, 1, 1) transition can lead to a

point (N— x +1, N— x +1, 1) on the diagonal. While the first

transition in this pair determines the size of the 'jump' from the

=N line to the diagonal, the second transition is necessary for
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'remaining' on the diagonal. Thus, we can regard this pair of transi-
tions as a way of achieving a 'stable jump' from the line M L=N
to the diagonal. It is clear from this discussion that a boat capacity
of at least two is necessary for realizing a ̀stable jump'. Note that
the second transition in the pair corresponds to the critical move of
returning one missionary and one cannibal—in general, an equal
number of missionaries and cannibals—to the left, in mid schedule.
As we have observed before, this is an unlikely move choice if the
problem solver has a general notion of progress that guides his
move preferences uniformly over all parts of the solution space.
Only after knowing the local structure of this space, is it possible
to see immediately the inevitability of this move. Now, the remotest
point of the diagonal (from the initial point) that can be reached
by this pair of transitions is (N —k +1, N —k +1,1).

(iii) A point on the diagonal can directly attain a point on the line
Iti,=0 if its distance from that line does not exceed k. Thus, to
move from the ML = N line to the Afi,= 0 line in two 'jumps', by
using the diagonal as an intermediate support, we need a boat
capacity that satisfies the following condition:

k >
N+1.

(9.1)
2

(Thus, for N=5 and k=2 there is no solution. This specific result
could have been obtained in any of our previous formulations by
recognizing that a definite dead end is attained in the course of
searching for a solution. However, it is obtained much more
directly from our present analysis; furthermore, we can easily
assign the reason for the unsolvability to the low capacity of the
boat.)

(iv) On the ML=0 line, any of the points to the right of the terminal
point, can reach the terminal point (0,0,0) by a ̀horizontal'
sequence of transitions of the type shown in (i). More generally,
any point (0,x,0), where 0 <x<N, can be attained from any other
point (0,y,0), where 0 ‹y<N, by some ̀horizontal' sequence of
transitions. Again, this indicates roughly that 'horizontal' movement
over the ML= 0 line are easily achieved by a known routine of steps.

From the general properties just discussed we can characterize a general
solution pattern, which we call the zig-zag pattern, by the following sequence
of global actions: (i) starting from the initial point, slide on the ML=N
line, over a ̀horizontal' transition sequence, up to the point (N, N—k, 1);
(ii) jump on the diagonal, via two transitions, to the point (N—k+1,
N —k +1,1); (iii) jump off the diagonal to the ML=0 line; (iv) slide on the
ML=0 line, via a ̀horizontal' transition sequence, to the terminal point.

It can be easily verified that the solutions to the three cases that we have
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presented previously, i.e. (N=3, k = 2), (N=4, k = 3) and (N=5, k=3),
follow precisely the zig-zag pattern that we have outlined. If N=6, then in
order to use the present solution scheme, a boat of capacity 4 is needed (see
the condition (9.1)). When a boat capacity of 4 (or more) is available, then
any tvi &c problem is solvable. This property is due to the fact that the follow-
ing pattern of transitions, that allows one 'to slide along the diagonal', is
possible when k 4:

The 'sliding along the diagonal' for k = 4 is realized by a 'diagonal' sequence
of round trips of the type: (TLR, 2, 2), (TRL,1,1),(TLR, 2, 2), (TRL,1,1),
etc., where each round trip realizes a net transfer of two individuals from left
to right.
For cases with k 4 it is possible to use a simple and efficient solution pat-

tern, the diagonal pattern, that has a single global action, as follows: starting
from the initial point slide down the diagonal via a 'diagonal' transition

sequence that takes in each round trip -,- missionaries and - 2- cannibals to the
k —1

right (when k is even—otherwise it takes of each) and it returns one

missionary and one cannibal back, except in the last trip, until the terminal
point is reached. It is also possible to construct solution patterns that combine
parts of the zig-zag pattern with parts of the diagonal pattern. Such a com-
bined solution scheme is shown in figure 9.5.
For the M&C problem (i.e. find a path from (N,N,1) to (0,0,0)), it can be

shown that if the boat capacity k is high, and if k is even, then the pure
diagonal pattern of solution is always better than any combined pattern (in
terms of number of trips required for a schedule); if k is odd, then there are
cases where a small advantage is gained by starting the schedule with the first
two round trips of the zig-zag pattern; if k= 4, and N 6, then the diagonal
solution pattern, the zig-zag pattern or the combined pattern of figure 9.5,
when it applies, are all of equivalent quality.
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transition

(0,0,0)

(k,k,1)
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'jump to diagonal'
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./

diagonal' sequence

(0,k,0)

'horizontal' sequence

Figure 9.5. Combined scheme of solution shown on the Z region

10. FORMULATION F, OF EXTENDED M&C PROBLEM IN A

MUCH IMPROVED PRODUCTION SYSTEM THAT

CORRESPONDS TO A HIGHER LEVEL SEARCH SPACE

After the exploration of solution patterns in our array representation of N-
state space, and after new global transition concepts are developed, it is
possible to re-formulate the m&c problem (in fact, an extended version of
this problem) in a new and much improved system of productions to which
there corresponds an N-state space that has many fewer points than in any of
the previous spaces.
From the analysis of possible global movements in the N-state space, we

can now formulate the following set of macro-transitions:
{(A))5: set of rules of (macro) action in formulation F6.
(111): (N,C5,1); O<C L<N, k>2-3-(N,N,1)
(1-11,11): (N,C L,1);0<C 5<N,1c>2-+(N — k +1, N —k +1, 1)
(D): L,CL,1); 0 <Ms C k> 4 -÷(0,0,0) (10.1)

(12): (MDCL,1): 0 <ML= CL k-)-(0,CL,O)
( DJ2): (MDCL,1); M= Cz, > k 4-)-(0,k,0)
(1/2): (0,CL,0); 0 C L<N, 1c> 2 -*(0,CD0); 0 < CL CI
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Each of these macro-transitions is realized by a routine of elementary transi-

tions. Thus, (HO is realized by a 'horizontal' sequence of transitions that

slides a point on the M5 =N line to the corner point (N ,N ,1), with the least

number of steps; (14,.11) is realized by a 'horizontal' sequence of transitions

that takes a point on the A L=N line to the point (N,N —k, 1) on that line,

and then it is followed by a pair of transitions that effects a 'stable jump' to

the point (N — k +1, N —k +1, 1) on the diagonal, all this with the least

number of steps; (D) is realized by a 'diagonal' sequence of transitions that

takes a point on the diagonal to the bottom of that diagonal, in the least

number of steps; (.12) is realized by a single transition that effects a 'jump'

from a point on the diagonal to the Mi. = 0 line; (D,J2) is realized by a

'diagonal' sequence of transitions that takes a point along the diagonal to the

point (k,k,1), and then it is followed by a transition that effects a 'jump' to

the point (0,k,O) on the ML= 0 line, all this with the least number of steps;

(H2) is realized by a 'horizontal' sequence of transitions that takes a point on

the ilfz,= 0 line to another point on that line, in the smallest number of steps.

The formulation of the macro-transitions enables us to approach a pro-
blem of finding the best schedule for an NI &c problem (or extensions of this
problem) by first solving the problem in a higher order space, where we

obtain a set of possible macro-schedules—that are defined in terms of macro-
transitions—and then converting the macro-schedules to schedules by compil-

ing in the appropriate way the macro-transition routines. Note that the

present formulation is suitable for handling conveniently a class of problems

which is larger than the strict class of NI &c problems that we have defined

in section 3; specifically, an arbitrary distribution of cannibals at left and right

can be specified for the initial and terminal N-states. By certain changes in

the specification of the macro-transitions, it is possible to consider within our

present framework other variations of the M &c problem, e.g. cases where the

boat capacity depends on the state of evolution of the schedule, cases where a

certain level of 'casualties' is permitted, etc.

Let us consider now the following example:

Example 10.1. The initial situation is as follows: nine missionaries and one

cannibal are at the left river bank and eight cannibals are at the right bank; a

boat that has a capacity of four is initially available at left. We wish to find

the simplest safe schedule that will result in an interchange of populations

between the two river banks.

The search graph in the higher order space gives all the macro-schedules

for the case of a constant boat capacity of four; this graph is shown in

figure 10.1. The macro-transitions are applied on the left side of a P-state

(i.e., the macro-schedule is developed forward in time) until a conclusive

P-state is reached. The number within square brackets that is associated with

a macro-transition indicates its 'weight', i.e., the number of trips in the

routine that realizes the macro-transition. Thus, we have macro-schedules of

weights 15, 21, and 27. The simplest macro-schedule is given by the sequence
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(1/1) [6] (1/1,./1), [6]

((9,9,1)(0,8,0))

1 (D)b [15]

((0,0,0)(0,8,0))

(D,J,),(11]
((6,6,1)(0,8,0))

((0,4,0)*.(0,8,0))

(H2)b [ ] (Ha)a, [4]

((0,8,0)(0,8,0))

1 ./Ift

Figure 10.1 Search graph in higher order space for the example 10.1

(1-4,J1), (D,J2)., (H2)„ of macro-transitions, which corresponds to the
darkened path in figure 10.1.
The situation in the collapsed N-state space is shown in figure 10.2. The

patterns of the alternative macro-schedules are shown schematically in the
lower part of the figure.

After a macro-transition is specified, its realization in terms of elementary
transitions is easily carried out by a compiling routine. For example, the
macro-transition (1-11,./1) in our problem is realized as follows by a routine
(H1,11) with initial N-state (9,1,1) and a terminal N-state (6,6,1):

mi,=N line
4 (9,1,1) (9,5,1)

6 steps

(6,6,1)

ML= CL line

(10.2)

As a second example, consider next the realization of the macro-transition
(D,J2)., by a routine (D,J2) from (6.6.1) to (0,4,0); see (10.3).
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Figure 10.2. Collapsed N-state space for the example (10.1)
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(0,4,0)

(10.3)

If we think of the problem in terms of path finding in the Z region of the
collapsed N-state space, we can immediately see analogies with simple 'mon-
key problems'. These are problems suggested by McCarthy (1963), where a
schedule of actions has to be found for a monkey that has to reach certain
specified goals by moving in three-dimensional space, transferring objects
from place to place, reaching objects, etc. It is clear that 'monkey problems'
are simple prototypes of problems of reasoning about actions in the real
world, such as assembling a physical object from parts, navigating a vehicle
in a heavy traffic, etc. We can visualize our problem in the following way:
a monkey is at the upper level of a two-level structure that has in its side an
inclined stairway, and his goal is to reach a bunch of bananas that is at the
lower level and at a certain distance from the stairway landing; suppose that
the detailed geometry of the situation is as shown in the diagram of figure 10.2,
Where the scale of distances is in yards; suppose further that the monkey can
always see the entire situation (the structure is essentially transparent): he
can move over each level by using a 'horizontal' sequence of steps, he can
move down the stairway by using a 'diagonal' sequence of steps, and he can
safely jump vertical distances that do not exceed four yards; find a safe path
that will bring the monkey to the bananas in the smallest number of steps.
Clearly, the best solution trajectory for this monkey problem is isomorphic
With the best solution that we have obtained for our original problem.
The solution of our illustrative problem (in any of the interpretations)

would have been much more painful if the possible transitions were given as
specifications of elementary steps. The availability of integrated, goal oriented,
routines that specify macro-transitions is responsible for a substantial reduc-
tion in problem solving effort. A macro-transition is an expression of know-
ledge about the possibility of realizing certain sequences of transitions. It is a
theorem about possible actions In the universe in which we are solving pro-
blems. Thus, the macro-transition (14,./i) (see (10.1)) can be roughly inter-
preted in the 'monkey and bananas' context as asserting that it is possible for
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the monkey to go from any place on the upper level (except one corner point)
to a place on the stairway which is four yards below the upper level. The

proof of this assertion consists in exhibiting a sequence of realizable elemen-

tary steps that can be used by the monkey for going from any of the initial

places at the upper level to the terminal place. Note that the elementary steps

have themselves the status of macro-steps with respect to a lower level of

possible actions. For example, in the M &c problem, we are using now a trans-

fer across the river as an elementary step, and this transfer is realized by more
elementary actions of loading the boat, moving it, and unloading it; in the
'monkey and bananas' interpretatioh, an elementary step may be realized in

terms of certain sequences of muscle actions.

11. RELATIONSHIPS BETWEEN THE INITIAL SEARCH

SPACE AND THE HIGHER LEVEL SEARCH SPACE

The high level space a* in which macro-schedules are constructed consists of

a subset a of the set of 2(n+ 1)2 N-states, with the elements of a partially
ordered under the attainability relation that is defined by the macro-transi-
tions {(A))5 (given in (10.1)). The set a contains the following elements: the
initial and terminal N-states that are specified in the problem formulation,
and four N-states (N,N,1), (N—k+1, N —k+1, 1), (0,0,0), and (0,k,0) and
the set of N-states {slit/L=0, BL = 0, 0 <CL<k}. The initial or terminal N-
states may coincide with some of the other elements; the set a has at most
5+k elements.

Let us examine the relationship between the new space a* and the space
a of 2 (N +1 )2 N-states. Consider the three sets {s} top={sIML=N},f, diagonal
7-7-{SIM C L} and {sld bottom= {sIM L= 0} in a. They correspond to the top

line, the diagonal line, and the bottom line respectively of the permissible Z
region in a. Each of these sets has one or more characteristic points that we
call entrance points and the set of {s} bottom has a characteristic point that we
call an exit point. The entrance point of {s},,,, is the initial N-state of the NI &c

problem, and the exit point of {s}b0„,„, is the terminal N-state of the M &c

problem; these are two elements of a. The entrance points of {s} „add', are

the N-states (N,N,1) and (N —k+1, N —k +1, 1); these are two elements of a

(note that (N,N,1) can be an entrance point of {s},„p also). The entrance

points of {s}b0„„,„ are (0,0,0) (0,k,0) and the points of the set {sIML= 0,

BL--- 0, 0< CL<k); all of these are elements of a also. The macro-transitions

(H1) and (14,./2) specify two possible ways of reaching an entrance point in

{S}middie from an entrance point in {s}top The macro-transitions (D), (.12),

(D,J 2) specify three possible ways of reaching an entrance point in {s}k,„0,„

from an entrance point in {s}middie. Finally, the macro-transition (H2)

specifies a way of reaching an exit point of {s}bc,„„„, from an entrance point in

the same set.
We can think of the three sets {s} as easily traversable areas, where a path

for going from one point to another can be found with relative ease. However,
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the critical points of the problem occur at the points of transition, the
'narrows', between easily traversable areas. These are represented by the

intermediate entrance points. A substantial increase in problem solving power
is obtained when such ̀ narrows' are identified, and when general ways of

going from ̀narrow' to ̀narrow' are developed. Our macro-transitions provide

precisely the capability of going from one ̀narrow' into an easily traversable

area, and then through that area to another ̀ narrow' that leads to the next

easily traversable area or to the desired terminal exit.
The space a* is an abstraction of the space a. Formally, a simplest solution

to an NI & c problem is attainable in a* if and only if it is attainable in a.

Furthermore, the minimal path linking two points in a* is identical with the

minimal path between the same two points in a. In a* attention is focused on
a small number of well chosen critical points of a. By looking for paths be-
tween points in a*, we solve the problem in at most three ̀leaps', and then we
can 'fill in' the details with the help of the definitions for the macro-transitions.
The main difficulty in finding an appropriate abstraction for the problem

space lies in the discovery of the critical ̀ narrows' in that space, or more gene-
rally, of the topology of easily traversable areas and their connections in the
problem space. After the ̀narrows' are found, it is possible to build an abstract
problem space that is based on them and that has ways of moving among them.
It appears significant for the discovery of features in problem space—that
lead to a formulation of an abstracted space—to have an appropriate repre-
sentation of the space. Such is, we feel, the array representation that we have
used for a.

12. SUMMARY AND CONCLUDING COMMENTS

It is reasonable to expect that most 'real life' problems of reasoning about
actions will not be formulated at the outset within a formal system. In many
cases, the problem will have an initial verbal formulation. If such a problem
is to be solved by a computer system, then the system must be able to accept a
verbal formulation of the problem, and to convert this formulation into a form
that is acceptable to a suitable problem solving subsystem. We have not con-

sidered in this paper the linguistic problem of translating from the natural
language input into an 'internal' machine language that is acceptable to a
problem solving program. This problem is receiving considerable attention at
present (see Simmons, 1965). However, the question of choosing an 'appro-
priate' machine language, into which the verbal statement of the problem is
to be translated, has received much less attention to date. In this paper, we
are taking a first step towards understanding the nature of this question. Our
notion of ̀appropriateness' here is meant in the sense of suitability with res-
pect to the efficiency of the problem solving process. In order to approach
such a question of optimal choice of language, it is important to clarify the
relationships between the language in which a problem is formulated for a
problem solving system and the efficiency of the system. The systems of
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production P (introduced in section 2) provide a conceptual framework where
such relationships can be studied. The 'internal' formulation of a problem

amounts to specifying a system P, i.e. specifying the N-state language, the
extended description language, the rules of action, and the two N-states that
correspond to the initial and terminal situations between which the problem
solving system is to find a solution trajectory. There exists considerable ex-
perience at present with computer realizations of problem solvers that work
with formulations of problems in systems of production. G PS is an important
prototype of such a problem solving system (see Newell, Shaw and Simon,
1960). To each system P there corresponds an N-state space over which the
search for solution takes place. A good measure of the difficulty of the pro-
blem task is given by the size of the N-state space that must be searched to
find a solution. Therefore, given a certain class of problems, we can evaluate
the relative merits of languages for representing these problems in systems of
productions by comparing the sizes of their associated N-state spaces that
must be searched to obtain solutions.
In the specification of description languages for a system of productions

where a given problem is to be formulated, the choice of basic elements (the
universe U0) and of basic predicates (properties and relations of the basic
elements) is critical. This choice should provide enough expressive power for
formulating the rules of action in a manner that reflects all the conditions of
the problem. This is always possible if the elements and the predicates are
chosen at a low enough, atomic, level; unfortunately, descriptions built of
atomic elements have astronomical N-state spaces. Thus, we are confronted
with the problem of finding the coarsest possible elements and predicates
that can form descriptions that are fine enough for expressing the rules of
action in the required detail. This is a difficult problem for people; at present,
it is still more difficult for machines. In the NI &C problem, we see that the
initial formulation F2 in a system of productions is much poorer than the
formulation F3 where instead of using individuals as elements, the sizes of
certain sets of individuals (a much coarser notion) are considered to be the
basic elements of the problem universe.

It appears desirable at present that an automatic translator whose task is to
convert a verbal statement of a problem about actions to a machine formula-
tion of the problem should have as its target language a language of descrip-
tions that is atomic enough to accept quickly a great variety of problems about
actions. The design of such a language seems possible and is now under study.
The task of taking a possibly cumbersome system of productions P1 from the
output of such a translator and producing a better system P2—in which the
search for solution takes place—should then be delegated to the problem solv-
ing system. This is in accordance with our general thesis that it is an important
function of the problem solver to find the most appropriate representation of
his (its) problem. The separation of the initial translation process and the
process of finding the most appropriate internal language for a problem
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appears to be methodologically desirable at present—given our state of know-
ledge about problem representations and conversions between them. It is
conceivable, however, that the design of these two processes will be combined
in the future. Undoubtedly, a unified approach to these two processes will
strengthen both.
The rules of action of a system P play the role of the laws of motion that

govern action sequences in the space of N-states. They are analogous to the
differential equations that specify the possible time traces of a physical dyna-
mic system. They are also analogous to the productions of combinatorial
systems. Different types of problem conditions are reflected in different forms
of rules of action. The non-cannibalism conditions of the M&C problem are
easily expressible in the form of required derived descriptions for consequence
of actions. As in the cases of differential equations and combinatorial sys-
tems, it is to be expected that there are classes of forms of rules of action
to which there correspond problem spaces with certain special properties,
characteristic patterns, etc. The identification and study of such classes would
be an important contribution to the theory of problem solving processes. Even
though such knowledge may not have direct implications for the design of
problem solving systems that attempt to find a solution by intelligent search
in a given problem space, it is most likely that it will be of great significance
for the design of a system that would attempt to discover regularities in a
problem space and that would subsequently use them for formulating new
Spaces where the process of searching for a solution becomes much easier.
An initial improvement in the formulation of the M &c problem came from

the recognition that one of the conditions of the problem (non-cannibalism
in the boat) is redundant. This permitted the formulation of new actions, as
sequences of elementary actions, and it resulted in the effective elimination of
many intermediate N-states. Hence, knowledge of the redundancy property
permits a shrinkage of N-state space, i.e. an increase in problem solving effi-
ciency. As shown in section 4, the redundancy of the boat condition can be
established by deductive reasoning from the rules of action. Such reasoning
can be carried out by machine theorem proving processes that are within the
present state of the art. However, the process of looking for a redundant
condition among the conditions of the problem is not a simple deductive
process. It is a process of logical minimization. This also could be mechanized
without much difficulty at present. The idea of eliminating redundant, irrele-
vant, conditions in a problem is an old and useful idea in the art of problem
solving. It would pay then to have enough logical capabilities in a problem
solving system in order to effectively attempt such eliminations.
In the Tvt & c problem, an automatic conversion from the formulation F2 to

F3 seems possible within the present state of the art. The conversion is based
on the elimination of the redundant boat condition, the specification of com-
pound transfer actions as sequences of the previous elementary actions (this
is made possible by the previous elimination) and the formulation of new
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basic elements for the N-state language; this latter formulation can be guided
by the form of the derived descriptions in the rules of action.
In section 6 we have shown that the formulation of the M & c problem in a

production system is strongly equivalent to its formulation in a reduction
system (which is a theorem proving system). A rule in the system of produc-
tions directly corresponds to a move (or a rule of inference) in the reduction
system; the search trees are identical in the two systems. The reduction system
has the advantage of showing clearly the logic of the attainability relations, as
the search for solution evolves.
For each formulation of a problem in a system of productions it is always

possible to specify an equivalent formulation in a reduction system. At
worst, the search for solution in the reduction system will be identical with
the search in the production system. In some cases, where the rules of action
are context free, it is possible to specify stronger rules of inference in the
reduction system, and to obtain as a consequence searches for solution that
are faster than in a production system. A context free rule of action has the
property that a given subconfiguration of an N-state can go to a specified
subconfiguration of the next N-state regardless of the context of these sub-
configurations in their respective N-states. In the M & c problem, the rules of
action are strongly context dependent.
For example, no decision on the transfer of missionaries can be made

independently of a decision on the transfer of cannibals or on the position of
the boat. Thus, a reduction system cannot give an essential advantage in the

C problem. An example where a reduction approach has considerable
advantage for the solution of a problem that is formulated in a system of pro-
ductions is the syntactic analysis of context free languages (see Amarel, 1965).

After the language of descriptions of a problem in a system of productions
becomes reasonably efficient - as in the formulation F3 in them &c case-then
the main improvements in problem solving power come from the discovery
and exploitation of useful properties in the search space. An important pro-
perty of this type is the symmetry under time reversal that we have found in the
& c problem. This property enables us to cut the depth of search for solution

in N-state space by a factor of 2-a significant reduction, hence a significant
increase in problem solving efficiency. The symmetry property can be utilized
by thinking in terms of a combined development of the search both from the
initial N-state ahead in time, and from the terminal N-state back in time.
However, only the development from one side is actually carried out. As soon
as a search front reaches a point where there are linking possibilities between it
and its image, then the search stops and a solution is found. In the present
case, the formulation of the problem in a reduction system enables a clear
development of the logic of search.
The symmetry property is strongly suggested by observing search graphs of

the M & c problem (such as in figure 7.1) and also by examining the array
representation of the N-state space. To establish the symmetry property (in
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section 8) we have used reasoning that is based on properties of the expres-
sions for the rules of action. Again, such deductive reasoning is mechanizable
at present. The mechanization of the more difficult task of looking for sym-
metries of certain type, given appropriate representations of solutions is also
within sight. Given a newly discovered symmetry property, its utilization for
problem solving requires reasoning about the problem solving process at a
meta-level. This can be carried out with relative ease if the process is con-
sidered from the viewpoint of a reduction procedure and its logic interpretation.
In order to discover useful properties in the N-state space it is very impor-

tant to have 'appropriate' representations of that space. In the At &c problem,
the array representation (introduced in section 9) of N-state space has proved
extremely fruitful. People have found the solution of 14,484c problems much
easier when formulated as path finding in the array. Also, it is relatively easy
for people to discover the properties that lead to the definition of macro-
transitions. Is the ̀ appropriateness' of our array representation due solely to
certain properties of the perceptual and reasoning processes of humans?
Would this representation be as appropriate for (some) machine processes of
pattern discovery? These remain open questions at present. In general, the
problem of choosing a representation of N-state space, and of discovering
useful regularities of solution trajectories in this representation, require much
more study. Further exploration of these problems in the context of the ̀dance
floor' array representation of our ivt & c problem may provide interesting in-
sights into them.
The definition of macro-transitions enables the formulation of the Nt &

problem in an extremely powerful system of productions (formulation F6).
The size of the N-state space is drastically reduced and a solution is obtained
with practically no search, regardless of the size of the problem (sizes of
Populations to be transported and boat capacity). Macro-transitions act as
well-chosen lemmas in a mathematical system; they summarize knowledge
about the possibility of reaching certain critical intermediate points in the
search space from some other points. The new N-state space that is based on
macro-transitions is an abstraction of the previous N-state space. Only certain
critical points of the lower level space appear in the abstracted space. We can
reason in broad lines about the solution—and construct in the process a
macro-schedule—by trying to establish a path, made of macro-transitions,
that goes through some of these critical points. Once the macro-schedule is
built, it is straightforward to obtain a detailed schedule by compiling the
routines of action sequences that define the macro-transitions. The idea of
finding a small set of points in the search space that are necessary and suffi-
cient for the construction of the solution, is central in our last approach. In
discussing the importance of such an approach, Simon (1966) brings the
example of the simplex method in linear programming, where only the sub-
space made of the boundary points of the space of feasible points is searched
for a solution.
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The evolution of formulations of the NI &c problem from its verbal state-
ment to its last formulation in the abstracted subspace of the N-space is
accompanied by a continuous and sizable increase in problem solving effi-
ciency. This evolution demonstrates that the choice of appropriate representa-
tions is capable of having spectacular effects on problem solving efficiency.
The realization of this evolution of formulations requires solutions to the
following four types of problems:

(i) The choice of 'appropriate' basic elements and attributes for the
N-state language.

(ii) The choice of ̀appropriate' representations for rules of action and
for the N-state space.

(iii) The discovery of useful properties of the problem that permit a
reduction in size of the N-state space. Specifically, the discovery of a
redundant condition in the problem, the discovery of symmetry in
the problem space, and the discovery of critical points in the pro-
blem space that form a useful higher level subspace.

(iv) The utilization of new knowledge about problem properties in
formulating better problem solving procedures.

Given solutions to (i) and (ii), it is conceivable that the approach to the
solution of (iii) and (iv) is mechanizable—assuming good capabilities for
deductive processing. There is very little knowledge at present about possible
mechanizations of (i) and (ii). However, if experience in problems of type
(iii) and (iv) is gained, then at least the notions of ̀appropriateness' in (i)
and (ii) will become clearer.
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Descriptions

E. W. ElcoCk
Computer Research Group
University of Aberdeen

INTRODUCTION

This paper considers some aspects of the problem of describing a certain class
of objects as constructs formed from given primitive objects, and of recog-
nizing realizations of a described object in a given environment of primitive
objects.
My interest in this problem stems from work done in collaboration with

A. M. Murray on the design of programs which can acquire an increasing
capability to play board games as a result of the program's own analyses of
games which it has played and lost (see Elcock and Murray, 1967). The last
part of this paper relates the present work to this earlier work.
The simple formal language used for descriptions in what follows reflects

this interest in particular board games. The design of a more comprehensive
descriptive language (cf. Banerji, 1965) is an interesting problem, but will
not be pursued in the present paper. For reasons which it is part of the
function of the present paper to make clear, it is intended that such lan-
guage design, together with the further development of the ideas reported
here, will take place within the framework of an assertional programming
system of the general kind discussed by J. M. Foster in this volume.
The paper is in three parts. Part one introduces descriptions and considers

the recognition process. Part two comments on certain features of sequencing
in the recognition process. Part three briefly relates the presented view of
description and recognition to the earlier work of A. M. Murray and myself
on game-playing programs.

1. DESCRIPTIONS AND THE RECOGNITION PROCESS

As mentioned above, objects are to be regarded as constructs from primitive
objects and, for the reasons given above, it will be sufficient in what follows to
make the following definitions.

A description of a primitive object is a set of names.
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Example: the unordered pair of names (p,q).
The names p and q might be interpreted as names of points, and the

description that of a line with end-points p and q.

A description of an object D is a set of names D„ and a set of primitives
D,.

Example: D,,=(x,Y,z); Dv=((x,Y),(Y,z),(z,x)).
With the given interpretation of the primitive (p,q) the described object
has the interpretation 'triangle'. Degenerate triangles could be excluded
by adding to the description the explicit constraint x0y; yz; z0x.

In what follows it is a general constraint that no two names of a D„ are the
same, with the result that explicit constraints such as that discussed in the
example become unnecessary.
The notation {Dn:D,} will be used for a description of an object. The D,

may be regarded as predicating certain primitive relations over names from
the 'bound' set of names D.

A particular environment E is a set of names E„, and a set of primitives E.

Example: En=(a,b,c,d); E,=((a,b),(b,d),(d,c),(c,a),(b,c))
An interpretation of this E is given in figure 1.

An environment is formally just a description of an object. It is distinguished
simply because of the asymmetry of the kind of question we are going to ask,
namely:

Given a particular environment E and described objects D1, D2, . are
there any realizations of .13', D2,. . in E? Alternatively, can Di, D2, ... be
regarded as constituent sub-objects of E?

An interesting digression is to consider the problem of replacing a description

Figure 1
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by an equivalent 'simpler' description. Thus, using a reasonably self-explana-
tory notation: if we have the description

triangle (x,y,z) asserts (x,y) & (y,z) & (z,x),

and the description

environment(a,b,c,d) asserts (a,b) & (b,d) & (d,c) & (b,c),

how is the concept 'simpler' to be defined and, given an appropriate definition,
how do we recognize

environment (a,b,c,d) asserts triangle (a,b,c) & triangle (b,c,d)
as an equivalent 'simpler' description of the described object environment?
In a trivial sense, since we expect the statement of a description to allow

the construction of an algorithm for recognizing all realizations of the
described object in any given environment, the equivalence of descriptions is a
sub-problem of the equivalence of algorithms. Nevertheless, over a particular
universe of descriptions of interest, it may be possible to take advantage of
the nature of the descriptions to formulate a complete procedure for deter-
mining equivalence.

Returning to the problem of recognition of realizations of a described ob-
ject D in a given environment E: a search for a realization of D in E is taken
to be an attempt to identify, for each primitive of D„, the bound names re-
ferenced by the primitive with the names referenced by a primitive of ED, in
a way which preserves the uniqueness of names over the description set of
names D., and over the environment set of names E. Successful identifica-
tion of the complete set of primitives of D constitutes recognition of a parti-
cular realization of D in E.
For the D and E given in the examples above, an actual process of recogni-

tion can be described very informally as follows:

Start with the job 'realize D in E'.
We select a primitive from Dp,(x,y) say, and a primitive from E,(a,b)
say.
We identify the bound names x and y in (x,y) with the names a and b
in (a,b) and assert:

(1) ((x is a) & (y is b)) or ((xis b) & (y is a))

in the context of the unrealized residual description {(x,y,z):((y,z), (z,x))).
This identification results in the two partial realizations:

(z,a))},
D2={(b,a,z):((a,z), (z,b))},

and the end result of this stage is the set of jobs:

(realize D1 in E);
(realize D2 in E);
(realize D in E excluding the identification (x,y) in D, with (a,b) in Er).
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To carry on we select one of these jobs and repeat the process. Suppose we

select (realize D1 in E) and suppose we try identifying (b,z) in DI, with (c,d)

in E,. This would give rise to the assertions

((b is c) & (z is d)) or ((b is d) & (z is c))

both alternatives making two names in E„ the same and therefore terminating,

unsuccessfully, this particular branch of the recognition process.

On the other hand, the identification of (b,z) in D1, with (b,c) in E would

give
((b is b) & (z is c) or ((b is c) & (z is b)).

The second of these would terminate either for the reason that (z is b) makes

two names in the associated D. the same or because (b is c) makes two names

in E. the same.
The first alternative however succeeds and generates the partial realization

D3= {(a,b,c):(c,a)}

and the job (realize D3 in E) is added to the set of alternative jobs.

2. SOME COMMENTS

(i) There are clear links between this kind of recognition process and some of

the work of I.E. Sutherland and others in Computer Graphics. In particular

there are links between a description as formulated here and Sutherland's

concept of a constraint (see Sutherland, 1963). The essential difference would

seem to be that Sutherland applies constraints only to 'appropriate' objects

(e.g. the constraint 'square' to an object ((a,b),(b,c),(c,d,),(d,a))). Here one is

interested in an arbitrary given object and asks for all sub-objects in the given

object which meet the constraint (satisfy the description). Nevertheless, the

following two comments are as relevant to Sutherland's concept of applying a

constraint as to the present problem.

(ii) It should be clear that in the recognition process as described, the parti-

cular order in which jobs are selected from the current set of alternative jobs

is totally irrelevant to the end result.

(iii) The particular sequencing can be, and usually is very relevant to the num-

ber of partial realizations (alternative jobs) generated and hence to the total

amount of work done.
Thus, in the context of the E used above let

D={(wpx,Y,z):((w,x),(x,Y),(Y,z),(z,w)))

with the interpretation 'quadrilateral'.

If the recognition process begins by setting up the partial realizations

obtained by identifying ( w,x) with successive primitives from E,; and if the

next stage is to set up for each of these partial realizations the partial
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realizations obtained by identifying (y,z) with successive primitives from ED,
then a great deal of work is going to be done which could have been
avoided by a different sequencing.
In a situation like this one would like to be able to exploit the irrelevance of

sequencing to the end result, without necessarily incurring penalties of ineffi-
cient processing. In stating the problem one would like not to be concerned
with sequencing as a primary responsibility at all, but merely give the set of
assertions which constitute the description, the set which constitutes the en-
vironment, and a generator of the required set of assertions of the kind

((a,b) is (x,y))

( where is is used with the meaning 'can be identified with') to initiate the pro-
cess of recognition.
The selection of which assertion to consider next might be left partially or

entirely to the machinery which administers the assertional system by supply-
ing or not supplying hints in the form of either an invariant 'badness' asso-
ciated with particular assertions, or a dynamic 'badness' computable in the
context of the current state of the assertion machine. The 'badness' in general
would be a measure of the expected cost in time and space of considering the
assertion (cf. Burstall, in chapter 22 of this volume).
In his paper in this volume J. M. Foster discusses some aspects of a limited

assertional machine. It is our intention to develop these ideas further.

3. RELATION TO PREVIOUS WORK

The present work was done in parallel with that of J. M. Foster, and the pro-
gram which implements the recognition process of §1 is a special implementa-
tion which embodies only some of the ideas of assertional scheme. Neverthe-
less, even in this restricted form it has turned out to be of considerable
interest in relation to earlier work by A. M. Murray and myself on the design
of programs to play Go-Moku.
Go-Moku is one of a class of games which can be described as follows:

There is a set of points. Two players take turns to play at an unplayed point.
There is a set of n-tuples of points such that the first player to play at all
points of an n-tuple of the set wins.

Consider the trivial game O's and X's (Tic-Tac-Toe). The empty board can
be considered as a realization of the environment

E= (a,b,c,d,e,f,g,h,i):(a,b,c),(d,e,f),(g,h,i),(a,d,g),
(b,e,h),(c,f,i),(a,e,i),(c,e,g)

a diagram of eight lines each with three constituent points (figure 2).
Interpret 'own play' as meaning 'delete played point', and 'opponent's

play' as meaning 'delete all primitives of which the played point is a consti-
tuent'.
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• 

a

Figure 2

Suppose we have a description

D=(x,y,z):(x,y),(x,z)

of a class of critical board situations. Then, after own play e then f then h
then b, the environment is now

E= ((a,c,d,f,g):(g,i),(a ,d ,g),(c,g),(a,i))

and a request for realizations of D in E will produce all variants of winning
sequences of play starting with own play at the realization of x in a realization
of D in E (i.e. g or i).

O's and X's is not a very exciting game in itself. However, the recognition
and board updating machinery used above demand only an E and D's of
the general form discussed in §1.
To switch from manipulating particular line point diagrams to playing

O's and X's; cubic O's and X's; squares; hex; Go-Moku; indeed, any game of
the class stated only involves the trivial matter of setting up the requisite E
with the appropriate E, consisting of the set of point sets which constitute the
primitive winning patterns.
In papers published in earlier volumes of Machine Intelligence, A. M.

Murray and I have discussed methods by which descriptions of classes of
critical board situations could be automatically acquired by a game-playing
program as a result of its analyses by the program of games played and lost
by the program. This automatic acquisition of descriptions can also be made
to depend only on the particular structure of D's and E's discussed here.
The description and recognition machinery presented in this paper, together

with earlier work, therefore provide the ingredients for the design of a single
program which can in effect accept a definition of any game in the class of
game mentioned at the beginning of this section, and which can acquire the
ability to play the game as well as it can be taught to play.
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Kalah on Atlas

A. G. Bell
Atlas Computer Laboratory
Chilton, Berkshire

I INTRODUCTION

This is a report on work done with the S.R.C. Atlas Computer at Chilton. The
original intention was to demonstrate the on-line typewriter to visitors via a
simple system which reacted to the user, in this case by refusing to be beaten
twice in the same way at the game of Kalah.
The mechanism to achieve this is a memory, built up from information

obtained in previous games, which is stored on magnetic tape. The program
was designed to keep the size of this memory to small proportions by imple-
menting two mechanisms the author believes to be commonly used by hu-
mans when solving problems. The two mechanisms are:

1. ignoring irrelevant information in the sense that, although it exists,
it is highly probable that its precise structure or properties cannot
alter the relevant information or characteristics of the problem being
considered, and

2. accepting positions close to a solution or win, providing the opponent
is further from a win.

Some of the difficulties of testing these ideas in practice are discussed and
suggestions are made on how to overcome them, in particular with the game of
solo whist.

II KALAH— THE RULES OF THE GAME

Kalah is an extremely ancient game, said to have originated in the Middle
East. All that is required to play are 14 holes scooped in sand and the requisite
number of pebbles. These pebbles need no distinguishing marks because it is
the position of a pebble, or counter, rather than any intrinsic property, which
denotes its possible move and ownership.
The more modern board and version of the game is given in figure 1.

Each player controls a row of round pits on his side and the capsule-shaped
bowl at his right called his kalah. The object of the game is to get the larger
number of counters (playing pieces) in one's own kalah.
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Figure 1

The number of counters used depends upon the time available and age of
the players. For a short game and youthful players three counters are placed
in each pit as shown. Six in a pit is generally agreed to make the most interest-
ing game.

Players alternate in moving. Each player empties any one of his pits deemed
advantageous, and, leaving it empty, distributes one counter into each pit,
moving in an anti-clockwise direction. If there are enough counters to reach
beyond his own kalah they are distributed one by one into the pits on the
opposite side and then belong to the other player. The only place ever skipped
is the opponent's kalah. Once in a kalah, the counters remain there until the
end of the game.
The method of play, by distributing stepwise to the right, is subject to two

simple rules:
1. If the last counter lands in your own kalah, you have another turn.
By planning to have the right number of counters in two or more
pits it is possible to have several turns in succession.

2. If the last counter lands in an empty pit on your own side opposite a
non-empty opponent's pit, you capture all the counters in that pit,
and place them, together with the one making the capture, in your
own kalah. A capture ends your turn.

In reaching an empty pit on your own side, it makes no difference whether you
have moved a single counter one space, or distributed all around the board
and back to your own side. Indeed, if a pit contains 13 counters it is guaran-
teed to capture because the last piece goes back into the pit just vacated and
the opposite pit must contain at least one piece.

The game ends when all the pits on one side are empty. The first player out
usually loses because he receives none of the counters left in pits on the other
side. They go into the kalah on the side of the player who has been able to
save them. A good player will force the other to distribute and play out. On
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the other hand, it is difficult to hold on to a lot of counters against a skilful
player who tries to force their distribution.

III ILLUSTRATIVE GAME

This game was actually played against the program. The program is playing
the top row and the author the bottom row (see figure 2).
The notation of the moves is as follows. The pits on the machine's side of

the board are numbered Ml to m6 and on the player's side P1 to P6 (see
figure 2.1). The pit chosen to be emptied is italicized and identified in the
right hand column, and when a capture occurs the pit emptied is denoted in
brackets.
A brief commentary on the game follows: •
1. The author's opening move is the one claimed by Russell (1964) to

be the best.
2. The program has 10 possible replies but has already rejected one

from experience; this is its second attempt.
3. Unfortunately the author does not know how to stay in a winning

position because this move, analysed later, is a loser.
4. The program takes full advantage of the position, i.e. capturing by

emptying m6 in 4.5, otherwise it will lose.
5. The author threatens to capture m5.
6. The program therefore empties it and in return threatens to capture

P5 for a crushing win. It has also calculated that it has a good chance
to win or draw from this position irrespective of opponents play.

7. Pathetic.
8. The program continues on its winning course.
9. Resigns.

IV STRUCTURE OF THE PROGRAM

The program has, basically, 4 mechanisms. They are:
1. List legal moves.
2. Mini-maxing with simple evaluation.
3. Memory plus back-tracking to speed up accumulation of information.
4. Compression mechanisms to curtail size of accumulated information

in memory.

IV.1 List legal moves

Because of the simplicity of the rules, the routine produced to calculate all
the possible legal moves from a given position comprises about 100 Atlas
Basic Instructions and runs extremely fast. This is an important property of
the program because this routine is used a great deal in the look-ahead and
back-track analysis, especially in the opening moves where it is unlikely to
recognize any of the positions.
The program does not print its own continuation positions because they
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ml m2 m3 m4 m5 m6

1

MKO

3 3 3 3 3 3

3 3 3 3 3 3

P6 P5 P4 P3 P2 P1

OPK P2

3 3 3 3 3 4

0 1 MI

3 3 3 3 0 4

0 3 3 3 3 4

1 1 PI?
4 4 3 3 0 4

4.1 0 3 3 4 4 5

1 2

4 4 3 3 0

continuation

0

4.2 1 4 0 4 4 5

2 2 ml
4 4 3 3 0

continuation

0

4.3 0 4 0 4 4 5

3 2 m4

4 4 3 3 0

continuation

0

4.4 1 5 1 0 4 5 ml

4 2

4 4 3 3 0

continuation

0

4.5 0 5 1 0 4 5

5 2 m6

(4)4 3 3 0 0 c(p6)

0 6 2 1 5 0

5.1 10 2 i3

0 4 3 3 0

continuation

0

0 6 2 1 5 0

5.2 10 3 P1

0 4 3 0 1 1

continuation

5.3 0 6 2 1 5 0

10 4

0 4 3 0 1 0

Figure 2

6.1 0 6 2 1 5 0
10 4 m5

0 4 0 1 2

continuation

1

6.2 1 7 3 2 0 0 ml
11 4

0 4 0 1 2

continuation

1

6.3 0 7 3 2 0 0 m2
12 4 (claims

0 4 0 1 2 1 win or

draw)

7.1 1 0 3 2 0 0
13 4 Pl

1 5 1 2 3

continuation

1

7.2 1 0 3 2 0 0
13 5

1 5 1 2 3

continuation

0

1 0 3 2 0 0
7.3 13 6

1 0 2 3 4 1
1 0 3 2 0 0

8.1 13 6 ml
0 1 2 3 4

continuation

1

0 0 3 2 0 0
8.2 14 6 m3

0 1 2 3 4

continuation

1

1 1 0 2 0 0

8.3 15 6 ml
0 1 2 3 4

continuation

1

0 1 0 2 0 0
8.4 16 6

0 1 2 3 4 1
1 0 0 2 0 0

16 6 resigns
0 1 2 3 4 1
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cannot be evaluated. When the last piece does land in its own kalah it buffers
that position and starts from scratch with the next pit. Then, having investi-
gated all the initial moves from the six pits, it recalls the continuation positions
and either exhausts them or produces more continuation moves which go
back into the buffer which is, in effect, a first in—last out stack. The result of
this is that positions which are reached through many continuation moves
will be the first to be investigated by the mini-max routine, and the cut off
facility, in conjunction with the simple evaluation of position, (described in
Section v.2) should be enhanced.

IV•2 Mini-maxing with simple evaluation

Mini-maxing is a standard tool for playing full information games on machines.
A good description of this tool is given by Michie (1966). In brief, the kalah
routine looks 1 moves ( or 3 plys) ahead by generating all the positions that
can exist in that number of moves and ear-marks those positions it calculates
to be to its own best advantage. However, as the opponent is assumed to
evaluate positions in the same way and also has at least one intervening move,
some of the positions are discarded as unattainable.
In order to prevent the evaluation of every position produced a simple cut

off mechanism is incorporated. Consider figure 3. The routine takes the highest

Figure 3. Positions are evaluated at PLY 3

PLY 0

PLY 1

PLY 2

PLY 3

value of the groups (in level 3) which are connected to the nodes in the second
row, i.e. it maximizes. The highest of the left hand group of (6, 1) is 6 and
this has been entered via the arrow. On investigation of the second group the
routine finds that the first value it obtains (i.e. 7) is greater than the lowest
value on level 2 (i.e. 6), and therefore can ignore all the remaining positions.
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This mechanism works at any level, but the test of greater than or less than

depends on whether the routine is at a maximizing level or a minimizing level.

The simple function chosen to evaluate positions at the 3rd level is to

maximize (Mk) — (Pk), i.e. to get more counters in the machine's kalah than
the opponent can get in his own or, failing that, to keep the difference as low

as possible. Actually this is a rather bad motivation because good players

utilize a waiting game and the memory will have to over-ride some of the

moves chosen eventually. Another weak feature of the program is that it will
always accept the first victory it calculates or recalls. Therefore, the first move

which will guarantee to obtain 19 counters in its own kalah is the one it will
take and, indeed, is quite reasonable. Unfortunately, as its memory builds up,
it tends to assess moves much earlier in the game and, instead of a brilliant,
immediately crushing move, it will take the longest, dreariest path during
which, as will be seen, the opponent has the chance to destroy the machine's
illusion of being in an absolute winning position.

IV.3 Memory plus back track analysis

The information stored in the memory is a description of positions encoun-
tered which have a definite outcome, i.e. they are winning or losing positions.
Before the first game the memory is empty and the moves chosen come en-
tirely from the simple evaluation function with mini-maxing. Eventually the
program realizes that it will either win or lose in the next 11 moves. If it wins
it only records its present position and tags it as a winner, i.e. a good position
to try for, if given the chance, in a later game. If, however, it loses, it attempts
(a) to find out why, and
(b) to build up its store of winning/losing positions.

Both these aims are attempted by back-track analysis. This is simply a short
investigation of the region of the game tree in which the program finds itself.
The argument is that, now it has eliminated a previously chosen move because
it inevitably lost, it can consider more deeply the alternatives to that move and
possibly even find a win. Also, by looking at positions closely related to its
losing position, more winning/losing positions should be produced which are

worth storing. By recording the course of the game the program can return to

the position one move before it inevitably lost and can assess that losing

position from its memory. Hence it will choose differently. A count is set to

evaluate 100 nodes in that region of the game tree, and, whenever all the nodes

have been evaluated at the lower level, the previous position played in the

actual game is recalled and the back-track analysis continues. This results in

the program, having terminated this activity, never playing the same game

twice and also being unpredictable at what point in the game it will diverge

from its previous play. This rote learning with associated back-up scores is

well described by Samuel (1960). Figure 4 shows clearly that once the node

C) has been evaluated and the same board position is found in a later game,

then its score has, in effect, already been backed up by 3 levels, and if it
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Figure 4. W is a winning position, hence x is recorded in the memory as a winner
and the machine will prevent the opponent having it

becomes effective in determining the move to be made, it is a 6 ply (i.e. 3 move)
score rather than a simple 3 ply (i.e. 1 move) score.
The method by which positions in the memory are matched against posi-

tions in actual play is by a simple table look up. The initial method chosen
was by hashing (see Hopgood, 1966) or forming a computed entry on the
contents of the two kalahs. This method was discarded because the precise
contents of the opponent's kalah is, quite often, irrelevant as will be shown
later. The simpler table look up method was therefore used. To understand
the layout of the memory requires an explanation of the author's original aim.
This was that if the program was given the opening move in 3-in-a-pit kalah,
it would be unbeatable, i.e. knowing that (according to Russell) position 1 in
the illustrative game (figure 2) is the winning opening, all the program has to
learn is why each of the ten possible replies fails. The point is that the memory
is designed to record positions of 3-in-a-pit kalah and although it will play
the higher order games, it does not record them but plays using only the
evaluation function.
When a winning or losing position is discovered the program compacts it,

marking it as a winner or loser, and then multiplies the contents of its own
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kalah by 26. This then points into a table of 1280 entries (a cut off is made if

Mk >20). It still entails a linear scan to be made but the entry could be im-

proved by using the contents of the first one or two pits next to the kalah and

hashing them.
Positions are stored, then, in the manner described and when the program

is considering other positions it similarly compacts them, calculates the entry

point into the table, and compares the position with those in the memory

which have the same kalah contents, ensuring that all the pits' contents also

agree. If a position is recognized, then the program will either accept it if it is a

winner or reject it if it is a loser. The memory is split into ten parts each with

1280 entries and the program checks which of the ten replies the player has

chosen and, in order to confine the game, reads that part of the total memory

down. This, incidentally, is not a good thing to do, as the author attempts to

explain later, nor is it wise to assume that 1280 entries is sufficient to hold

the required information. These features are described because, once imple-

mented and the program discovered that one of the ten replies was a loser,

the aim of the project developed from playing an unbeatable game of kalah to

studying ideas and techniques which may be applicable to a range of problems.

IV.4 Memory compression mechanisms

In the introduction, two memory compression mechanisms are mentioned. It

is worth adding that the simple evaluation of position function mentioned in

section IV.2 also restricts the size of the memory in the sense that there are

positions from which the machine could choose many moves which still

guarantee a win. The evaluation function tends to take the shortest route and

hence many plodding paths and positions to a win are ignored. However, the

two mechanisms considered by the author to be more akin to the way humans

treat games of this type are called characteristics and parameters.

Characteristics. Consider figure 5.1. The machine is playing the top row and is

presented with this position which is a winner (figure 5.2) via the moves Ml

(continue) m2 (continue) Ml. The machine will therefore store this position

as a winner but it does not need to store the contents of every pit because it is

immaterial to the winning sequence what the other pits contain (they may

contain any legal permutation of the remaining counters in the pits which have

not changed their contents). Similarly in figure 5.4 the winning sequence of

moves is m6—m1 —m3 —ml —m2—m 1 —m4 (capture). The quick way to extract

the required information is by non-equivalencing the compressed position

before the winning move with the compressed position after the winning

move. Non-equivalencing two equal values gives the answer zero; two dissimi-

lar values give a non-zero answer. Thus, non-equivalencing figures 5.1 and

5.2 gives the answer in figure 5.3 of which pits are relevant or characteristic of

the win. These are Ml and m2 plus the kalah (which must have a minimum

value of 16).
Unfortunately this is not sufficient in every case, for if this operation is
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1 2 0 0 0 0
5.1 16 16

1 0 0 0 0 0

0 0 0 0 0 0
5.2 19 16

1 0 0 0 0 0

1 2 x x x x
5.3 16 x

x x x x x x

0 0 2 0 0 6
5.4 7 16

0 0 5 0 0 0

0 0 0 0 1 0
5.5 19 16

0 0 0 0 0 0

x x 2 x 0 6
5.6 7 x

x x 5 x x x

0 0 2 0 0 6
5.7 7 x

x x 5 x x x

Figure 5
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carried out on figures 5.4 and 5.5 then the result shown in figure 5.6 is in-
correct, i.e. 6 counters in m6, 0 in m5, 2 in m3, a minimum value of 7 in the
kalah and at least 5 counters in the pit opposite m3. The following additional
statement must therefore be included: 'Any pit to the right of an altered pit
on my side may also be relevant to the winning position and consequently must
be stored'. This results in the position given in figure 5.7.
The extraction of relevant features always guarantees that the contents of

at least 5 of the opponent's pits plus his kalah will be ignored plus the fact
that, at the most, two pits can be assigned minimum values for their contents.
The author emphasizes that this extraction mechanism is heavily depen-

dent on the features of the game of kalah. In a more general framework one
should consider removing pieces from the board until it can be shown that
their presence is essential to the win.
Parameters. The second mechanism, called parameters, is a misnomer, but the
principle involved is simple. It is akin to the queen being captured in chess
for no loss, i.e. one of the players gets so far ahead in the game that the oppo-
nent will retire before reaching an actual losing position.
The program records all the previous positions in a game. When it wins or

loses, it scans the contents of each kalah in all the previous moves, and places

Mk

19 18

18 18

17 9

16 4

15 2

14 2

13 1

12 1

11 0

10 0

Figure 6. Relative values of kalahs for pseudo winning-losing positions (rounded
to nearest integer)
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a 90 per cent bias on the results. An example (using an actual value achieved
by the program) is that if the program can obtain 17 counters in its kalah and
its opponent has only 9, then 90 per cent of the time (or better) the game has
been won from that kalah's relation. We define the relation to be nearly as
good as a win, and it will therefore be stored in the memory. The actual
relative values produced in the machine are given in figure 6. Due to an error
in the program, it classes draws to be as good as wins, but to correct this
delusion would entail altering the program and destroying the memory already
accumulated. This mechanism does not conflict with the characteristics mecha-
nism and it reduces the size of the tree to be searched. We again note that the
content of the opponent's kalah is still not relevant information to be stored
in the memory. The position given in figure 7 has good prospects providing the

1 2 0 0 1 0
13 4

6 4 2 0 2 1
Figure 7

opponent has 4 or less counters in his own kalah; otherwise it is assessed by
the evaluation function. In the example given, the program would accept the
position at either of its maximizing levels as equivalent to a win despite the fact
that the opponent has an intervening move (even if the position is reached)
before the certain end of the game. In fact, the example is ̀ cooked' and the
Opponent has a crushing set of 15 continuation moves to a certain win. This
will modify the program's opinion that 16 against 4 is a successful ratio.

It is now obvious that the decision to split the memory into ten parts is a
bad thing, for the program has already stored positions which will be useful
when it comes to play the other replies. One solution to this problem is to tell
the program the correct moves for the opening game, to let the evaluation
function play the middle game, and to rely on the characteristics/parameters
memory to play the end game.

V RESULTS

In reply to the best opening move for 3-in-a-pit kalah (figure 2.1), the program
initially chose the position shown in figure 8, i.e. /4.13—m2. The total number

5 0 0 3 3 4
2 1

4 4 3 3 0 4
Figure 8

of possible positions which can be reached from this configuration is over
2000. With the feeble goal of the evaluation function, many of the paths can
be ignored because the program tends to stay on the path to the quickest win.
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The memory generated without characteristics or parameters numbered just
over 400 positions in order to prove that this reply will inevitably lose. To

build up this memory quickly entailed the author playing the program, beating

it, checking how much of the game had been analysed by the back-track analy-

sis, and then playing the program through moves it had still not analysed.

Thus the program learnt quickly and this procedure could be used off-line.

When the characteristics mechanism was added the memory was only
reduced to about 300 entries. This seems disappointing until it is remem-

bered that the positions being recorded will be useful when replies to other
opening moves are studied — that is, the program is, to a certain extent,
analysing the end game of kalah.

Finally, when the parameters have been calculated, the memory drops to
about 150 entries but the program becomes more likely to claim a win, and

then to lose. Surprisingly, people seem to enjoy this aspect of the program

because if it thinks it will win, it says so, and, if a good waiting game is then
played, the program can lose badly.
Having found that the position in figure 8 is a losing response the program

next chose the position in figure 2.2 (the illustrative game) and trouble was
encountered because the author did not know the correct response to this
move. Consequently the memory began to build up to the danger point of

the program believing that 9 times out of 10 it will win from this position
which, of course, affects the way it plays that part of the game it has already
solved. The unfortunate state of affairs has now been reached where the pro-
gram, having learnt to play against a good opponent, now begins to deterio-

rate against a bad opponent. In fact, in demonstrations to visitors, the memory
built up is not retained because the program can and does win from appallingly

bad positions which may change the parameters drastically.

VI OTHER GAMES

The work described in this paper would seem to be applicable to other games,

in particular that of solo whist. This card game is suitable because, quite

often, many of the cards held by each of the four players are relatively unim-

portant and it would appear that the compression mechanisms may be

effective in this game (which differs markedly from kalah in that it is not a full

information game). Another advantage of teaching a program to call and

play solo whist is that it is easy to write a program to defend calls or contracts

by giving full information to the program which defends the contract, i.e.

the program knows where the voids are, knows the boss cards and if a finesse

is worth while, etc. The trick is to have the program which has to learn the

game play against this simple but powerful game teacher. This should save a

great deal of time involved in humans having to play the program, or inspect

its memory, in order to teach it what configurations of cards are worth calling

contracts on and in what order to play the cards. This project has been

started.
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Experiments with a Pleasure-seeking •
Automaton

J. E. Doran
Department of Machine Intelligence and Perception
University of Edinburgh

INTRODUCTION

Attempts to write 'intelligent' computer programs have commonly involved
the choice for attack of some particular aspect of intelligent behaviour,
together with the choice of some relevant task, or range of tasks, which the
program must perform. The emphasis is sometimes on the generality of the
program's ability, sometimes on the importance of the particular task which
it can perform. Well-known examples of such programs are Newell, Shaw,
and Simon's General Problem Solver (1959; see also Ernst and Newell,
1967), which is applicable to a wide range of simple problems, Samuel's
checker (draughts) playing program (1959, 1967), and the program written
by Evans (1964), which solves geometric analogy problems.
However, there is another approach to the goal of machine intelligence

which stresses the relationship of an organism to its environment and which
sets out from the start to understand what is involved in this relationship.
Long ago Grey Walter (1953) experimented with mechanical 'tortoises'

which could range over the floor in a lifelike manner. Toda (1962), in a
whimsical and illuminating paper, has discussed the problems facing an
automaton in a simple artificial environment. Friedman (1967), a psycholo-
gist, has described a computer simulation of instinctive behaviour involving
an automaton equipped with sensory and motor systems. Andreae and Gaines
(Andreae, 1964), in their STELLA project, have considered the design of an
automaton faced with general control tasks. Sandewall (1967) has gone deeply
into an automaton/environment relationship with a rather more formal
approach. This list is far from complete. In particular, robots of various kinds
are under construction at a number of research centres, notably at the Stanford
Research Institute (Nilsson and Raphael, 1967).
The reader may find it helpful to meditate on the situation of, say, a rat in a

cage, as seen by the rat. I hope the reader will agree that the animal perceives
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its rather simple environment in a variety of ways, that it remembers, learns,
predicts, and acts towards goals which ultimately derive from basic necessities
such as food, sleep, and the avoidance of pain. Can one write a computer
program which, however primitively, simulates the rat and its surroundings

and which demonstrates the simulated rat displaying such rudimentary
intelligence as it is reasonable to require?
In attempting to write such programs I suggest that the ultimate objective is

a classification of possible environments for the automaton (e.g. the simu-
lated rat) from the standpoint of the automaton, together with an optimal
automaton design in some non-trivial and useful sense for each class of en-
vironment. The approach described in this paper involves setting up a fairly
'natural', if simple, environment in the hope that the automaton design ulti-
mately achieved by a combination of insight and trial and error experimenta-
tion will not only perform well in that environment, but will also display
acceptable marks of intelligence.

THE AUTOMATON AND ITS ENVIRONMENT

I shall now try to specify a little more precisely the various concepts at issue,
with the objective of constructing a helpful frame of reference. First of all I
wish to distinguish three things:
(a) the running computer program, together with associated data, which

mimics, however primitively, a portion of the real world. At this
level the automaton is only arbitrarily distinguished from its environ-
ment;

(b) the 'objective' view of the automaton in its environment. This
corresponds to looking at a rat in a cage from outside the cage, and
implies a separate observer and viewpoint. I shall refer to the
automaton's objective environment, that is, its surroundings as we
see them;

(c) the environment as perceived by the automaton, corresponding to
the rat's perception of its surroundings. This paper is primarily
concerned with the automaton's efforts to understand and control

this subjective environment. The reader must bear this last
distinction in mind throughout.

The subjective environment involves a sequence of (subjective environment)

states, each of which is the total possible perception by the automaton at any
instant. There is a (subjective environment) transition rule, unknown to the
automaton, which gives the next state in the sequence, given the history of

the system including the automaton's actions. This rule will often be con-
veniently expressed in terms of the objective environment. Each of the actions

available to the automaton may be applied at any time. They are distinguish-

able but otherwise unstructured. The following points are important.

1. 'time' means time as measured by a clock within the running program

((a) above);
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2. the use of a sequence of states is a convenient approximation to one
continuously varying state;

3. states will typically be very complex including (from the viewpoint
(b) above) perceptions of the automaton's own internal functioning;

4. the actions will in general enable the automaton to achieve some
measure of control over its future.

To motivate the automaton we associate with a state some idea of its desirabi-
lity. Suppose that certain variables appearing in the state have bounds within
which their values should lie. The desirability of a state then refers to the extent
to which these constraints are met. The automaton must act so as to maximize
the desirability of the states it encounters. If the desirability may be repre-
sented by an integer, then the automaton's motivation may be made more

precise, if a little artificial, by assigning to it a fixed, known, lifetime and
requiring it to maximize the mean desirability of its states over that lifetime.
Notice that the desirability function cannot be varied by the automaton.
The automaton performs information processing operations needed to

decide which actions to select and when. It is natural to suppose that process-
ing proceeds at a finite speed (program time), and that information storage
capacity is limited. These constraints form part of the design problem. The
rate of processing achieved by the automaton relative to the rate of change of
its subjective environment and to the lifetime available to it is very important.
The design of the automaton must take into account the anticipated pro-

perties of its subjective environment. The reader may find it illuminating to
imagine himself (the automaton) before a screen on which is displayed a
complex pattern which changes from time to time (sequence of states). He has
access to a row of buttons (actions) any of which he can press at any time,
and he has a given scale of preference for the patterns which occur. He has a
limited supply of pencil and paper. His task is so to press buttons that over a
given period of time the preference level is kept as high as possible. Naturally
the reader's strategy will vary according to the information he is given re-
lating button-pressing to the patterns displayed.
I shall now take as an example a particularly simple, if artificial, class of

subjective environments which will serve to introduce some further concepts.

SUBJECTIVE ENVIRONMENT GRAPHS

Let the reader again imagine himself before the screen introduced in the last
section, but now given the following additional information:

1. that no information is contained in any similarity between patterns
shown. That is, patterns may only usefully be said to be identical or
non-identical;

2. that the pattern displayed changes only when a button is pressed;
3. that the effect of pressing a particular button when a particular pattern

is displayed is always the same, and that the effect is always immediate.
The reader may care to consider the strategy he would adopt.
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Figure 1. An environment graph—one way of specifying a simple subjective environ-
ment transition rule. The nodes correspond to states, the labelled arcs to action
transitions, and the figures give the corresponding desirabilities

Figure 1 represents this situation in abstract form. The transitions of the
subjective environment are described by a graph with 'labelled' arcs, the
nodes of the graph representing states, and the arcs with a particular label
representing the consequences of a particular action. Thus if the automaton
is 'at' state D of figure 1, and applies the action a, then it immediately finds
itself 'at' state C. The figures give the desirability of each state. How can the
automaton be designed so that it performs well in any subjective environment
of this type, without it ever knowing which particular graph it is faced with?
At any instant the automaton will be in some state, and we may assume

that its history is accessible. Thus it might have stored that its history is as
shown in figure 2 (a). If so we can now distinguish three relevant graphs.
These are:

1. the subjective environment graph (figure 1),
2. the stored graph which is that portion of the subjective environment

graph which the automaton has stored in its memory as a result of
its experience (figure 2 (b)), and

3. the option graph which is that fragment of the stored graph which
the automaton 'knows' how to reach (figure 2(c)).

The automaton has, I suggest, a broad choice between exploration and exploi-
tation. Thus it can either decide to 'move' to some state in its option graph,
and once there try out a new action, or it can select some suitably desirable
state in its option graph, move to it, and do no more. In the first case the
goal might be B and the plan /3 a p, and in the second the goal might be c and
the plan p*. Which of these two types of plan the automaton should adopt
will depend upon (1) the expected mean desirability to be achieved by
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a (3 a
A D ---> C --> C ----> B D -->

(7) (12) (27) (27) (14) (12)

(a)

(7) (12) (27) (14)

(b)

p 0 
D 

a
C B

(12) (27) (14)

(c)

Figure 2. A transition history based on the graph of figure 1, together with the
corresponding stored and option graphs (see text)

history

stored graph

option graph.

exploration at the best exploration goal, and (2) the desirability of the best
exploitation goal.
The reader should note that I am using the word 'plan' to refer to a situa-

tion where a course of action is determined upon in advance, and then
carried through without further 'thought'. For this class of subjective en-
vironments at least, there is clearly no point in reconsidering a plan part way
through its implementation.
An important complication is introduced by the time that the automaton

must take to select a plan, which has the consequence that the selection pro-
cess will involve a succession of steadily more promising plans (of either
type) until the time cost of further improvement tilts the balance in favour of
actual implementation of the current best plan. The time cost of decision
making is more pressing the lower the desirability of the current state.

After an exploratory action the automaton may either be forced to explore
again, since it has encountered a quite new state, or it may find itself at a
state it recognizes when there will be a non-trivial option graph and therefore
an opportunity for further plan formation.
In practice, heuristics will be needed at many points in the automaton

design. The difficulty of finding optimal decision strategies taking into account
the time and storage constraints is far too great for precise solution. Whenever
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there is a choice between a small benefit immediately and a possibly large
benefit in the future, then a plausible heuristic will probably be needed.
The difficulties which arise as soon as more interesting subjective environ-

ments are considered are best introduced in a more concrete context. I shall
therefore now describe the present computer program which involves a
subjective environment with complex states, and with a more complicated
transition rule. For a more extensive general discussion the reader is referred
to Doran (1967, 1967a).

THE POP-2 PROGRAM: OBJECTIVE AND SUBJECTIVE
ENVIRONMENTS

The program now to be described is written in the list processing language
Pop-2 (see the paper by R. J.Popplestone in this volume) which has been
developed at the Department of Machine Intelligence and Perception of the
University of Edinburgh. The language is implemented on an Elliott 4100
computing system and is oriented towards machine intelligence work.
The reader may find his understanding of this program and its behaviour

aided if he keeps in mind the following analogy. A small boy lives at the
busy centre of a large city. One day he is taken to a quiet suburb where he has
never been before, and left to find his own way home. We suppose that he is
too shy to ask someone the way and that he does not think of buying a map.
He therefore starts walking, always preferring streets or districts where there
is traffic and bustle, the more the better, since he remembers that he lives in a
very busy place. Sometimes he realizes that he has walked in a circle, and then
he sets off in some new direction from the busiest point he remembers how to
reach. Ultimately, we suppose, he arrives home after a very long walk. Sup-
pose that he is now taken back to the remote suburb and left there a second
time. Now he should return home in less time and by a much more direct
route, for he has the memory of his previous trek to guide him and therefore,
for example, can plan ahead to some extent.

This small boy is very much in the situation of the simulated automaton
now to be introduced. The automaton's surroundings, which I shall describe
first, correspond to the city in the foregoing analogy.
The objective environment or 'enclosure' provided for the automaton con-

sists of a square area (10 units x 10 units) with boundary and interior walls.
Figure 3, which is an example of program output, shows this enclosure. The
walls are not uniform but are 'formed' of letters of the alphabet. The automa-
ton is represented by an asterisk and has location, and orientation to the top,
left, right, or bottom of the picture. The automaton's co-ordinates are always
integral. Note that 'objective' output is preceded by a double set of asterisks,
'subjective' by a single set.
The actions available to the automaton are the following:
(a) STEP-t0 move forwards into the next unit square. .
(b) LEFT-t0 turn through a right angle to its left.
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*** SAMPLE IS [ C 1 STAND 40 1138 ]**• I KNOW THIS
*** I HAVE A PLAN
*** STEP
*** *** TIME 1378 x4 Y2 FACING TOP

CCCCCCCCCC
E * a
E DDD B
E HHD B
E Ii HHHAG
E 11 IIHIlliG
E Ii G
E 13 G
E G
FFFFFFFFFF

*** SAMPLE IS [ CO STEP 41 1379 ]
*** FORSEEN
*** RIGHT
*** *** TIME 1398 x4 Y2 FACING RIGHT

CCCCCCCCCC
E * B
E DDD B
E HHD B
E II HHHAG
E Ii HHHHG
E 13 G
E Ii 0
E 0
FEFFEFFEFF

*** SAMPLE IS [ a 5 RIGHT 39 1399 ]*** FORSEEN
*** EXPLORE
*** STEP
*** *** TIME 1425 x5 Y2 FACING RIGHT

CCCCCCCCCC
E * 

B
E DDD B
E HHD B
E IS HHHAG
E IS HHHHG
E 13 0
E 13 0
E 0
FFFFFFFFFF

Figure 3. Sample output from the automaton/environment program showing theobjective environment, typical subjective state vectors, and the automaton's 'chatty'remarks
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(c) RIGHT—to turn through a right angle to its right.
(d) STAND—t0 remain still.

If STEP is impossible since the automaton is against a wall, then STEP has the
effect of STAND. Selecting the action STAND must not be confused with select-

ing no action at all.
Note that the automaton knows nothing of the effect of these actions except

what it learns through experience.
The automaton's subjective environment state is a 5-vector of the following

form:

[ ( wall >, < distance >, (last action >, < desirability >, ( time > ]

Examples of state vectors appear in figure 3 after the words 'SAMPLE Is'. The
first shown is

[C 1 STAND 40 1138]

and this implies that the automaton is facing the c wall, that there is one
empty square between it and the wall, that its last action was STAND, that the
desirability of the current state is 40, and that the system time is 1138.
Note that the automaton's view of its surroundings is very restricted. It

can see only which 'letter' is in front of it, and how far away it is. Thus the
subjective environment is very different from the objective environment. Let
us call the first two elements of the state vector the reduced state (Cl in the
above example). This reduced state is the unit used by the automaton in its
processing. Now a given reduced state does not uniquely specify the automa-
ton's true location, and this turns out to be both a source of confusion and of
assistance to the automaton. Confusion occurs because the subjective en-
vironment may not react in the future as it has in the past, assistance because
the automaton may react correctly in quite new situations because from its
point of view they are not new but are identical to previously experienced
situations.
Two further points need comment. First, the appearance of the automaton's

last action in the state vector means that the automaton remembers past
actions in much the same way as it remembers other information. Second, the
desirability is included as a direct perception in this program for simplicity.
It is calculated as a simple numerical function of the reduced state, namely:

50—(DISTANCE+3*WALL)

where WALL is 1 in the case of A, 2 in the case of 13, and so on. The desirability
is maximized when the automaton is facing and against the letter A, and we
may then say that the automaton is in its 'nest'. There are local maxima
elsewhere.
The automaton is typically placed at some point in its enclosure and ex-

pected to find its way to the nest and remain there. If moved out of the nest it
should quickly return. More generally, it should always behave 'sensibly'.
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Simple program facilities are provided which permit the automaton to be
moved about, guided, and reset to some point in its history by an 'on-line'

experimenter.

THE POP-2 PROGRAM: ORGANISATION OF THE
AUTOMATON

Figure 4 shows a skeleton flow chart for the automaton. The cycle is as follows.
The automaton first reads a state vector (SAMPLE), and stores in its memory

EXPLORE

ACT

SAMPLE

STORE

FIN DACT

1
DOPLAN MAKEPLAN

Figure 4. Outline flow-chart of the automaton

SLEEP

the last state vector transition (sToRE). It then enters FINDA cr and decides
which of the following alternatives is appropriate:
EXPLORE—select randomly an action never before tried at this reduced state.

MAKEPLAN—Carry out a lookahead and form a plan.
DOPLAN— select the next action of the current plan or go to EXPLORE

MAKEPLAN or SLEEP if this is indicated by the current plan.
SLEEP—stop.
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In ACT the automaton actually implements an action, and the state vector and
objective environment change appropriately before the automaton again goes

to SAMPLE.

Sufficient has been said about the action Of SAMPLE in the previous section.
STORE will now be explained by reference to figure 5, which shows the arrange-
ment of the automaton's 'memory' as a sort tree. The sequence of transitions
shown at the top of the figure is represented as the tree structure shown. In
general suppose that the automaton has observed a transition from state
vector x to state vector Y. It stores this as follows:
(a) the tree node corresponding to the reduced state of x is located by

starting at the top and branching appropriately;
(b) relevant information kept at this node, for example, the desirability

of the reduced state and the time of the last encounter is updated
(not shown in figure) ;

(c) the appropriate terminal node is located (by reference to item 3 of
y) and a pair containing the time of x and the reduced state of Y
(a consequence) is added to the list of observed consequences already
there.

Branches are created if they do not already exist.
The length of the list of observed consequences kept at each terminal node

is limited by the program parameter FORGETP. If a new addition would
cause the length of the list to exceed the limit set, then the oldest consequence
is deleted to make room.
This storage system has the following properties:

1. the detailed history of the automaton can be recovered (with a
little difficulty) provided that no information has been erased in the
manner just indicated, and

2. the consequences in the past of applying a particular action to a
particular reduced state are very easily retrieved.

The function of the plan vectors shown in the figure will be explained in the
next section.

EXPLORATION AND PLAN FORMATION

In FINDACT the automaton must choose between the options EXPLORE,
DOPLAN, MAKEPLAN, and SLEEP. To do this the automaton first refers to its
memory to establish if it has ever before encountered the current reduced
state. If not, and if the desirability of the reduced state is at the target value,
then SLEEP is chosen, otherwise EXPLORE. The general significance of this
target value will be explained below.

If the reduced state is recognized then the automaton inspects the correspon-
ding plan vector (see figure 5) to establish whether it has already decided
what to do in this situation. If so then it selects DOPLAN. Note that the stored
plan instruction implemented in DOPLAN may cause entry to EXPLORE,
MAKEPLAN, or SLEEP, rather than merely indicating a basic action.
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step left right step left right
C3 ---> C2 -> El ----> C2 --> Cl --> El -> Cl
0

12 24 36 74 86 130

I

step left step left right

(0, C2) (12, El) (36, C1) (74, El) (24, C2)

(86, Cl)

Figure 5. The memory tree. The transition history at the top of the figure is stored
as the tree shown below. [ ] indicates location of plan vector. For details see text

MAKEPLAN is entered if the current reduced state is recognized, but not
anticipated as part of a plan. Its main function is to grow a ̀lookahead tree'
of a type analogous to that used in many game-playing programs, and to
select a plan. Figure 6(a) shows this tree with unimportant details omitted.
The tree is grown (downwards) by reference to the automaton's memory,

and corresponds to the option graph earlier defined. Each node in the figure
represents a reduced state. Each branch labelled with a Greek letter corre-
sponds to the selection of a particular action. The unlabelled branches re-
present the observed consequences of applying given actions to given reduced
states. Thus in the figure the root node corresponds to the automaton's
current reduced state. The actions cc and fl have been tried previously in this
state. cc has been applied twice with differing consequences. 13 has been applied
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(a)

(15)

a[15

•
13[10y 12]

(18)
•

a[15/V 8]

action

consequence

(14)
•

V[14

action

•

consequence

• • • • •
(3) (17) (10) (12) (15) (18) (14)

(b) (c)

(—I) sleep

explore a 13 makeplan

Figure 6. The lookahead mechanism. The tree (a) is grown by reference to the
memory tree of figure 5, and values are assigned to the terminal states and
tacked-up' as indicated. Diagrams (b) and (c) show in greater detail non-terminal
and terminal nodes respectively. For full details see text

once. The first consequent reduced state of the application of a has itself had
p and 8 applied to it, and so on. This lookahead tree is taken out to a fixed
'depth' determined by the program parameter DEPTHP. Having 'called to
mind' the relevant information, the automaton now selects an action for its
current reduced state, and for all of the consequences that that action may
have, and so on out to the depth of the tree. That is, the automaton selects a
plan. In more detail, it uses the following process which is a crude form of the
`expectimaxing' process described by Michie and Chambers (1968a).
(a) Values are assigned to the reduced states forming the branch tips.

These values are loosely to be interpreted as the future mean
desirability level to be expected if the automaton actually reaches
the corresponding reduced state, and continues planning from there.
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(b) The reduced states one step back from the terminal states now have
values assigned to them. Each action tried is considered and a value

associated with it which is the mean of the values of its observed

consequences. The greatest such action value is then assigned to the

reduced state, and the corresponding action is adopted as the plan

action for that reduced state.
(c) This process is carried up the tree until the root state is given a

value.
In figure 6(a) a consistent set of values has been indicated (square brackets for

action values and round brackets for state values) and the plan actions are
shown by double lines. The most important information kept in the plan
vector of a reduced state is the plan value together with the corresponding
plan action.
The process is rather more complicated than has been described, for at each

non-terminal state of the lookahead tree the automaton has additional
SLEEP and EXPLORE options. The true situation is indicated in figure 6 (b).
At terminal states the automaton has a choice between the MAKEPLAN
Option—corresponding to the assigned value already mentioned—and SLEEP
(figure 6 (c)). Each option is assigned a value, the greatest value is selected
and passed up the tree, and the corresponding choice ( say from a, fi, EXPLORE,
SLEEP) is stored away in the plan vector for use if the corresponding reduced
state should actually be encountered.
How are these various values estimated? This involves a target value which

is a desirability level the automaton is 'told' it can achieve but not exceed
(compare the 'level of aspiration' used by the BOXES program (Michie and
Chambers, 1968a)).
SLEEP—the corresponding value is simply the desirability of the reduced
state at which sleep is proposed.
EXPLORE—the value assigned lies between the corresponding SLEEP value
and the target value, according to the expression

S+ (TV— .3)*EXP VALP

where S is the SLEEP value, TV the target value and EXPVALP is a program

parameter lying between 0 and 1.
MAKEPLAN (i.e. tip value)—this is calculated in a manner akin to that
used for EXPLORE, but is made rather larger following the argument that
planning can be expected to give better performance than random explora-
tion. This increment is made a decreasing function of the number of times
the corresponding reduced state has been encountered using the parameter
TRANSITP.

This outline description of the functioning of the lookahead and planning

mechanism has avoided a number of complexities which, although trying in

practice, have little general significance. For example, branches of the look-
ahead tree often coalesce or loop with consequent difficulties.
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An important question concerns the situation once a plan has been used or

has gone awry (the latter is quite possible—an action may have a consequence
never before observed). Should any part of the information gathered during

the plan's formation be used again? More concretely, should the plan vectors
be erased or kept for future use? Several possible answers to this question
will be considered in the next section. It will suffice here to state that the
basic version of the program effectively deletes the plan vectors once the
corresponding plan has been used.

EXPERIMENTAL FINDINGS

As already stated, figure 3 shows a fragment of output from the program. The
'chatty' remarks made by the automaton serve to indicate the type of pro-
cessing it is currently engaged upon. They are not part of the automaton

17777 A
Incarnation E, Trial 1

NEST

r7771721

Incarnation E, Trial 2

Figure 7. The first route the automaton finds to its nest will typically be very cir-
cuitous. Starting from the same point the second route will be far better but not
necessarily optimal
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DORAN

10 totals

449 179 322 344 265 203 211 1625 288 427 4313
43 14 22 18 19 18 17 50 16 20 237

528 129 122 111 143 143 143 143 143 144 1749
41 12 12 12 12 12 12 12 12 12 149

722 194 295 257 451 245 297 394 227 269 3351
66 18 21 22 28 16 17 21 14 16 239

3436 525 157 486 265 257 378 259 321 452 6536
191 18 12 16 13 14 14 13 14 14 319

858 193 374 417 426 303* 623 535* 688* 2275* 6692
58 14 19 18 19 13 23 18 20 52 254

589 183 270 215 249 179 200 200 222 189 2496
46 14 16 14 14 12 12 12 13 12 165

1097 234 257 305 300 222 309 526 315 626
74 15 17 17 18 14 16 21 15 21

Table 1. Sample results showing the automaton's performance in the environment of
figure 3. Each incarnation involved a blank initial memory and ten successive trials from
the starting point of figure 7. The upper figure of each entry is time taken to reach the nest
and the lower figure is the number of actions used. Asterisks indicate unsuccessful trials.
The minimum possible number of actions required was 12.

design. As a result of experimentation with the program the following remarks
may be made.
The automaton successfully uses its record of its past explorations to form

and implement plans. These plans enable it to find its way to its nest by a much
more direct route on the second or subsequent trials than that followed on the
first trial. The planned route need not be optimal, however. Figure 7 shows a
typical example of this improvement. Note that the automaton does much
more than merely retrace its steps, and that the improved route involves an
objective location not previously visited by the automaton. Prior to trial 1,
the automaton's memory was quite blank. Table 1 presents some sample
detailed results. In each of six 'incarnations' the automaton was placed at the
starting point of figure 7 with a blank memory, and left to find its way to the
nest. It was then replaced nine times, but allowed to cumulate its memory.
The upper figure of each entry in the table is the time taken to reach the nest in
tens of basic units, and the lower figure is the number of actions used. The
following points are worthy of note:
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(a) the incarnations are not all identical since, particularly in the initial
stages, the automaton sometimes engages in random exploration;

(b) performance on trial 2 is uniformly much better than on trial 1;
(c) the automaton's behaviour does not necessarily become stereotyped

(see TRANSITP below). During trial A8, for example, the automaton
tries an exploration action and gets thoroughly 'lost' in consequence;

(d) the asterisks indicate trials when the automaton 'gave up' just
before reaching the nest (for fairly sensible reasons).

Figure 8 shows trials, A, B, C of Table 1 plotted as graphs.
The behaviour of the automaton depends heavily upon the values chosen

for the parameters mentioned previously.
FORGETP—this fixes the maximum number of consequences held at each
branch tip of the memory tree. A value of 6 rather than 3 for this parameter
increased the automaton's thinking time significantly. The automaton was
also slower to escape from the fairly common type of situation in which it
is misled by events recalled from the past which are not in fact relevant,
and in consequence loops repeatedly (see below).
ExPvALB—this is involved in value setting as indicated above. If it is set too
low (0.2 rather than 0.6) then, in the type of environment described, the
automaton will tend to 'sleep' at points of locally high desirability.
DEP Tx P—taking the lookahead to a fixed depth of 7 rather than 3 made
the automaton less likely to be trapped in locally desirable areas, but
markedly increased the thinking time.
TRANSITP—this helps determine the relative value which the automaton
assigns to planning rather than exploration. Suitably set it causes the
automaton to vary from time to time an apparently fixed route.

The point has already been made that the automaton has a deliberately
limited view of its surroundings. This causes it to generalize a response judged
best in one situation to all situations which have the same reduced state. In

the type of objective environment used here, the automaton will sometimes
benefit from this built-in tendency to generalization, and will sometimes
repeatedly go astray. In passing we may note that the automaton is assuming

a truly stochastic transition rule, when this is not the case in reality.
Finally, consider again the question raised at the end of the last section.

The basic version of the program makes no further use of plans once they
have been fully or partially implemented. However, two variants of this
program have been tested, the first of which (Variant A) uses an old plan
value attached to a reduced state as a source of information when calculating
a makeplan value, and the second of which (Variant B) uses an old plan
vector as if it had been calculated as part of the current lookahead. Both
variants are generalizations of the basic program in that they still reject plan
information of over a fixed age.

Simple experiments with these programs suggest that Variant A is superior
to the basic program in situations where a particularly deep lookahead is
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Figure 8. Incarnations A, B, and c of Table I plotted as graphs
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essential. It is using a rote learning technique analogous to that of Samuel

(1959) to increase effective lookahead depth. Variant B has the effect that

when a planned route has once been followed, it is thereafter always followed
'without further thought' until the plans defining the route become too old.
The automaton then forms fresh plans. Following a route 'without further

thought' implies much more rapid movement, but no chance at all of possibly
beneficial variation.

MINOR LINES OF DEVELOPMENT

It will be clear to the reader upon reflection, if not before, that the program
that I have described is no more than a first attempt at a very large and com-
plex objective. Even without considering any major modification to the
automation design, there are the following directions in which improvements
to it could certainly be made.
(a) The lookahead tree used in forming plans is organized in a very

arbitrary way. There are surely better ways for the automaton to
decide whether or not to continue consideration of some part of the
option graph than for it to use a fixed depth rule. For example, the
work on the Graph Traverser program (Doran and Michie, 1966)
immediately indicates the use of a state evaluation function of some
kind to direct the growth of the tree. This could merely use the
desirability, but more complex mechanisms can easily be imagined.
A complementary approach is to consider the probability that a

given branch will ever be reached. In the extreme case when this
probability is zero, further growth of the lookahead tree from that
branch is entirely wasteful. Some probabilistic generalization of the
'a —13 heuristic' is perhaps required here (Edwards and Hart, 1963;
see also Samuel, 1967).

(b) Once the lookahead tree has been grown there comes the problem of
selecting a plan. The current simple method of selecting actions is
open to the criticism that one 'unlucky' consequence of an action in
a given situation can damn it for ever. This is essentially the 'Two-
Armed Bandit' problem, and the reader is referred elsewhere for a
discussion of its significance (e.g. Jacobs, 1967; Michie, 1966).

(c) The repeated use of plan information has already been discussed
above. There are certainly more possibilities than those which have
been actually tried.

(d) The present method of deleting information from the memory is
very simple. More complex methods could be tried and could be
chosen to use the expected properties of the subjective environment.

These various improvements to the design of the automaton, though of

considerable interest, would not in themselves add up to any major step for-

ward. Nor would this be achieved by a study of the automaton's performance
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in a variety of environments. I propose now to introduce some ideas which
perhaps dig a little deeper.

MAJOR LINES OF DEVELOPMENT

The present automaton can ultimately learn the truth of such statements as

the following (figure 3):

If I am facing the G wall and two steps from it, and if I turn right, then

I shall be facing the F wall and against it, or facing the F wall and one

step from it, or facing the F wall and two steps from it, with (pseudo-)

probabilities P1, P2, P3, respectively.

It cannot, however, learn the truth of either of the two following statements:

(A) If I am facing the G wall and I turn right, then I shall be facing the
F wall.
(B) The action STAND never has any effect.

If the automaton is to learn such facts as this it must be able to generate them
in some representation. (A) might be handled as follows. Consider again the
sort tree shown in figure 5, and find the node corresponding to the reduced
state c3. Both the plan information at that node, and the recorded conse-
quence of the action STEP, can be regarded as statements about c3. We would
like the automaton to record and use broadly similar statements about c,
more generally, about all nodes higher in the tree. A method of achieving this
is to enable the automaton to seek statements which are true for all nodes on
branches out of some node and to associate them with that higher-level node,

(compare the proposed 'lumping' of boxes by the BOXES program (Michie
and Chambers, 1968)). Plan formation would then involve a more complex

lookahead' tree which would be grown using the simplest statements which
would give satisfactory prediction.
This latter step leads us to the realization that the automaton need not

always sample the full state vector—it need only note that part of the vector
needed for its current planning.
To cope with statement (B)

The action STAND never has any effect.

a further mechanism seems necessary. Each node of the sort tree can be

regarded as a test. Suppose that we allow these tests to be not merely a matter
of looking at the next element in the current state vector, but general tests on
both the current state vector and on immediately preceding ones (compare
the EPAM program of Feigenbaum, 1961,). Statement (B) can now perhaps
also be handled for it is saying that the action STAND always leads to a

situation which is (effectively) identical with that preceding it, and we have
now allowed the automaton to test for this. Of course there is now the pro-

blem of how the automaton should decide which tests to apply and in which
order to apply them; but at least the door seems open.
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Objective environment

FOOD

cold

warm

State vector

[<wall), <distance), (last action>,

(hunger), <temperature>, <time)]

Figure 9. An environmental situation requiring major improvements in the design
of the automaton

Consider finally figure 9, which shows a more complex environment and

state vector. The automaton is provided with a 'nest' which is 'warm' but
which it must leave to obtain 'food' which is kept outside in the 'cold'. The

state vector is augmented by elements indicating the degree of hunger and the
temperature, and the explicit perception of desirability is omitted. A new

action, EAT, is provided.

The kind of behaviour we require of the automaton is that it should be

able to find its way to the nest, and that it should only leave the nest when it

is sufficiently hungry to brave the cold, returning to the nest immediately it has

eaten. This 'sensible' behaviour is to be learned from an initial naive state,

perhaps with some simple 'tuition'.

The automaton must take into account two desirability factors, namely

the hunger and the temperature, and must use the remainder of the state

vector to help it control these factors. There is a conflict between these two

factors, and more important hunger is essentially discontinuous even for

optimal automaton behaviour, for it changes sharply with the single action

EAT.

Consider the following sequence of events which might overcome these

difficulties:
(a) Initially the automaton is in the nest, is warm, and is not hungry.

It therefore sleeps.
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(b) The automaton wakes because it becomes hungry. This implies a
basic scan of the state vector while asleep.

(c) The automaton notices that it is hungry (rather than cold) and

recalls its subjective state when it last ate. This state it adopts as a

goal. This is a new ad hoc mechanism which can be regarded as a
first step towards ̀ means end analysis' in the General Problem

Solver program sense, and ultimately towards the complex type of

planning discussed in Miller, Galanter, and Pribam (1960).
(d) The automaton then seeks a plan directed towards achieving its

goal. Both the growth of the lookahead tree and the choice of plan

can be guided by an evaluation function using the features of the
automaton's goal. Note that the feature of the goal state that it
is cold can be used to help guide the search.

(e) Having formed and implemented one or more plans the automaton
will ultimately reach its goal. At this point the 'food' goal is can-
celled, to be replaced at once by a directly analogous ̀ warmth'
goal.

(f) Plans are made and implemented for the new goal. It is ultimately
achieved and the automaton is returned to (a) above.

The automaton would learn to carry out the above operations in the sense
that it would gather for itself the experience needed to form the plans involved.
The goal setting and planning capacity would be inbuilt. 'Tuition' might
prove necessary in the initial stages and could take the form of forcing the
automaton to choose certain actions and thus perceive the consequences of
them.

CONCLUDING REMARKS

In this paper I have described a program which simulates a heuristic auto-
maton in a very primitive but natural environment. The environment is
natural in the sense that its properties are analogous to those of the world

around us, but primitive in the sense that those properties are vastly simplified.
The reasoning behind this program argues that intelligence is very much a

response to our own everyday environment and that to understand its nature
it is desirable, perhaps essential, to study the properties of that environment.
By environment I must emphasize that I mean subjective environment. Thus
we have been primarily concerned with the automaton's world as the auto-
maton sees it, not as we the outsiders see it. Both this stress on the subjective
nature of the automaton's problems, and the fact that I have proposed no

formal representation of the information gathered and processed by the

automaton are open to dispute. What does seem clear, however, is that the
only way to make concrete progress is to write computer programs and to see
how they perform.
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Collective Behaviour and
Control Problems

V.1. Varshavsky
Leningrad Branch of the Central Economic-
Mathematical Institute

. . . societies of insects have solved this problem—have integrated in a single
whole all their tiny individual brains by means whose mystery we are
beginning to penetrate. Remy Chauvin Les socials animales de l'abeille
au gorille Paris 1963

Progress in technology and the complexity of the social structure of human
society makes us face the necessity of creating so-called large-scale systems.
These systems are of great variety; yet, from the point of view of control,
they possess a number of common features. In particular, they are 'large'.
What are the main difficulties confronting us in the construction of such
Systems?
Performance quality of a large-scale system is as a rule estimated by a func-

tion called performance quality criterion. An analytical representation of the
criterion is in most cases unknown and the only information available is its
current value. The performance criterion depends, among other things, on a
great number of uncontrollable parameters, hence its behaviour changes
greatly with time. Besides, the number of parameters with which a system can
be described is usually too large, therefore direct use of available criterion
values for optimization is impossible. High complexity and the frequent un-
feasibility of an analytical description for large-scale systems makes all the
classical design techniques inapplicable. It is believed that these difficulties
are due to lack of adequate means of description of the large-scale systems
and that development of such means will improve the situation. This is no
doubt true. I think, however, that the language appropriate for the purpose
Will differ from the language of analytical formulae. In this report an attempt
has been made to discuss some problems concerning large-scale systems in
terms of the collective behaviour of their components.

Difficulties arising in the application of classical techniques and algorithms
are in the main due to their universality. On the other hand, specific problems
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possess a particular inner organization, owing to the fact that they originate in

practical needs. By exploiting this organization one may often obtain a

solution. This was first pointed out by I. M. Gel'fand and M. L.Tsetlin in

1962:
In problems of this kind a search is necessary. In the course of the

search, progress towards the goal is achieved and information necessary

for further progress is obtained. But the search is efficient only if the

problem structure, i.e. the intrinsic features helping to reach the goal

in reasonable time, is taken into account. These features are not known

in advance but more or less plausible guesses can be made. The structure

is exploited by means of putting various hypotheses (plausible conjec-
tures about the problem structure) and constructing search tactics based

on these hypotheses. In the course of the search the hypotheses are
tested: one, which makes the search successful, is true. Resorting to the

help of hypotheses is deliberate rejection of a search through all
possibilities; without it there is no chance of succeeding in any more-or-

less complex situation.
In the problem of finding the minimum of a function the hypothesis

is that its variables fall into two groups. The first one (which includes
almost all variables) unites the variables whose alteration leads to
considerable alteration of function value. Selection of such parameters,
which are called inessential, gives rise to no difficulties and can be
comparatively rapidly made.
The second group of parameters includes a few variables (or

functions of these few variables) whose alteration causes comparatively

small variation of the function. These parameters are called essential.

(see also Gel'fand, Gurfinkel and Tsetlin, 1962)
For instance, accuracy of shooting greatly depends on how you hold your

gun (by the muzzle or by the butt), on the state of your nervous system (you

are sober or suitably intoxicated), etc. However, these parameters are inessen-

tial, for optimization over them can be rapidly performed. The essential

parameters here are accuracy of sighting at the objective and smoothness of

firing; their relative effect on the quality of shooting is much less than

that of the first group of parameters.

The application of the above considerations allows us to obtain solutions for

a number of complex computational problems, and in particular for the

problem of phase scattering of elementary particles. Determination of specific

features and regularities of the inner organization is of great importance for

obtaining computational procedures for the solution of complex problems.

Heuristic programming is also based on having relevant information about a

problem under consideration. Strictly speaking, such an approach is no

novelty from the methodological viewpoint. Usually, any analytical technique

is initially conjectured and only after that is a rigorous formal proof supplied.

However, classical techniques and algorithms are applicable to broad classes
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of problems while the new complex problems we encounter more and more
in every-day life demand specially oriented methods. This puts in the fore-
front the heuristic aspect of problem solving and the study of heuristic
algorithms comes to be of great importance. Unfortunately, human society
can boast only a few men of genius; but society cannot afford to have the
solution of its important problems wholly dependent on man's intellectual

abilities. We would hardly find it satisfactory if our salary depended on

book-keepers' ingenuity.
Heuristics is used in technology on an even larger scale. By this we mean

not the invention of new facilities but the design of complex systems on the
basis of ready-made blocks. Consider the problem of computer design, for
example. In the framework of automata theory there is a theoretical possibi-
lity of the optimal design of the computer looked upon as an automaton.
But any attempt to proceed along this line would be futile. On the other
hand, the designer does handle the problem, and quite successfully, proceed-
ing from non-formal considerations concerning the type of algorithms to be
performed by the computer, its components and their interaction, etc., the
whole of the computer being divided into a number of relatively simple
blocks solving some particular problem. Many complex modern control
systems are designed in the same way. Thus, the process of design of complex
systems includes a non-formal stage: design of system structure, distribution
of functions of control, dismemberment of the system into more-or-less
autonomous parts. It is natural to describe control organized in this manner
as heuristic. Heuristics displays itself here both in methods and in algorithms
for the solution of problems, and in ways of implementing these algorithms.

Research shows that complex biological systems consist of entities with a
high degree of autonomy. Multicellular organisms consist of cells, which un-
der appropriate conditions are able to exist out of the organism, their be-
haviour being sufficiently complex. In such 'superorganisms' as families of
ants or bees, the possibility of individual existence is higher. And finally,
human beings, members of the most complex biological system, enjoy
autonomy to a very great extent.
However complex the behaviour of the object is, whatever its criterion

function and motivation, up to the social motivation in society, it is the result
of the individual behaviours of a great number of elementary components.
How these individual behaviours of elementary components, each having a
goal of its own, form the expedient behaviour of the whole system is one of the
most fascinating problems of modern science. It is natural to suppose that
there are basically only a few fundamental principles in the organization of
such systems. The importance of understanding these principles can hardly be
overestimated. The models of collective behaviour of automata, constructed
by M. L.Tsetlin are highly satisfactory for the study of such principles. A
survey of research on models of collective behaviour of automata can be
found in the report by Tsetlin and Varshavsky (1966). A number of important
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points and formulations of problems can be found in the report by
Gel'fand, Gurfinkel and Tsetlin (1962). In this report, in particular, the
principle of least interaction for joint functioning of nervous centres ('game'
of nervous centres) is formulated.
In the present paper some examples of control organization which are

based on general ideas inspired by the studies of automata collective be-
haviour will be discussed. The author started work in this direction in colla-
boration with the late Dr M. L. Tsetlin and most of what is presented had
been completed before his premature death.
In the examples that follow we were interested not so much in the design of

specific systems as in the possibility of a heuristic approach to organization of
interaction between autonomous parts of a control system.
For our first example let us consider the problem of synchronization of

commutator and decommutator in a telecommunication system with time-
shared channels in the presence of noise (see Tsetlin and Varshavsky, 1966
and Varshavsky, Meleshina and Tsetlin, 1965). In the first example the period
of commutation is known in advance; in the second it is not known. In the
first case the solution is reduced to the organization of the behaviour under
which every automaton solves its own problem independently of others. In
the second case there are two levels in the system: automata of the first level
act independently of each other, while those on the second level are fastened
together by 'mutual interests' and produce control signals which organize the
behaviour of the first level automata.
The system under consideration works as follows. The commutator ques-

tions data units in turn in accordance with a program and conveys obtained
information through a transmitter into a communication channel. The
receiving-end decommutator detects and identifies the signals pertaining to
different data units. Thus the decommutator should perform simultaneously
the same sequence of operations as the commutator. The above situation
arises when it is necessary to provide a control for an object carrying data
units on the basis of the received telemetering information. Synchronization
of the commutator and decommutator includes the problem of synchroniza-
tion of logical networks of the receiver with the corresponding networks of the
transmitter for correct decoding of the information received. We assume that
to enter into synchronous regime the transmitter sends a tuning signal before
the operation starts (or possibly in the course of operation). This signal is a
binary code K of length equal to n bits. The time over which a data unit is
switched on to the channel is the time corresponding to the transmission of
one bit of the code (length of bit). We also assume that both the receiver
and the transmitter operate in discrete time and have the same standard of
time (sampling period) determining the length of bit. The problem is com-
plicated by the fact that the system can work in several modes characterized
by different length of bit (duration of data reading from one data unit) and
different number of interrogated data units. Information about the mode is
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contained in synchronizing code. Thus we have two problems: (1) synchroni-
zation by the moment of change of bits, i.e. by the moment of change of

channels; and (2) synchronous reproduction of the signal by the receiver.
For the first problem, the period (or a few periods) of carrier frequency can
be chosen as a time unit. For the second problem, it is natural to adopt the
length of bit as this unit. To allow for the fact that the signals are corrupted
by noise in the communication channel we assume that the probability of an
error at the receiving end is equal top, (p <1/2). The errors are supposed to
be independent at every moment of time.

It has been shown (see Varshavsky, Meleshina and Tsetlin, 1965) that the

above two problems can be solved in one and the same manner. Here we shall

discuss only the reproduction of the synchronizing code. Consider a device

producing signals that are compared with signals coming from the transmitter.
The device is 'fined' when its output signals do not coincide with the received
Signals, and ̀ rewarded' otherwise. Hence the problem of the synchronizator
design is reduced to the design of an automaton with optimal behaviour in
Periodic random environment. An automaton is said to operate in the periodic
environment P(pi(t);po(t)) if its output 1 at time t leads to the fine at time
1+1 with probability pl(t), while the output 0 leads to the fine with probabi-
lity po(t). Probabilities pi(t) and p0(t) are periodic functions of the time
with period 7'. Let the period be known and consider the group of automata
shown in figure 1. The period of the commutator is equal to 7' and hence, as is
readily seen, every automaton A perceives the periodic random environment

Figure 1
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as a stationary one, i.e. the probability for the automaton to be fined does not
change with time. If the construction of every automaton is asymptotically
optimal for the stationary random environment (see Tsetlin and Varshavsky,
1966) then the total average fine for the above automata differs little from

1/T min(P1(t),P0(t)),

provided the memory of every automaton is of sufficient capacity. In other
words the probability of correct reproduction of the synchronizing code
tends to unity as the memory capacity of the automata infinitely increases.
Now let the period be unknown but not exceed some value T,„„x. The problem
of determining the period can be reduced to the Goore game (see Tsetlin and
Varshavsky, 1966). Consider the construction shown in figure 2. It differs
from the construction shown in figure 1 by the presence of the additional
automata B, each of which has two possible actions, 0 or 1. The number of
positions of the commutator is equal to T„,„z. The commutator can stop only
in positions corresponding to a automaton B whose action is 1. Therefore the
period of rotation of the commutator is equal to the number of automata
providing action 1. After one or several revolutions of the commutator, auto-
mata B are fined with probability equal to the average fine of the automata A
during that time. It is not difficult to see that the probability of fine for auto-
mata B is minimal when the period of rotation of the commutator is equal
to or a multiple of the period T. Analytical study of the behaviour of the
above system is quite complex. The results of computer simulation of the
system are given in Table 1, where the following notation is adopted: n is the

fl Tmax Pi Po

10 , 10 5 1/8 1/8 0.125 170 11100
10 10 7 1/8 1/8 0.125 147 1111000
10 20 6 1/8 1/8 0.125 210 110000
10 24 12 1/8 1/8 0.125 203 111111001000
10 24 11 1/8 1/8 0.125 208 11111001000
15 24 12 1/8 1/8 0.125 175 111111001000
15 10 5 1/8 1/8 0.125 200 11100
15 10 7 1/8 1/8 0-125 144 1111000
15 20 11 1/8 1/8 0.125 228 11111001000
15 24 12 1/8 1/8 0.125 192 111111001000
15 24 6 1/8 1/8 0.125 250 110000
10 20 7 1/8 1/8 0.125 171 1110000
10 20 7 1/4 1/4 0.250 262 1110000
10 30 10 1/3 1/3 0.333 250 1111110000
10 30 10 1/8 1/4 0.175 320 1111110000
10 30 10 1/3 1/8 0.250 375 1111110000
10 30 10 1/4 1/3 0.283 382 1111110000

Table 1
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Figure 2
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memory capacity of the automata with linear tactics (see Tsetlin and
Varshavsky, 1966) (the same for both kinds of automata, A and B); T„,„„ is the

number of pairs of automata taking part in the operation; T is the period
of the environment; M is the average number of fines per one tact, imposed

on the system after the end of the transient; pi and Po are the probabilities of
incorrect reception of 1 and 0 correspondingly. The stability of the processes

in the system has been estimated by the average number of fines to within the
third decimal place, all the experiments including not less than 50,000 tacts.

As is seen from Table 1 the system is stable according to the criterion asso-
ciated with M. This criterion apparently does not 'feel' random short devia.
tions from the stable regime.

Table 1 also shows that duration of the transient is comparatively short.
Perhaps this is due to the choice of the initial states of the automata with
linear tactics—they were chosen to be on the boundary of act changing. Con-
struction of the pertinent device gives rise to a number of extra requirements
concerning the choice of a synchronizing code and a group of 'phasing'
places, where signal values do not change. However, we shall not enter into
discussion of these matters. It is worth noting only that the system under
consideration is highly reliable: random failures of automata do not practi-
cally affect performance quality, and the system with variable period is stable
with respect to complete failure of individual automata.
The above simple example shows how, on the basis of means capable of

solving a simple problem, collective behaviour can be organized for the solu-
tion of more complex problems. Yet, in our intuitive notion of collective be-
haviour and its potentiality, we are not content with the simple summation of
individual efforts of members. The natural question arises whether there is a
possibility for a collective to possess a kind of behaviour more complex than
that representing the simple sum of behaviours of its members. In automata
language this question reads; 'Can an automaton imbedded in a collective
solve problems which are essentially more complex than those it can solve on
its own ?'. A positive answer to the question seems to contradict the funda-
mental laws of Nature. However, consider a pair of automata each having k
inner states. The complexity of problems that can be solved by every auto-

mata is constrained by the value of k. The system of automata has k2 inner

states and one can hope that there could be an organization of interaction
between two automata such that each of them was able to solve a problem
requiring k2/2 inner states. The above is simply speculation. But now let us

turn to an example which actually provides a positive answer to the question

formulated above.
We shall discuss the problem of synchronizing an automata chain as posed

by J. Myhill, which first appeared in print in a paper by E. F. Moore (1964).
The problem is that of causing all parts of a self-reproducing machine to be

turned on simultaneously. Consider a chain of soldiers, each soldier being

able to exchange information with his two neighbours. The chain is finite, so
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the soldiers at the ends of the chain have only one neighbour each. One of the
end soldiers receives the command and on this the whole squad must 'come
to an agreement' and fire their weapons simultaneously. Having received
information from his neighbours each soldier responds with a constant time
lag, the same for all soldiers. The question is whether there exists a local
algorithm of behaviour that would be the same for each soldier, with slight

modification only for the two at the ends of the chain. Being independent of
the number of soldiers in the chain, the algorithm should provide the syn-

chronization of the firing. A formal statement of the problem can be given as
follows.

Consider a chain of k identical automata A in which every automaton is
connected only with its two neighbours. Find a structure of the automata A
(if any) such that, having received a starting command at time t=0, one of the
end automata can cause every automaton of the chain to go into one particular
terminal state, all at exactly the same time T; the complexity of the structure
is to be independent of the number of automata. According to E. F. Moore
(1964) the problem was first solved by J. McCarthy and M. Minsky. In 1962
E. Goto found a solution where the synchronization took place at minimal
time T=2k— 2. But the automaton proposed by Goto had too many inner
states. In 1965 V.I. Levenstein published a brilliant solution (see Levenstein,
1965) with 9-state automaton and minimal synchronization time T=2k— 2.
A. Waksman (1966) published a solution for the 16-state automaton.
Let us sketch in brief Levenstein's solution. Consider a chain of Moore

automata, the inner state of automata is at the same time the signal that
propagates down the chain. A system of signals is arranged to cause a seg-
ment of chain to divide itself in two, the center automaton undergoing the
transition into the preterminal state. An automaton goes into a terminal
(synchronized) state if both its neighbours and itself are in the preterminal
state (there are some exceptions due to the difference of situations when the
number of automata in the chain is odd or even). The first bisection of the
chain is made as follows. The initiating signal transfers the end automaton
into preterminal state and two signals start to propagate down the chain from
this automaton. The first signal has the velocity 1, the second one has the
velocity 1/3 (a signal propagates with velocity 1/p if it passes to a neighbouring
automaton after having stayed in the preceding one for p units of time). The
first signal goes as far as the end of the chain, transfers the second end automa-
ton into preterminal state and reflects, preserving the same velocity. The
meeting of the reflected signal with the signal having velocity 1/3 occurs at the
center of the chain and the corresponding automaton (or two automata if the
number of automata in the chain is even) goes into the preterminal state. If
the reflected signal goes on down the chain and if the third signal with the
velocity of propagation 1/7 has started from the first end automaton, these
signals will meet at a distance of 1/4 from the beginning of the chain. Gene-
rally, if every automaton on assuming the preterminal state sends out a
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sequence of signals propagating with velocities 1/ (2P-1-1— 1) and if automata
occurring at the meeting point of the signals go into preterminal state, the
process of successive divisions into two of emerging segments of the chain
will take place. The main difficulty Levenstein so brilliantly surmounted
was in organizing the sequence of signals with velocities of propagation
1/ (2P+1— 1) emitted by an automaton with finite number of states. This
seemingly impossible task can be done, because p„,„„ is bounded and the
organization of interacting signals allows the inner states of all the automata
to be used for the purpose. The picture of signal propagation for the chain of
26 automata is shown in figure 3. The details concerning the solution of the
problem as well as rigorous proofs can be found in the original work of
Levenstein.

Myhill's problem gives rise to a whole class of problems. Thus, one can
consider the synchronization problem in which the initiating signal can be
applied to any of the automata of the chain (see Varshavsky, Marakhovsky
and Peshchansky, in press). In this case the chain can be synchronized in time
T= 2k — 2— amin, where a„,i„is a distance between the nearest end automaton
and the automaton to which the initiating signal is applied. The underlying
automaton has 10 inner states and is in fact a slight modification of Leven-
stein's automaton. The picture of signal propagation for the chain of 28 auto-
mata is shown in figure 4. The approach we used for the solution of the above
problems can be extended to a system of automata arranged in a rectangular
lattice.
Another problem of the same type has been considered by V. Peshchansky,

V. Marakhovsky and the author (in press). We shall refer to it as the voting
problem. Let there be a chain of k objects each able to be in one of p states
(i.e. send out one ofp possible output signals). There is a chain of k automata
associated with the above chain and the correspondence between the objects
and automata is one-to-one. Every automaton can exchange information
with its two neighbours and perceive a state of one object. The goal is to
construct an automaton whose complexity is independent of a number of
objects and such that, having received an initiating signal at time t = 0, one of
the end automat will go at time T into the state corresponding to the state
assumed by most of the objects. The tricky part of the problem is that the
same kind of automaton with the fixed number of states is required to do the
job, regardless of the number of objects in the chain. Roughly speaking, no
automaton is permitted to count a number of objects. Hence, we try to reach
the goal by comparing the times required for a signal to go the round of
automata corresponding to the objects that are in the same states. It is con-
venient to rearrange the signals coming to the automata from the objects in

such a way that the same signals would form compact chains. The times
required for the signals to come through such chains are then to be compared.

Now consider a system organized in this way. At time zero, let all the auto-
mata be in an initial state H. In addition, we shall distinguish a subset of
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states Eu (j= 1, . . ., p) of the set of automata states. Any signal from the
subset E1 can be chosen as the initiating signal; let it be applied to the
left-end automaton. Then the transition from the initial state to the states of
subset E1 is defined as follows. If an automaton A and its neighbour to the
right are in the state H, and its neighbour to the left is in a state from .E1,
then the automaton A goes into the state .E10, where a is the state of the object
0 associated with the automaton A. In this way, the read-out of the states of
the objects goes into the automata chain. The read-out finished, outputs of
the objects have no further effect on the behaviour of the automata. Now turn
to the process of ordering the input signals in the automata chain. The relevant
algorithm groups automata which are in the same states into continuous
chains, the bigger the number of a state the more to the right its chain is placed.
It is sufficient for the purpose to make a change of the state numbers of the
neighbouring automata whenever the right automaton's state is less then that
of the left automaton. The system operation is illustrated in figure 5 and

R,

0,

Figure 5

Table 2. The state at the front of the signal E1 propagates down the chain of
automata and just behind it ordering of the states takes place. It is not hard
to see that the above ordering is unambiguous, and that there can be no
situations when an automaton has to exchange the numbers of inner states
With two neighbours at the same time. Having emerged at the front of the
Signal E1 the state with the maximum number goes on moving with velocity
equal to that of the front itself, while the state with the minimum number,
having emerged at the front of the signal E1, moves in the opposite direction
with velocity 1. Therefore, if the signal on reaching the end of the chain
generates a reflected signal, the latter propagates down the ordered chain and
can be used for comparing the lengths of the chains. At the end of the chain the
signal E1 generates the reflected signal E2, at the front of which the automata
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2 3 1 2

5 6 7 8
Variables

3 2 3 1
States of automata

9

2

10

3

11

2

12

1

2 21 31
3 21 31 1,
4 2, 11 3, 21
5 11 2, 2, 31 31
6 11 2, 2, 31 3, 2,
7 1, Z 2, 31 21 33 31
8 1, 2, 21 2, 31 31 31 1,
9 1, 2, 21 2, 3, 3, 1, 31
10 11 21 21 21 3, 1, 3, 23 31 31
11 1, Z 21 2, 11 3, 2, 3, 31 31 21
12 11 21 2, 1, 2, 2, 3, 31 31 2 3, 11
13 1, 2, 1, 2, 21 Z 31 3, 2, 31 1, 3'
14 11 11 21 21 21 23 33 2, 3, 11 31 33
15 1, 1, 2, 2, 21 21 2, 3, 11 31 33 33
16 11 11 2, 2, 21 21 2, 11 31 3, 31 3,
17 1, 1, 21 2, 2, 2, 1, 21 3, 32 32 32
18 1, 1, 2, 2, 2, 11 21 2, 33 3, 32 3,
19 1, 1 2, 21 1, 2, 2, 2, 33 33 32 31
20 11 11 21 11 2, 2, 2, 2, 33 33 33 3,
21 11 1, 1, 2, 2, 2, 2, 2, 33 33 33 33
22 1, 11 11 23 2, 2, 2, 2, 33 33 33 34
23 11 11 1, 23 2, 2, 2, 2, 2, 33 34
24 11 12 12 23 23 2, 2, 2, 23 34
25 1, 1, 1, 2, 23 23 2, 2, 34
26 13 1, 1, 23 23 23 23 23
27 13 13 1, 23 23 23 23 23
28 13 13 13 23 23 23 23 24
29 13 13 13 23 23 23 24
30 13 13 13 23 2, 24

31 13 13 13 23 24

32 13 13 13 24

33 1, 13 24,

34 13 24
35 24

Ell

Notation

Eg3 E13 Eag Egg Egg Egg Ea, Egli Egg Egg E411

Table 2

11 2, 3, 18 2, 3, 13 23 33
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undergo the transition from the state Eia into the state E2a. The under-
lying idea for comparing the lengths of the chains is illustrated in figure 6.
An example of the behaviour of the whole system is given in Table 2. For the
sake of simplicity we do not consider the case when there are several chains of
states of the same length. More detailed discussion can be found in Varshav-
sky, Marakhovsky and Peshchansky (b). Note finally that the automata pro-
viding the solution have 4p +1 inner states and the time required for the
solution is equal to 2 (k + c), where c is the maximum number of the objects
in the same state.
The most interesting point in the above examples is apparently that a

collective of automata is able to handle the problem that is more complex
than the simple sum of problems which each single automaton of this com-
plexity is able to handle on its own. This is due to organized interaction be-
tween the automata. In the synchronization problem each automaton has
only 9 inner states and still it manages to generate the sequence of time delays
2P+1— 1, which is essentially impossible for an isolated automaton with such a
number of states. However, it would be stretching the notion to consider the
above problems as those of a control nature. Their work is associated with
rigid programs and any external disturbances, for instance applying two
initiating signals to a pair of different automata in the synchronization pro-
blem, lead to a complete failure of the system's work. There is no interaction
between the system and environment, which is so characteristic of control, in
the problems considered above. A more natural statement of the synchroniza-
tion problem from the point of view of control is contained in a paper by
Gel'fand and Tsetlin (1960) on continual models of control system. I. P. Luk-
ashevich has used these models for simulation of the synchronous work of
heart muscle (see Lukashevich, 1963, 1964). On the other hand the problems
we have just considered admit full analytical treatment of the work of interact-
ing automata systems, which becomes formidable in the study of automata
behaviour in an external environment. Besides, as has been already noted,
these models have exemplified automata interaction under which each auto-
maton used the memory of the whole collective for solution of its local pro-
blem and was able to handle problems otherwise beyond its power. It is
worth noting that this phenomenon is characteristic of human collectives as
well. In studies of the behaviour of ants it is known as 'the group effect' (see
Khalifman, 1958). In the control problems concerned with behaviour in an
external environment it is usually very difficult to organize purely logical
interaction between members of a collective. In this case considerably greater
effect can be produced by organizing interaction through local utility func-
tions (estimators). An important point to stress is that the local utility
functions do not generally coincide with the performance quality criterion.
Two examples of such organization follow.
The first is connected with arranging a queue discipline in a queueing

System (see Varshavsky, Meleshina and Tsetlin (1968)). It is a tradition in
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queueing theory to illustrate the ideas with the telephone exchange operation.
Let us therefore consider a telephone exchange with k available channels and
a subscribers. The rate at which demands for connection from the ith sub-
scriber arrive is Ai (for simplicity arrivals are supposed to form a Poisson
process). The mean length of connection of the ith subscriber is equal to Ta.
Connections are made in accordance with the queue which is the same for all
subscribers and channels. Analysis of queueing systems quality, understood,
for example, as the expected waiting time or expected queue size, can be
improved by introducing a system of priorities (see Saaty, 1961). It is known
that in the case of equal rates the highest priority is to be granted to a sub-
scriber with the shortest mean service time. But distribution of priorities re-
quires a priori information concerning the probabilistic characteristics of
input flows that are often not available or essentially change with time. Our
aim is to establish the system of priorities in line, i.e. while the system operates.
In the construction to be described, each channel 'decides' on the order of
Priority for the subscriber independently of other channels. We know that
preference should be given to 'profitable' subscribers whose conversations are
short and, in case there are several such subscribers, to those whose calls are
more frequent. With this in mind let us introduce the fee to be paid for a
conversation irrespective of its length. It is convenient to choose the fee equal
to the mean length of the conversation in the system, r„,.' At the moment the
subscriber is switched on to the channel an amount of money equal to T„, is
placed into a special counter ('money-box'). As the conversation progresses
the amount reduces by unity per one unit of time. If the duration of the con-
versation turns out to be less than T,„, then there is a certain sum left in the
money-box of the channel and this gives the commensurate priority to the
subscriber next time he makes a connection; otherwise he is given no priority.
The automata of the linear tactics type can be employed as the money-boxes.
An act of the automata is determined by the number of the subscriber whose
'money' is now in the money-box. State transition graphs are shown in
figure 7. Input signal CI corresponds there to the arrival of the call at the
channel while the automaton is switched on; signal C2 to when the automaton
is busy and switched on; and C3 to when it is switched out. The automaton
may change its acts (i.e. change the number of the subscriber having priority
for this channel) only when in the state numbered 0. The money-box can be
of limited capacity; for the automaton, the capacity of the money-box corre-
sponds to the number of its inner states (the memory capacity).

Introducing a kind of competition between the subscribers makes it possible
for the channel to secure more profitable subscribers. For this purpose there
are two automata at every channel—the principal one (A) and the reserve one
(B). Let a5 and bj be the numbers of acts (subscribers) of principal and

' The approximate value of T,,, is supposed to be known; otherwise it is to be determined
while the operation unfolds.
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Figure 7

reserve automata of the jth channel respectively. If there are no idle channels,
an arriving call takes its place in the common waiting line and awaits service.
If some channel becomes free and the number of its principal automaton's
state coincides with the number of one of the waiting calls, then this call is
served out of turn. Otherwise there are two possibilities: (1) if the number of
the reserve automaton state and the subscriber's number coincide, then the
interaction between the subscriber and reserve automaton goes in accordance
with the graph shown in figure 7; (2) if the number of the reserve automaton
state and the subscriber's number do not coincide, then the current state of the
reserve automaton becomes zero and the automaton begins to examine another
call. When the channel becomes free the numbers of inner states of principal
and reserve automata are compared, and the automaton with the bigger
number is given the role of the principal automaton. Note that assigning
channels to a certain group of subscribers improves such an important
characteristic of telephone exchange as the number of commutations. A
commutation in the channel is said to take place if two calls with different
numbers have successively arrived. Commutations of this sort generate
considerable disturbances and reduce audibility.
Computer simulation of the above system has been carried out; the results

of the experiments are given in Tables 3-7. The results given in Table 3
corresponds to the system whose probabilistic characteristics do not change
in time. The following notation is adopted in the Tables: n is the automaton
memory capacity; Wo is the value of the fee; W,s1 is the mean waiting time
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0.98

0.98

1.00

0-85
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0.68

0.80

0.90
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0.90

Table 3

obtained experimentally; Wn2 is the mean waiting time calculated according
to formulae obtained for the case when priority does not depend on the
channel's number and is given to the subscriber with the shortest mean call
duration; S, is the mean number of the commutation for the system without
priorities; and S is the mean number-of commutations for the system with
elaboration of priorities. In Tables 4 and 5, four subscribers have two possible
sets of call durations, (2,2,12,12) and (12,12,2,2), that form a simple Markov
chain with the transition probability equal to 8. In Table 4 the dependence of
system parameters on 8 is given, and in Table 5 the dependence on the memory
capacity of automata (the number of inner states). Tables 6 and 7 show the
same dependences for the case when call durations 2 and 12 form indepen-
dent Markov chains at every channel. The data given in Table 3 show that in
three cases experimental mean times are less than the calculated ones. This is
explained by the fact that in these three cases we are dealing with three diffe-
rent call durations. In the system under consideration, a system of priorities
is elaborated whereas the calculations were carried out under the assumption
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Table 7
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that there was only one priority, that for the subscriber with the shortest call
duration. The experimental results show that the system described above
operates quite satisfactorily.
In all the examples of collective behaviour we have considered, the local

problem was handled by a finite automaton. It is evident that devices other
than finite automata can be used for organization of collective behaviour.
Moreover, to make progress in the study of control organization for a
complex system we ought to use any effective means for the solution of
local problems.
We now turn to the example where our local tool will be a conventional

algorithm of feedback control rather than a finite automaton. This example
was studied by the author in collaboration with M. Meleshina and V. Perek-
rest (in press) in connection with the problem of allocation (see Bellman and
Dreyfus, 1962). We shall consider two possible statements of the problem
of one-dimensional allocation of resources which, as we shall see, can be
treated in effect in one and the same way. Suppose we have a certain quantity
of an economic resource that can be money, fuel, raw material, etc., and a
number of consumers, who can, by utilizing this resource, achieve a certain
economic effect referred to as the 'return'. It is supposed that the returns ob-
tained by different consumers can be measured in a common unit. The pro-
blem is that of dividing our resource so as to maximize the total return. A
number of mathematical devices such as, for example, dynamic programming
(Bellman and Dreyfus, 1962) and the Lagrange multipliers method, can be
employed for the solution of the problem. However, all the techniques known
so far require the utility functions (i.e. the dependences of the returns of the
consumer from the quantity of the resource obtained) to be known in ad-
vance. In addition the decision-making process is centralized. We shall con-
sider the allocation problem under the assumption that only current values of
the returns are known and that the optimal allocation is to be found as the
process of interaction between the consumers unfolds. But first let us give the
second statement of the allocation problem. Consider a control system con-
sisting of the object to be controlled (the plant) and the controller. The plant
and the controller are linked by a communication channel. There are several
servo units in the system and the channel is such that the units are switched
on to the controller in succession. So we have a multiloop control system, the
ith control loop being closed periodically for time Ti. The bigger the value of

the better the performance quality of the ith loop. The problem is that of
dividing the controller time (period T) between the control loops so as to
maximize (minimize) some performance criterion. Thus, period T can be
interpreted as a resource, and let us suppose that we have to minimize the
min-max of some error functions associated with performance quality of the
control loops. Now consider a possible organization of collective behaviour
for problems of this kind. Let i be the share of the resource given to the ith
consumer and ti be the share demanded by him (0 < < 1, 0 < ti < 1). If the
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ith consumer asks for ti of the resource then he is given

Te=

Et,

Now our problem is reduced to that of choosing a new local utility function

for each consumer to be maximized (minimized) in the process of elaboration

of his demand for the resource, which provides desired allocation. Let us

begin with maximization of the total return. Introducing Lagrange multi-

pliers enables one to write the system of equations for the optimal allocation of

the resource:

45'i(Ti) A— 0
dri

=0

J-1
(1)

In (1) the Lagrange multiplier A has the significance of the price of a unit of

the resource, and the system of equations can be deduced as follows. Let the

local utility function be the difference between the return and the cost of the
resource obtained. Then the maximum of the utility functions is determined

by the system
0 „

d=v (2)
aid at; dri

aTi [dcki (TO "

and control can be realized through changing A-the price of the resource.

An implementation of such control is suggested by a possible approach to the

solution of system (1). Denote

d9Si ( 70_ yi(;) and yrI(X)— inverse function for y( r)
dri

Then the optimal value of A can be found by solving the equation with respect

to A:

± 7J-1(A)— 1 =0. (3)
J..1

From equations (1) to (3) the organization of control and interaction

immediately follows:

[ti — K1 4'(.ri) A 1 <i‹n
dri

A=K2[
21j—ii
1=1
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or, in a different form, which was actually used for computer simulation:

Ari

AA=K2 [
1
t5-1]

J—
(5)

Variation in time of the distance between the current allocation vector and
the optimal allocation vector for 10 consumers and various gains Ic1 and k2
are shown in figure 8, the dependences of the return from obtained amount of
the resource being given by

01=2.125 In (1 +r)-01
02=2.125 In (1+1-2)-0.2
= V(273) 1

(1.4=V(31-4).-
sin 3 T5

ç8=2 sin 76
07=77 (2.125-77)

-=4 Ts (4.25—re)
569=2.25 (1 — e-79)
Oft, =225 (1 _e 2'3.)

At this juncture questions concerning stability of such a system arise. Analysis
of stability is beyond the scope of the present paper. We shall note only two
points. The first one is associated with existence of an equilibrium point in
the system as such. This question can be considered as the problem of the
existence of an equilibrium in a non-cooperative n-person game. The second
one is the problem of the stability of control process that is extensively treated
in the stability theory of differential (and difference) equations. In the above
example we employed the feed-back control algorithm as the local algorithm.
However, more complex local algorithms might be required to allow for the
presence of time lag between the moment of demand arrival and that of
supplying a corresponding share of the resource, or they might be due to a
specific form of local return functions.
Now we turn to the problem of time distribution in the control system.

Putting aside the cases when there exist solutions on the boundaries one may
say that for limited resource (T) min-max distribution is achieved when errors
in all the loops are equal. This immediately leads to the following organiza-
tion of the control:

bal=K2[1 —DJ]
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It is not hard to see that systems (5) and (6) are indentical. The latter is
characteristic in its use of a difference scheme with the step size equal to the
period of commutation. Here, as above, fulfilment of some natural conditions
on the local utility functions is necessary for the existence and stability of the
solution.
What seems important in such organization of control is a very small

amount of information circulating in the system: the consumer reports what
quantity of the resource he needs and the central controller gives in reply the
value of A. The organization described above makes it easy to improve the
reliability of the system without rearranging the interaction in it. All one has
to do is to change the algorithm for finding A. It is noteworthy that the stability
of the system does not depend on a given total demand determining A. This is
clear from a consideration of the linear approximation of the system near the
equilibrium point. If a failure occurs, then a consumer will demand the same
amount of the resource irrespective of the amount obtained. Adding one
more control parameter in (4) enables us to attain the optimal distribution.
The system in this case is described by equations

rdo,(7.0 
L dTi

X=K2[Etj—c]

•=r-K3 (E kSbi(Ti))
But only some preliminary experimental results are available for this case.
Both problems just described—that of priority elaboration and that of

resource allocation—are characterized by the fact that there is no direct link
between local criteria and criterion of the behaviour of the whole system in
the organization of collective behaviour. In the first problem the local algo-
rithm 'gives preference to the most profitable client', yet this permits the
reduction of the mean waiting time for all clients. In the second problem the
local algorithm sees to it that the partial derivative of the local return ( or, in
the second version, the value of the return) will not deviate from a prescribed
level (price), while the local algorithm of price elaboration provides the
equality of supply and demand. This distribution of tasks in the system
maximizes the total return.
To keep the report within a reasonable size I have contented myself with a

few examples. However, it is perhaps clear that analytical and conceptual
treatment of a problem enables one to establish local estimations providing
the solution. It would seem that the question of establishing local estimations
is of paramount importance in heuristic methods.
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INTRODU CTION

We have compared three methods of solving a problem: (1) a human being
equipped with paper and pencil, (2) a computer equipped with a heuristic
problem-solving program, (3) a human being equipped with a computer-
driven display and light pen, and a program for editing and evaluating trial
solutions. It seems obvious, and is certainly often stated, that the co-operative
combination of man and machine should be more effective than either man or
machine alone. Detailed quantitative assessments of the presumed advantage
are rather rare. Ideally one would like to survey a wide variety of different
design problems in this way. We have as yet only tackled problems of one
category, the 'Travelling Salesman', but the results seem of sufficient interest
to report at this stage.

Graph Traverser

The heuristic problem-solving program referred to above is the Graph
Traverser (Doran and Michie, 1966; Doran, 1968). The program can be
applied to any search problem which involves discrete steps. The user must
provide a description of the class of states and transformations which define
the problem. It was originally developed using simple sliding block puzzles,
and we shall devote some remarks to one of these, the Eight-puzzle. In figure 1,
the arrow is labelled with the minimum number of unit steps required to solve
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•
•
•
II
111

START

•
•
111A

GOAL

Figure 1. An Eight-puzzle problem with a minimal path of 30 moves, shown both
in geometrically and numerically coded forms

the case chosen for illustration. The 20160 different soluble configurations fall

into 1439 distinct symmetry classes, of which 12 have minimal paths of 30
(Schofield, 1967). Two variant forms of representation, geometrical and

numerical, are shown in the figure, and both forms were used in tests of

human problem-solving behaviour. The form of visual representation turned

out not to have important effects on solving efficiency, except that a change
from one to the other was accompanied by a marked slowing of the rate of

making moves.
Solution efficiency, expressed as 100 x (minimal no. of moves)/(actual

number of moves), proved to be independent of the difficulty of the puzzle,
measured by the length of the minimal path. Under intensive practice the
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average efficiency of thirty-one subjects rose from 30 per cent to about 50 per
cent. The best three subjects chosen from these were able to improve with
further practice from about 65 per cent to 75 per cent. None did as well as our
colleague Mr R. A. Chambers, who consistently averaged 90 per cent (95 per
cent in the ̀ digits' rather than ̀ circles' representation).
The Graph Traverser, using unit steps as the total repertoire of state-

transformations, and a short-term memory capacity of 100 states, also averages
about 90 per cent when equipped with a well-designed evaluation function
(Ross, 1967). It would seem a natural step to measure the further gain to be
got from man-machine co-operation by testing, e.g. Chambers harnessed to
the Graph Traverser in its on-line mode (see Doran, 1968). This would,
however, be uninformative, since the levels attained by human and machine
methods without the benefit of co-operation are so high as to leave little mar-
gin for improvement. We therefore regarded the sliding-block work as a
Preliminary skirmish and turned our attention to a difficult and industrially
important problem—the 'Travelling Salesman'—on which the Graph Traverser
program has already been used with some success.

MATERIALS AND METHODS

Minimum traverse version of the Travelling Salesman

In the version of the Travelling Salesman which we will consider, it is required
to find a shortest route linking n points scattered over a two-dimensional
surface so that a complete tour is formed, i.e., each point is joined by straight
lines to just 2 other points. The 'cost' of a solution is thus proportional to the
sum of the lengths of n straight lines. In the general form of the Travelling
Salesman the costs are given by a cost matrix, which may be arbitrary. We
are here concerned with the special case where the cost of joining point i to
Point j can be computed as A/{(xi —.x3)2+ (yi— y1)2). The relevant area of
application in the industrial context is the ̀ minimum traverse' criterion for
choosing the route which a numerically-controlled machine tool is to follow
in carrying out some repetitive operation. Here the points represent holes to
be punched or drilled at specified places in a sheet of metal. The shorter the
tour performed by the tool, the less, in general, the time consumed in the
Operation.

Shen Lin's method

No algorithmic solution to the Travelling Salesman problem is known. Good
solutions can be obtained by human solvers working with paper and pencil.
Various heuristic methods of computer solution have been proposed, of
Which the method of Shen Lin (1965) is particularly simple and effective. An
improvement on his results has been obtained by embodying the set of state-
transformations used by Shen Lin in the 'develop' procedure of the Graph
Traverser (Doran, 1968). The modification thus introduced can be described
as follows. Shen Lin's basic operation consists in breaking a complete tour
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in three places and rejoining the severed ends in all possible ways. For a given
nl

tour there are ways of selecting the three links to be broken, so that(n-3) 131
any given 50-point tour has of the order of 100,000 descendants which can be
generated by applying the Shen Lin set of transformations. Shen Lin's pro-
gram starts from a randomly constructed tour and applies transformations
to this trial solution in a random order until a descendant of lower cost than
its parent is generated. The process is then restarted on the new candidate.
When a solution is found which exhausts the entire set of transformations
without producing an improvement, search terminates and is restarted from a
new randomly generated trial solution. After a given number of such randomly
initiated searches, the best of the terminal solutions is taken.

Extension of Shen Lin's method by use of the Graph Traverser

The consequence of using the Graph Traverser is that after failing to improve
a given solution the search is not immediately terminated and restarted from a

Randomly 411172
selected
tour

277

Shen Lin algorithm

r
Randomly 

71172

selected
tour

The Graph Traverser
algorithm

Figure 2. Two algorithms for the Travelling Salesman problem. Trial solutions are
successively generated and each is used as the starting point of a new trial solution
so long as improvement continues.
In Shen Lin's version, search terminates at the solution from which no improved

immediate descendant can be generated. In the general purpose problem-solving
program, the Graph Traverser, the distinguishing feature is continuation beyond
this point by the launching of new searches from the previous best solution
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randomly generated state. Instead it is restarted from the best previously
generated solution to which all possible transformations have not yet been
applied. The effect of this back-tracking feature depends on the length of the
back-tracking step. Taking the total length of the search tree from the start
to the Shen Lin terminus as n, restarting the search from level n —1 proved
ineffective for 50-point problems: the new search almost invariably ended at
the same local optimum as the old search. But when the back-track level was
set to 100 (n ranged from 150-180) the benefits were substantial. The contrast
between the Shen Lin and the Graph Traverser search algorithms is illu-
strated in figure 2.

Solution by unaided and computer-aided humans

Five 50-point problems were constructed, choosing co-ordinates by random
sampling from a uniform distribution. The same five problems were given to
four human subjects of whom two were undergraduate students, one was a
member of the research staff, and one of the secretarial staff. The problems
were presented as assemblages of dots, each problem being set out on a sepa-
rate sheet of graph paper. The subject was allowed pencil, India rubber and
straight edge but no measuring instruments. Unlimited time was allowed, the
average time taken being a little more than an hour for the total of five pro-
blems. The same subjects were brought back after the lapse of several days
and given the opportunity to improve their solutions by the interactive use of
a computer-driven display and light pen as shown in plate 1. The program,
written in assembly language by J. V. Oldfield for the PDP-7 computer,
enables the user to join one point to another in a straight line, to delete lines,
and at any stage to call for the 'cost' (i.e. the total line length) of the currently
displayed trial solution to be output on the teletype. In mode 1 only these
facilities are available. We shall refer to this 'no back-track' version as Tsl. In
the 'back-track' mode, developed by J. G. Fleming, the user has the facility
of restoring the display to the best solution obtained so far, this being stored
internally. In addition he has the facility of saving any sub-optimal state
which he particularly likes, and returning to this from any subsequent state.
Only one such sub-optimal solution may be thus pigeon-holed at any one
time. The second, back-track mode, referred to below as Ts2, can be seen to
be essentially a Graph Traverser search, in which the user takes the place of
the program's develop procedure. This manner of exploiting the human solver
as an adjunct to a problem-solving program has been termed by Collins
(1964) the 'human sub-routine'.

After the lapse of a further week or so, the same subjects were allowed to
improve their previous solutions by using a program with the full save-and-
restore facilities described above. The time taken by subjects when using the
display program was very much greater than for their paper and pencil
attempts, in some cases running to several hours for the completion of all
five problems.
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RESULTS

A summary of the results is set out in Table 1, which shows averages over the
4 subjects. The performance of the Graph Traverser algorithm is set out for
comparison and in an additional row are tabulated the results obtained by
R. A. Chambers, the especially 'gifted • problem-solver whom we mentioned
earlier.

problem

unaided

with T sl

with T s2

means
of 4

• subjects

Graph Traverser

Chambers with T s2

average

4469 4641 4723 4300 4276 4482

4363 4523 4525 4177 4062 4330

4220 4486 4308 4078 3970 4212

4144 4400 4192 3976 3964 4135

4144 4400 4192 3976 3924 4127

Table 1. Quality of the solutions obtained for five 50-point Travelling Salesman
problems in arbitrary units of cost (i.e. total length of tour)

To control the possibility that a practice effect was involved in the improve-
ments observed in the sequence 'unaided' -).`Ts1' -)-`7.s2', a further four sub-
jects were subjected to the same testing procedure, except that the three tests
were presented in reverse order (i.e. ̀ Ts2' -*'unaided'). Observed im-
provements averaged less than half of one per cent, indicating that practice
effects can be disregarded.

• DISCUSSION

It is evident that for the Travelling Salesman problem the use of on-line
graphics by the human solver can substantially assist him. The average total
improvement obtained by the 4 'standard' subjects (excluding Chambers)
was 6 per cent, and thus represents a non-trivial gain in economic terms.
Approximately half of this gain was obtained with the Ts1 version of the
graphics program, which lacked the back-track feature, and hence is attri-
butable solely to the ability to summon instant cost calculations in respect of
given trial solutions. This facility can also be used for rapid evaluation of
rival partial solutions ( Chambers in particular availed himself very freely of
this when using Ts2). The other half of the total improvement can reasonably
be attributed to the back-track feature of the Ts2 graphics program, whereby
the user can at any time command the best solution obtained to date to be

Plate 1. (opposite) A subject using the interactive graphics program on a Travelling
Salesman problem
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displayed. It is interesting that the further freedom to save a fancied solution,
not the best, exercised no attraction for the subjects, who in general ignored it.

The back-track feature

Back-tracking proved its worth in a quite general and consistent fashion—both
in the Shen Lin v. Graph Traverser comparison and in the comparison be-
tween the T sl and T s2 programs as aids to the human solver. Could the
human solver benefit, as does the off-line program, from having available a
larger unit of back-tracking? This could be tested by offering the facility in
the form 'restore to previous best prior to level n—m' where m could be set to
1, 2, 3, . . ., etc.
As for the use of the previous best obtained in an earlier session, the be-

haviour of Chambers stood out from the rest. He invariably refused the
option of using as starting point his previous best solution—e.g. his best
unaided solution as starting point for using the TSI graphics program.
Instead, he began afresh with the virgin pattern of 50 points, stating that he
did not wish to be committed or biased to investigate the neighbourhood of
his previous solution, in case it might require radical re-organisation to obtain
further improvement. Nonetheless the various methods and approaches
tended to converge on the same, or very similar, solutions. This can be seen in
figure 3, in which the detailed progress of one of the five problems, problem
C, is followed. The Graph Traverser solution is identical with that obtained
in computer-aided mode by the best of the four subjects, and virtually identi-
cal with the other solution shown. It is also identical with that obtained by
Chambers in computer-aided mode.

Why use computer graphics?

The question next arises: do these results indicate a use for computer graphics
for problems of this kind? A tabulation of some relevant indices is given in
Table 2. On the face of it, the man-machine combination wins. But since the
Graph Traverser has not been coded for run-time efficiency, judgment should
be suspended.

indices of utility, per problem

method time cost (shillings) improvement

unaided (mean of 4 subjects) 15 mins 2
6 per cent

interactive graphics 30 mins 100
2 per cent

heuristic program 120 mins 800

Table 2. A rough calculation of the cost and effectiveness of the three methods. The
gains obtained by replacing unaided by interactive methods are purchased more cheaply
than the further improvement which can be got by use of an off-line heuristic program
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Random start:
cost 17724

Shen Lin end—point:
cost 4236

Half way stage:
cost 8420

Graph Traverser solution:
cost 4192

Figure 3. The first four diagrams show successive trial solutions in the application
of this program to a Travelling Salesman problem. The first is a randomly constructed
tour (the problem is to link n cities by as short a route as possible), the second is
the state of affairs halfway through the program's problem-solving activity. The
third corresponds to the Shen Lin termination point and the fourth is the best
solution obtained. The four diagrams (facing) show the efforts of human solvers, on
the left-hand side unaided, and on the right-hand side with the assistance of the
interactive graphical program illustrated in the photograph
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Human1 unaided:
cost 4304

Human 2 unaided:
cost 4664
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Human1+ interactive graphics:
cost 4192

Human 2+ interactive graphics:
cost 4196
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This discussion overlooks the fact that intensive study has been invested in

the Travelling Salesman problem, including Shen Lin's proposal of the power-

ful 3-cut set of operators. As soon as we move to a problem in which invisible

capital of this kind has not been invested, matters take on a different look.

Consider a network problem, related to the Travelling Salesman: n points

are distributed on a flat surface of which one is known as the origin It is re-

quired to find a complete tour of all points, consisting of a number of excur-

sions departing from and returning to the origin such that no excursion con-

nects more than m points. Figure 4 shows a solution of the Coin Collector

problem, as we call it, constructed with n = 32, m = 7.

Figure 4. A specimen solution of a 'Coin Collector' problem with n=32, m=7 (see text)

Clearly it would be possible to study the Coin Collector with a view to

finding an operator set for the Graph Traverser. If the problem were of great

economic importance and likely to persist for a long time, this could be

worth doing. But the quick and easy way would be to equip a gifted human

solver with an interactive graphics program such as we have described.

Concluding remarks

When we embarked on this study, we were confident that 50-point problems

would extend the powers of man and machine. It turned out otherwise, since

both the off-line and the on-line approaches proved capable of getting within

a fraction of one per cent of the presumed optimum. Indeed, even without any

aids at all, Chambers proved capable of getting within 11 per cent of best.

This circumstance allows us to pose rather clearly the conditions under which

interactive graphics have benefits to offer.
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The man-machine combination should, we suggest, be regarded as a means
of forcing an entry into territory which would be otherwise impenetrable, but
which it is intended ultimately to subjugate to the arts of full mechanization.
We thus see interactive techniques not as an end in themselves but as a step
towards having the problem solved entirely by the machine behind the scenes.
We see a progression of stages: algebraic simplification, for example, was
initially a job for man alone, because in the state of the art prevailing a few
years ago it was too difficult to mechanize. At the present moment this family
of problems is transitional, with scope for collaborative work using graphic
methods. Soon the more purely tactical aspects of symbol manipulation will
be so well mechanized that they will cease entirely to obtrude on the user,
Just as he is untroubled today by the niceties of floating-point arithmetic
Which monopolized so much attention in earlier years. The wave-front of
interactive graphics will then roll on to problems at a more strategic level.
What is strategic today is tactical tomorrow. The present study has caught a
Particular problem-50-point Travelling Salesman—in transition. Further
effort devoted to the problem should go to improve the off-line program.
Further effort devoted to the on-line program should be directed towards
more complex and highly structured problems.
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1. PROLOGUE—THE RELATIONSHIP OF CONVENTIONAL
COMPUTING SCIENCE RESEARCH TO ARTIFICIAL
INTELLIGENCE

Ernst and Newell (1967) have discussed programming languages as problem
solvers. An ALGOL program 'solves' a certain restricted class of problems.
The program is constructed using the primitive control structures and primi-
tive data structures of ALGOL. An artificial intelligence program also solves a
class of problems in an analogous way. It has a heuristic control structure
rather than one which is straightforwardly deterministic, but Newell and
Ernst thought this an unimportant distinction. One might consider an artificial
intelligence program as a choice of data structure and control structure which
could have been a choice of language. They did not consider the design of a
language for artificial intelligence, but it seems to me that such programs are
so diverse that an extendable language with suitable primitive structures
would be appropriate.
Second, an interesting paper by Simon (see Simon, 1967) compares the

central nervous system to a time-sharing monitor program. He argues that
Processing in the human brain must be serial, and that given the multiple
needs of the organism in an unpredictable environment, one is led to a moni-
tor-like control structure with hierarchies of goals which are 'motivations',
and an interrupt mechanism which leads him to a theory of emotion. Certainly
one would like a control structure which can serve a multiplicity of motives

simultaneously, as opposed to the dogged, weakly contextual control of most
Problem-solving programs.

2. INTRODUCTION

In this paper I try to describe the current state of interactive programming in
so far as I have been concerned with it at Carnegie-Mellon. I describe the
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graphics system on the G-21, the main computer at present. The graphic

monitor and special procedures in ALGOL and Formula ALGOL provide a

software system for writing programs with human-program interaction.

Some of the difficulties of system programming and of the design of languages

which have well-defined semantics during interaction and which provide the

needed facilities are discussed. Examples of programs which have been written

to interact graphically are described.

3. THE G-21 GRAPHICS SYSTEM

3.1. Hardware

As shown in figure 1, the G-21 is a 64K computer with two central processors,

which runs a card and teletype queue and a teletype servicing monitor. There

is a general filing system called AND. There are three very advanced scopes
(see Quatse, 1966), also serviced by a special auxiliary 'scope monitor'. Rather
than using a special satellite computer, we have an auxiliary 8K module of
core which is switchable, i.e. it can be switched, by a G-21 machine order, to
be addressable by the G-21 central processor, at which time it replaces a
normal module. The entire normal core consists of eight modules. Programs
can run using 32K or 64K and they can interact with the switchable module.
The module contains code which receives interrupts and performs actions
under control of the human scope user; it also contains display material which
is a sequence of scope op codes which is acted upon by the scope scanner. The
scope scanner is a separate processor which displays the display material on
the screens and enables display material to be entered by human action at the
scopes. Thus, the scope module is used by two separate processors; one which
interprets the bit patterns as G-21 machine orders, and the other which
interprets them as display commands. I suppose any autonomous i/o unit is

similar in this respect. It conjures up the idea of a large computer with several

processors, some doing computing—setting up Vo material—and others per-

forming the Vo operations. One can enter characters (a large set is provided)

or lines, but no curves (these have to be fabricated from lines), and the scanner

will also perform certain editing operations on the display material, like

clearing a display region or deleting or inserting an element. The display

material is broken into a chain of linked modules which the scanner constantly

scans. Each module is headed by a delimit scope opcode saying on which

scope(s) the display is to be shown. Each scope can have four separate

display modules, called its pages; they are of arbitrary length and can be

displayed or superimposed visually at will at the console.

3.2. The scope monitor

The scope monitor (see Bond, 1967) manages the core available space and

performs managerial operations on request by the human user or a G-21

program in 'lower core'. It time-shares the three scopes and has a simple,

variable increment, interrupt stack for each scope. The various facilities
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SOME OF THE OPERATIONS PROVIDED BY THE SCOPE MONITOR

Option state
Interrupt No. 2. select management state

3. select program state
4. select debug state
5. select text handling state
6. select user manual state
7. select drawing state
8. select user program interaction state
9. layout
10. select text editing state

Management state
2. Save page N as scope file M.
3. Read in scope file M to page N.
4. Append page N1 to page Ny.
5. Display directory of scope files.
6. Get N blocks for page M.
7. Enable page id for human input.
8. Disenable page M.
9. Delete page M.
10. Create space on a scope file.

Program state
2. Convert page N and move to 0-21 input buffer.
4. Submit input buffer to 0-21 queue.
5. Display input file.
6. Display input file.
7. Forward ten lines through file.

8. Back ten lines.

13. Allow program submitted from scope N to interact.

Interrupt 1 always switches on or off the main display.

Figure 2

provided by the scope monitor are demanded by twenty interrupt buttons, the

meanings of the buttons being shown in an explanatory display (like a menu).

The operations are arranged in groups called states, and one changes state by

interrupt also in a hierarchical fashion. We think that the commands available

form quite a comprehensive set (some are listed in figure 2), and we are trying

to make it easy for ordinary users to use the scopes using ordinary ALGOL

and Formula ALGOL programs.

3.3. Writing interactive programs

The way one writes an interactive program is simply by using commands very

similar to the interrupt commands. Each of these corresponds to a monitor

user routine, which we call B routines. A list of B routines is given in figure 3.
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B ROUTINES

a(-1). Announce user program to scopes.
B(0) and B(1). Convert characters to and from display format.
B(2) and B(3). Move characters and vectors to display region.
11(4) and B(5). Move display region into program array.
B(6) and B(7). Read and set the cursor.
B(8), B(10), B(11). Read knobs, read switches and set switches.
B(12), B(13), B(21), B(22). Set compare character, define compare routine,
remove compare character, reset compare routine.

B(14), B(23). Set memory-full routine and reset.
B(15), a(16), B(17), B(18), B(19), B(20), B(28). Get display space for a page,
enable the page, disenable the page, delete the space for the page, disenable all
pages, clear a page.

B(24). Set compare character, compare routine and set cursor to receive set.
B(25). Define button interrupts.
B(26). Display a page on another scope, if permitted.
B(29), B(30), B(31), B(32). Move page or array to a scope file and vice versa.

B(34). Read in a 3-digit integer and read in a string of characters.
B(42). Declare AND files as subsystem files.

Figure 3

B. y a succession of B routine calls in a program one can set up display or read
in display from the scope face. In ALGOL, a procedure called B is provided,
Whose first argument BNUM is the number of the B routine being called. The
Procedure B performs all the necessary module switching, checking, memory
protection, etc. The means available for human-program interaction are as
follows:

(i) each displays text to be read by the other;
(ii) each displays a general display of lines and text;
(id) various hardware attachments:

(a) two 'analog knobs' with values in [ 0,63] can be set
by humans and read by program;
(b) the cursor can be set and read by both;
(c) eight switches can be set and read by both;

(iv) the use of interrupts
(a) compare interrupt on a certain (set of) character(s)
on a certain page;
(b) memory full interrupt;
(c) button interrupts, numbered 1-19.

Figure 4 also lists a library of ALGOL routines written using the procedure
135 giving a fairly comprehensive set. Note that input and output of card
images in the chly implementation can use an ALGOL array as buffer, and so
the scope Vo has the full formatting and conversion facilities of the A LG o L-20
Vo language.
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SCOPE LIBRARY

I. INTEGER PROCEDURE Loc(N);
2. s(Rigum, R52, R53, R54, R55, R56);
3. HEADER (X ,y);

4. VECTOR (X,Y,SG);

5. cHA2sTa(cl, c2, c3, scl, sa2, sci3);
6. Num(x,Y,N);

7. LINE (xl,Y1,x2,Y2);
8. CURVE(X,Y,T,DT,TA,TB);
9. sCALEx (x); ScALEY(Y);
10. READPAGE (N,RBUFF);

11. PRINTONPAGE(N,WBuFF,X,Y);

12. BUTTIN (ENT,CONSW,INTNO,SCOPENO,COMPCHAR);
13. COMEIN (X,Y,CHAR,PAGENO,ENT);

Figure 4

3.4. Permission to interact and interaction with more than one scope

Before any B procedure can be called, 13( — 1) must be called. This announces
the user program to the scope monitor which allows interaction provided the
program was submitted from the scope, and not from some other medium,
and that the job card corresponds to the user logged-in on the scope. The
program also checks, just before, that the scope monitor is indeed present, by
checking a 'clobber word' in the scope monitor core area. If a program wishes
to interact with more than one scope, it sets a variable (a register) when call-
ing the B routine. This will lead to an error unless the human at that scope has
first instructed the scope monitor, by means of an interrupt, that it will allow
the program submitted from scope N to interact. The program can display
and read from scopes for which permission has been given. When an interrupt
is generated by the human, the scope monitor passes the number of the inter-
rupting scope to the program.

4. USER INTERRUPTS

The program can define certain points to be entered on interrupt. The scope
monitor, of course, processes all interrupts, and recognizes those destined to
be processed by the user program and passes control at an appropriate point,
together with useful information. The compare interrupt is set by putting a
special scanner opcode in the module of core corresponding to a given page.
Any subsequent attempt to type in a character, of the type designated only, on
that page will cause the scanner to generate an interrupt and place the recog-
nized character in a fixed location to be read by the scope monitor. User
interrupts of this type can occur in any state; however, the button interrupts
are defined by the 'menus' until the monitor is in the 'user program interaction
state'. When these interrupts are first defined and the entry points declared to
the scope monitor, the user program also passes certain integer arguments
which are locations of variables in the user program, i.e. the user program
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essentially declares some variables for communication with the scope monitor.
On interrupt, the scope monitor places all the information, like interrupt
number, scope number, etc., in the agreed locations and passes control to the
user. To prevent multiple interrupt problems, it was found unsatisfactory to
use the hardware control register of the G-21 which prevents any interrupts
occurring, as this was too powerful. Instead, one of the declared variables is a
user interrupt control switch and is consulted by the scope monitor before
Passing control. If the switch is set, the scope monitor ̀ remembers' the in-
terrupt (it does not queue multiple interrupts, however) and keeps inspecting
the switch. Thus, one has a shared ALGOL variable, which if used foolishly
could cause havoc. For example, the interruption of the evaluation of an
expression involving the scope number might have one value for it in one part
and another in another part of the evaluation; however, this mechanism, if
used sensibly, can be advantageous.
The interruption of programs written in high-level languages has its pro-

blems. In machine or assembly code one can simply pass control anywhere;
the only errors are those to do with the interruption of a printing command,
in which further printing is attempted. This leads to a machine halt from the
Printer on our machine. If data is overwritten by the new control, in particular
return ̀ marks', then one assumes the programmer knows what he is doing;
he must save any information as it enters the interrupt entry point. In ALGOL,
first of all, note that we always use integer variables which are locations of
variable, i.e. the address of where the value of the variable is stored. This
needs the library procedure LOC. I believe something like this has been pro-
posed in ALGOL x, and is defined in CPL. Normally, the user's interrupt
entry point is to his own interrupt service routine; we shall call this the UISR.
It makes decisions about what to do next. If it wishes to return to the inter-
rupted computation, then one has to be careful. If it is a simple procedure or
simply nested set of procedures without gotos then one can simply return
through the UISR return mark to the monitor and thence back to the inter-
rupted computation; this is arranged by the scope monitor. If one has
wandered further afield using gotos then a B routine is provided to allow it
to return to the interrupted computation. The interrupted computation can
then continue provided no damage has been done. In genuine recursive
ALGOL, the return marks of all routines will be all right; in non-recursive
implementations, not so. A call on a monitor routine (the normal monitor,
not the scope monitor) which is overwritten by a similar call in the UISR Will
lead to trouble. Printing in the UISR will upset NAME lists in the ALGOL
Printing routines, and indeed it can be said that if a return to the interrupted
computation is envisaged, the UISR must not print or communicate with the
monitor. In most programs the u In does not return, however, and usually
initiates some entirely new task.
Something more powerful than ALGOL, like Formula ALGOL (FOR ML for

short), is another matter entirely. The implementation at Carnegie-Mellon
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has two features which interest us here. First, it compiles code which is
heavily dependent on (non-recursive) run-time routines. Second, all marks
and values and printing pointers are stacked in a communal ̀historian' stack.
The u ISR has to be restricted to a very small subset of FORML; in fact, simple
arithmetic expressions and assignments, and local backward gotos only, to
avoid disturbing the historian.
The typical program is usually happy to wait in a passive loop looking at a

switch and then to act accordingly. One only really wants to interrupt if one
sees one's program on a long, worthless task and wishes to terminate this
action prematurely. Usually one issues a command and waits for completion
before issuing the next command. It is interesting to observe that interactive
programs must take on more of a monitor structure than normal programs,
also that flow-charting of such programs can sometimes be tricky with control
lines appearing out of nowhere, and presumably also going to nowhere, viz.
the monitor. Whether sophisticated interactive programs will have to worry
about queueing of interrupts or priorities of interrupts is not clear. An advan-
tage of interrupts is that they do tend to give a quick response to the human.

Before going on to discuss interactive programs, I shall first describe briefly
the other type of interactive user system, viz, the user submonitor and also
the modular version of the monitor.

5. THE MODULAR VERSION OF THE SCOPE MONITOR
AND USER SUBMONITORS

In the new version, close to completion, the scope monitor has been restruc-
tured as a small resident part 1000 words and a set of relocatable modules
of code which swap as required from the disc.
Any user can write a ̀ submonitor' consisting of an indefinite number of

linked modules. These are declared, i.e. assigned logical numbers, by the
human. They may be on scope files or AND files, on the disc, and they are
used in the same way as system modules. In this way it is now possible to
extend the scope monitor indefinitely in modular form, assembling and de-
bugging individual modules only. The assembly of suitable modular code is
achieved by a small set of macros, and any assembly program can be so con-
verted. Unfortunately we do not have base registers, so we use a relocation
algorithm to relocate the modules at run-time. No high-level language is
available for writing this kind of system, but the macro assembler, SPITE, is
quite nice. We now have the situation of one large available space, and mo-
dules of system code, user code, data, or display material all being allocated
space. A text editor submonitor has been written by M. Coleman, which pro-
vides extra text manipulation facilities, actuated by graphical commands.

6. CONTINUOUS OPERATIONS AND CONTINUOUS

CONSTRAINTS

The scope monitor provides various continuous operations for the human

264



BOND

user on request. It will continuously sample a selected area of core and displaX
an octal dump. Using the analog knobs, one can select any area in the G-21
for display. One can request a rotation mode in which a rotation of an analog
knob rotates the vectors on a selected page. One can request a curve drawing
mode in which the scope monitor puts in line elements as the cursor is moved.
No continuous operations are provided for a user program at the moment,

but we feel that some continuous monitor capability could be provided. The
user could specify some condition and the monitor could continually check it
and interrupt when necessary. This is similar to the P L/1 operation ON, but is
provided by the monitor rather than being part of the user program. Hardware
interrupts can be used to monitor access of, or storage into, flagged
locations.

7. INTERACTION WITH TYPEWRITERS

Although some provision is available in the main monitor for interaction with
a teletype, no one has yet used this facility in a user program. The routines
are used by a desk calculator program, similar to Joss, which is a part of the
monitor, and available on line to any teletype user. The assembler SPITE
does have provision for error correction by human intervention at assembly
time using a teletype; however, this involves reinitiation of the assembly by
job-card.

8. INTERACTIVE PROGRAMS

1. Brooker Morris Compiler-Compiler. This has been implemented on the
G-21 by F. R. A. Hopgood (1967). We simply added graphical input-output.
Input cards are typed on one page and cleared as they are processed. The
last few lines of line printer output are displayed on another page. The
response time is imperceptible.
2. The GRASP System. This is a graphic service program written by E. M.
Thomas (1966, 1967) in ALGOL for the G-21. It is a model building language
Whose format is like a series of procedure calls. It can also be used as an
outer block to an ALGOL program, in which case the procedure calls can be
freely incorporated into ALGOL statements. It differs from Sketchpad in
several ways, and it does not have constraint satisfaction built in.
3. GRANIS. A graphical inference program written in Formula ALGOL
by L. S. Coles (1967). It reads in a picture from the scope face and a statement
and decides whether the statement is true or false about the picture.
4. A Pattern Recognition Heuristic Program, by T. W. Calvert (1967). It
allowed some human intervention, but mainly for the purpose of gaining
insight into its behaviour rather than for a man-machine production system.
5. A graph drawing, interactive iterative and curve fitting system in ALGOL
is under development by the present author. Its purpose is to experiment with
a very intense interaction between a human and a set of functions.
A typical layout of an interactive program is given in figure 5.
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9. THE FUTURE

In the coming year our two new computers, a Univac 1108 and an I B M 360/67,
will take over the main computing load. Some conversational compilers are
provided, and we will write some systems ourselves. The L cc project by
Perlis, Van Zoren, and Mitchell is a modified conversational ALGOL with a
delightful dynamical structure. It is being implemented on the 360. There will
be graphics on both machines, but it is not yet clear what hardware will be
suitable or what software will be available. The G-21 will gradually become
used mainly for graphics. There are several application programs being
written in ALGOL for oil mining analysis, structural stress analysis, electro-
cardiogram recognition, architectural design, etc. Also, there are a few artists
beginning to try to use the computer as an artistic medium or artistic aid.
Eventually the main monitor will be altered to allow the three scope programs,
one from each scope, to monopolize the machine with a swapping system. In
the coming year we hope to get some experience with ordinary users writing
Interactive graphical programs in the usual high level languages.
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Maintenance of Large Computer Systems—
The Engineer's Assistant

M. H.J. Baylis
Atlas Computer Laboratory
Chilton, Berkshire'

SUMMARY

This paper describes some of the difficulties in maintaining large computer
systems and considers how machine perception techniques can be applied to
the problem. A program called the 'engineer's assistant' is described as a
step in the right direction.

Elaborations are made on the meaning of 'the right direction', and an
experimental implementation of some of these ideas is described.

INTRODUCTION

A large computer system is usually maintained by a team of engineers.
Inevitably these tend to be of different abilities, and some of them become
more knowledgeable and therefore more proficient than others in specific
areas of the machine. Although computer 'down time' has become more
expensive by an order of magnitude on present large systems compared to the
last generation, the engineers are not mending faults an order of magnitude
faster. Moreover some faults which can occur nowadays are considerably
more complicated than last generation faults. Therefore the best engineers are
usually called upon in times of trouble, and these increase their experience at
the expense of the other engineers. When these expert engineers move on to
other jobs they take with them an invaluable sum of accumulated knowledge
about the machine.

Further, when a unit gives trouble after a lengthy period of successful
working, everyone present has forgotten how to proceed in tracing the fault.
Symptoms often show which cause engineers to say 'we had this trouble two
years ago, what did we do then?'
As a better than typical example, consider the present maintenance system

on the I.C.T. Atlas computer at S.R.C., Chilton, remembering that Atlas was

Now with I.C.T. Ltd.
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designed around 1959. The engineers have a number of programming aids for
preventive maintenance and fault diagnosis.
These include

(i) one or more stand-alone test programs for each part of the machine;
(ii) an engineering operating system which will multi-process many of

these test programs;

(iii) a test-programming system which can run tests as object programs
during normal computing service;

(iv) the operating system itself.
During scheduled maintenance time, (i) and (ii) are used for preventive work
on those parts which have not been inspected during computer service time
with
The operating system includes a number of tests. Instead of ̀idling' in

those periods when it is impossible to carry on with object program execution,
random tests are made on the arithmetic units, and every five minutes a few
tests are made on special equipment such as the instruction counter and the
digital clock.
For all incidents of machine failures, the operating system outputs what

information it can about the state of the machine and the malfunction. This
maintenance system works well for finding normal faults but is of very limited
use in finding obscure faults.
In the last few years significant improvements have been made by computer

manufacturers in maintenance methods. As the cost of computer components
has dropped, it has become feasible to provide much more checking logic in
the machine. This extra logic allows for quicker detection of malfunctions
and frequently permits the current state of the machine to be preserved for
inspection. However, it seems to me that these improvements are not of much
help in finding obscure intermittent faults.

FAULTS AND THEIR FINDING

We might group faults into two broad classes: those which provide symptoms
regularly (solid faults), and those which provide symptoms very intermittently.
The first class is, of course, the easier to investigate. Such aids as test pro-

grams, oscilloscopes, etc., are well understood. The second class provides
much more interest. How does one find a fault which shows itself once in an
hour or once in a week? The answer, one likes to think, is by logical deduc-
tion from the evidence, backed up by intuitive guesses as to what could go
wrong, based upon knowledge of previous machine behaviour. At present
rather haphazard techniques are followed, such as the following:

(i) the incident might be ignored, with the hope that it will either go
away or develop into a more solid fault;

(ii) engineers' tests or tests made from user programs are run for lengthy
periods while various engineering attitudes are struck (e.g. varying
the voltage margins);
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(iii) guidance is sought from possibly helpful system program writers

as to what was going on in the machine at the time of trouble.

When a large machine is first commissioned, intermittent faults tend to be

hidden in the noise level, compared to solid faults. After a year or so the ratio
is more than 80:20 in favour of intermittent faults. One reason for this is

that multiple machine failures occur for each intermittent fault before it can

be eliminated.
The general solution to this problem of minimizing down time must be to

automate the processes of deduction as far as possible. The solution presented

here consists of some primitive hardware and a sophisticated computer

program to supplement the standard maintenance methods. The name

'engineer's assistant' is given to this sytem. We consider the program first.

OBJECTS OF THE ENGINEER'S ASSISTANT PROGRAM

The major program objectives are, in order of complexity:
1. to accumulate a memory of the symptoms and remedies for all

previous faults;
2. to make this information available as needed:
(a) to aid engineers in fault-finding;
(b) to produce statistical information about the machine;

3. to provide question and answer guides to aid fault-finding;
4. to investigate and diagnose faults with little or no human assistance.

Taking these objectives in order, it will be realized that the major problem
in implementation of 1 and 2 is that of data structures. The program is required
to hold information about many interrelated objects; to access, add, delete,
modify, and do calculations on objects and their properties, including such

properties as interrelationships with other objects.
The work done in implementing a primitive engineer's assistant program on

Atlas has led to a belated recognition that the correct data structure is a 'plex'.

Plexes, like hash tables, are something that everyone invents for himself,
but the formal definition and exploitation is due to Douglas Ross of M.I.T.
(see Ross, 1961, and Ross and Rodriguez, 1963).
The name is taken from plexus—a network, or interwoven combination of

parts in a structure. A plex is an interconnected set of n-component elements.
The components of an element are its properties usually contained in succes-

sive addresses within the element. Typical entries would be the type and

name of the element, and information which might range from binary bits,

instructions, and symbolic data to different sorts of link connections with

other elements. A moment's thought shows that most, if not all, data struc-

tures can be regarded as examples of simplified plexes. The tree structure of

LISP (see LISP 1.5 programmer's manual, 1966) consists of elements with

only two components; the ̀ ring-structure' of Sutherland's Sketchpad project
is another example (see Sutherland, 1963).
For our particular application there needs to be a considerable number of
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types of element, e.g. installation, hardware units, sub-units, packages, faults,

etc., where all elements of any one type have a consistent layout of inf
orma-

tion. The interlinking of elements will not only start off fairly complicatedly b
ut

will get more and more involved as the memory matures. For example, a
n

element of type 'package' with name '890 board' might be reached through

the route 'installation— (s.R.c. Chilton), area — (core store system), unit— (sta
ck

5), fault—(digit 16 dropout)' etc. Or by the route 'package type- (re
ad

amplifiers),' or, again, by 'fault- ( any), position— ( m 03/10.4/16), date— (1/1/67

to 8/1/67) . . .', and so on.

So far, about thirty element types can be seen as necessary. Having decided

on a data structure, the next decision is to choose a language in which the

problem can be expressed. If most of the program can be generalized enough

to be machine independent, then it will be that much more valuable. At

M.I.T., extensions have been made to ALGOL by Ross eta!, for handling plexes.

There is some evidence that ALGOL x will be suitable. Another contender is

CPL.
Providing a question and answer guide for fault-finding is relatively easy,

assuming that the best engineers can explain how they mend faults. There is

one essential requirement: a facility for the user to modify the questions and

answers and provide new alternatives. In fact, for such a program to be really

machine-independent it must start off asking for questions and enquiring

what answers can be given. In order that the program can use its memory for

finding any similar faults, the format for such a dialogue must be in the same

form as the definitions given to elements in the plex.

We now come to consider the automatic investigation of faults. It should

be emphasized again that, although the system will work for solid faults, it is

the difficult intermittent faults that we are interested in finding. These may be

of two types: either they cause a machine stoppage or they do not. In either

case the fault may be in the central machine, that is, in the logic which controls

the processing of instructions, and in practice it is these faults which are har-

dest to track down. We can envisage an engineer's assistant program (EAP)

running in a partially broken machine, but because that may not be always

possible it seems desirable that there should be a separate satellite computer

for the program. The minimum connections needed are as shown in figure
 1.

With such an arrangement the EAP could follow its own
 question and answer

route independently, that is, it could phrase questions and select som
e

machine instructions which could answer them. This code would be positioned

in the large machine store and the large computer instructed to obey it
. Note

that a body of code can be an element on
 a plex structure. There is little

doubt that such a system would work. It would, however, have only limit
ed

success because, with many intermittent faults, the symptoms are transie
nt

and disappear before they can be recorded by any program. Also, symp
toms

manifested by programs are at present far too general; in the absence of more

detailed evidence there can be too many possibilities to investigate. There is,

272



large
machine
store

store
co-ordinator

large
computer
system

BAYLIS

satellite
store

A

■11 •■•• MNIIM ■1111,
satellite

A: the satellite can access some or preferably all of the large machine store

B: a control link at interrupt or high level

Figure 1. Basic connections for maintenance satellite

therefore, a requirement for much more intimate evidence to be accessible by
Program, and without such evidence progress will be slow.

HARDWARE CONSIDERATIONS

Most computers have an engineer's console on which rows of lamps flicker.
These lamps show the states of important control points in the central com-
puter, and if the machine stops then the lamps give some idea of what was
going on at the time.

Some observations are worth making:
1. There are not nearly enough lamps on most if not all computers.

It should be easily possible to monitor all decision points in the logic.
2. The setting of lamps should be incidental to the more important

function of setting bits in registers which can be accessed by program.
3. It should be possible to 'freeze' the states of these lamps and registers

when specified conditions are satisfied, and to allow the computer to
continue without altering these states. By having access to such powerful
evidence the EAP run from a suitable computer should be able to
make rapid and effective diagnoses. The freezing of states can be
done in a number of ways.
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FREEZE INTERRUPT

Figure 2. A possible simple check unit

Consider the check unit shown in figure 2. A, B, and C are buffer registers,
probably equal in size to the machine word length. D is a one bit register. A
and B can be set by hardware events H1, H2. B can alternatively be set by
program P1. C and D are set by program P2, Pg. With this checker, A and B

can be compared over a field C; D will then determine whether to freeze on
equivalence or non-equivalence. If it is required to freeze when there is a

difference between HI and H2 in field C, then D will set to a zero, for example.
It is not feasible to position these checkers everywhere they might be wanted.

Sets of floating plugs and sockets could be provided and the program or
engineer could decide where they should be placed. A better method would

be a switching matrix so that the EAP could connect the checkers it had to
the parts of the machine in which it was currently interested. As a speculative

matter, if checkers could be connected together under program control then
very sophisticated conditions for freezing could be set up.

To our basic connections between a large computer system and a mainte-
nance satellite we have now added special hardware to provide detailed infor-
mation in the form of 'snapshots' for a perceptive program. We now leave
these ideas and consider what has been implemented so far at the Science

Research Council Atlas Computer Laboratory by S.R.C. and I.C.T. in colla-
boration.
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THE ATLAS ENGINEER'S ASSISTANT

This program was mainly implemented by Andrew du Plessis ( s.a.c., now

Cambridge University) with the assistance of the chief maintenance engineer

Peter Dean (r.c.T. Ltd.) and myself (see du Plessis, 1967). Its object was to

explore the possibilities of a systematic data retrieval system applied to mainte-

nance engineering. Most of the program consists of fault location procedures
for the different parts of the machine. By running the test programs specified
and thus answering the questions asked, some progress towards diagnosing

faults will be made. When the program has reached the limit of the assistance
it can give (it will then be pinpointing a faulty area, a particular group of

Packages, or an individual package), it can output records of all previous

repaired faults which have followed the same diagnostic route. An underlying

assumption here is that a component which has failed once is likely to fail
again; in practice this is true enough on Atlas to make the program useful. It
is possible to retrieve fault histories without going through the question/
answer procedure, and to extract information about package types. The
Program is controlled on-line with a simple command language. After identi-
fying itself, the program asks for a directive. Some of these directives are
described below.

GUIDE 'UNIT'

This calls the fault location guide for the specified unit. Exit from the question/
answer routine back to the command language is made by typing 'return'.
The questions usually list alternative answers, and only the first few characters
are necessary for valid replies. A typical example might be:
TYPE DIRECTIVE

guide main store
ARE ALL STACKS BROKEN? 'YES' OR 'NO'

no
IS FAILURE 'TOTAL' OR ̀ INTERMITTENT'?

total
IS TOTAL FAILURE EVIDENT IN 'LOSS OR PREPULSE', 'ADDRESS

TEST', OR ANY 'OTHER' TEST?

address
TYPE AS TEST RESULT 'SINGLE' DIGIT FAULT, 'BOTH HALVES' OR

'ONE HALF' FAILING

both
RUN ADDRESS TEST ON FAILING STACK. LOOK DOWN 970 AND

971 MONITORS TO SEE MOVEMENT. TYPE

'MONITORS ALL MOVING'

monitors
CHECK ALL 972 CURRENT WAVEFORMS,
'0/K', 'HALF-SIZE' OR 'NONE'

half
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PULL OUT VOLTAGE 9 64' s ONE BY ONE UNTIL PULSES GO FULL-

SIZE. REPLACE FAILING 964

IS A CASE HISTORY OF SIMILAR FAULTS REQUIRED?

yes
TYPE STACK NUMBER

11

THE CASE HISTORY WILL BE OUTPUT ON THE LINEPRINTER. IF

STILL U/S CHECK VOLTAGE LEVELS. TYPE DIRECTIVE

finish

BOARD (b • 1.1a • plq)

The format for this directive is shown above where:

b is the particular package type number

Ua is a unit or sub-unit of the computer

plq is a particular set of package positions in the machine.

The last part or last two parts may be omitted. Thus it is possible to obtain

information about all packages of type b, to restrict this to a unit or to posi-

tions within a unit, e.g. the directive BOARD (822) would produce output of

records of the form:
Installation Chilton
Serial number 131
Incident on 29/03/67
822 board, number 146309 in sub-unit R, failed at 169/4*16.12B6 causing

fault type 03/B02.

PAR test 21 showed PAR 58 u/s. Board changed.

FAULT

The information retrieved by FAULT is a listing of faults which have occurred

in a particular unit. The type of fault may also be specified. The format is

similar to that for BOARD, and specifies the unit of the machine, an optional

fault type and, optionally, a point in the fault location guide for that unit.

Other directives include DATE for setting start and end dates between

which the program will operate, and PLACE. The latter commands information

retrieval to be only from the specified installation. There are of course editing

and updating programs for altering the memory. Engineers are forbidden to

mend faults without contributing to the memory.

The system has been in use for some time. Its main uses have been in helping

to train junior engineers and in presenting statistical information in a useful

way. For example, it showed that a certain package position in the central

machine had been changed significantly often. Once this had been observed,

it was quickly realized that, although changing this package appeared to cure

a fault, the trouble was in fact caused by an earlier logic stage.

Its limitations are that the data structure is not very sophisticated, the
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diagnosis tree cannot be altered easily, and the program is completely machine

dependent. It has been observed that sometimes engineers cannot answer the

questions. For example, the question may specify a monitor point and ask

about a certain waveform; the engineer may not be certain what the waveform

should look like. If the dialogue were conducted from a visual display unit

instead of a typewriter, then the expected pulse shape could be displayed.

ATLAS HARDWARE MODIFICATIONS

Frank Fennel of I.C.T. Ltd. is modifying some of the S.R.C. Atlas central

machine hardware along the general lines indicated previously. A second

console has been built which monitors nearly every significant point in the

machine. At present the monitored positions light lamps. Various freeze

facilities are being added by means of simple checkers (the basic one consists
of two floating buffers and a non-equivalence circuit). Plug and socket con-

nections have been wired on the main frames so the checkers can be manually
Put into position. An assessment of engineering success will be made over the
next few months which will decide how much further effort is put into the
project. It has been found that to check some parts of the machine (e.g. func-
tion decoding) it is necessary to build checkers which duplicate the relevant
machine hardware.

CONCLUSIONS

The system outlined in this paper might be of considerable use in the mainte-
nance of large computer systems. A perceptive program which can obtain
detailed information about the machine it has to maintain is not an unrealistic
proposition. It is possible to envisage a satellite computer deciding to vary
the voltage levels over a small area of a large machine, to monitor the be-
haviour, and to change packages without engineering intervention.
The situation will not be radically altered in the next generation of multi-

layer integrated circuit machines. For as far ahead as can be seen, if an area
of a computer has intermittent failures there will be some interest in finding
out about them.
There will be a need for a formalized accumulative record of machine faults

both for local maintenance help and for deciding whether any failures are

general enough to warrant package modifications or design changes.

The best test programs at present for a large computer are the operating

system and user's programs. Engineers' test programs should eventually be-

come redundant except for finding the simplest of solid faults—in which en-

vironment they are reasonably successful.
At the S.R.C. Atlas Laboratory a satellite will shortly be attached to Atlas.

The machines will share a common disc file and also be linked to look like

peripherals to each other (see Baylis, 1966, 1966a). This will provide a good

framework, in view of the work already done, for a project to produce a more

sophisticated 'engineer's assistant'.
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1. INTRODUCTION

In this paper we describe a program which will assign deep and surface struc-
ture analyses to an infinite number of English sentences.1 The design of this
program differs in several respects from that of other automatic parsers pre-
sently in existence. All these differences are a consequence of the particular
aim we have pursued in writing the program, which represents an attempt to
construct a device that will not only assign a syntactic analysis to any English
sentence–that is, a record of the syntactic structure that the native speaker
Perceives in any English sentence–but which also, to some extent, simulates
the way in which he perceives this structure. This is not to say that the analyzer
differs from others because we have based its design upon the findings of
psycholinguistic experiments. For one thing very few experiments on the
perception of syntactic structure have been carried out and for the most part
the results have been fairly inconclusive. But it is the case that we have, as far
as possible, treated the task of constructing an automatic parser as being itself
a psycholinguistic experiment. That is to say, any proposal regarding the pos-
sible operation of the program has been judged (mainly as the result of intro-
spection) according to whether or not it seemed to be consistent with human
behaviour. And this has led to our incorporating certain features which are
absent from other automatic parsing systems.
Among the most notable of these features is the program's ability to assign

syntactic labels to an infinite number of words while operating with a finite
dictionary. As far as we know, all other automatic parsers of English (or

1 This work was supported by the Office for Scientific and Technical Information
Grant No. ID/102/2/06 to Professor Angus McIntosh. H. Whitfield and D.J.Dakin
have also been associated with the work at various times.
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Russian, etc.) are constructed on the assumption that they will eventually

incorporate a dictionary containing every word in the English (Russian, etc.)

language and listing the parts of speech to which each word can be assigned.

It seemed to us essential that a syntactic analyzer should be able to deal with

any sentence in the language without having to have access to such a dic-
tionary, not only because the compilation of such a dictionary is a quite
impracticable task, but because it seemed to us extremely unlikely that a
speaker of the language needs to internalize and employ such a dictionary in

order to recognize the syntactic structure of sentences in his language, if only
because people are obviously able to recognize the syntactic structure of

sentences containing words that they have never heard before.
Another important characteristic of the program is that it only needs to

make one pass through the sentence it is analyzing and that any element in the
sentence is analyzed once and once only. Again our reason for ensuring that
the program should not call for multiple passes to be made through the sen-
tence under analysis is the result of our conviction that under ordinary cir-
cumstances human beings do not need more than one, although (as with
getting the program to operate with only a finite dictionary) it hardly sur-
prised us to discover that this also had a significant bearing on the efficiency
of the program.
But undoubtedly the most important decision that resulted from our

attempt to construct a model for the perception of syntactic structure was our
decision that the program should assign both deep and surface structure
analyses to sentences. Our use of the terms 'deep structure' and 'surface
structure' can be briefly (though inadequately) explained by the following
example. Consider the sentence The girl I liked left. Any English speaker,
having heard this sentence, possesses the information contained in the state-
ment that in this sentence The girl I liked is the subject and left is the predicate,
and that The is a definite article, girl a noun, etc. This is information about the
surface structure of the sentence. But any English speaker also knows that in

this sentence The girl is not only the subject of left but is also the object of
liked, even though, of course, the correct surface form of the sentence is The
girl! liked left not The girl! liked the girl left or The girl I liked her left. Since
we derive this information from the sentence without making any reference

to the context—as here where it is used merely as an example—then it is clear

that we derive this information not from the context (as is sometimes sug-
gested) but from our perception of the structure of the sentence, even though,

as we have seen, this part of the structure is not actually realized in the surface

form of the sentence. This information forms part of the deep structure of the

sentence. Nearly all the automatic parsers now in operation give information
only about the surface structure of sentences.'

1 For accounts of other programs which assign deep structure analyses see Kay (1967),
Petrick (1965), and Zwicky et at. (1965). For an explication of the concepts of deep
and surface structure see Chomsky (1965).
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2. METHODS AND APPROACH

Four constraints were originally imposed on the program:

(i) the program must not rely on looking up every word of an input

sentence in a dictionary;

(ii) it must process each sentence in a single left-to-right pass;

(iii) it must be constructed in such a way that at every stage of the
analysis process, some 'memory' would be remembering the decisions

made up to the current point in the sentence, and some predictive

process be looking ahead to what could possibly arrive next;

(iv) (in fact a consequence of (ii)) it must analyze each part of the
sentence once and once only.

To these constraints we subsequently added a fifth:

(v) it must undertake deep and surface structure analyses
simultaneously.

2.1

It does not seem to us reasonable to suppose that a person hearing or reading
a sentence in any sense 'looks up each word in an internalized dictionary' in
order to assign form-class information to it before proceeding with the analy-
sis process. Several reasons can be advanced against such a hypothesis, per-
haps the most cogent being that people can analyze sentences containing
words which they have never heard before and which, therefore, they cer-
tainly cannot have in any internalized dictionary. For instance, nobody
Should have any difficulty in deciding the syntactic structure of the sentence
He has gone to shoot a grison, although most people will not have heard of a
grison before and will not know what it is. Again, with He is going to disple
his mother-in-law or She will be furibund, although particular words may be
unknown the syntactic structures of the sentences are clear. Indeed, far from
its being the case that from a knowledge of the form classes to which particu-
lar words belong one deduces the structure of a sentence, it seems much more
likely that from the rest of the structure of a sentence one can derive the

classification of words in it. In the three instances: He ruled with an iron hand,
Strike while the iron is hot, and / will iron your shirt tomorrow, the knowledge
that iron can be an adjective or a noun or a verb would clearly be of no help
in determining the complete syntactic structure of the sentences. In fact, it
is because one recognizes the structure of the sentences that one knows that
iron is an adjective in the first, a noun in the second, and a verb in the third.

This is not true of all words, however. It seems that words such as preposi-
tions, pronouns, and conjunctions, which have fixed syntactic functions, play
an essential part in the recognition of sentence structure. Words with fixed
syntactic functions we call closed-class words, and all others open-class words,
for the reason that all the former classes have a finite and, in fact, determinate
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number of members while the latter have, in principle, an infinite number of
members and are indefinitely extendable. Accordingly the program is designed

to require access to a dictionary containing only the closed-class words.

2.2

Very many sentences are syntactically ambiguous. Nearly all sentences con-

tain elements which taken separately are ambiguous. It is our conviction that
usually in listening to such sentences all possible interpretations of these
elements are considered simultaneously (certain kinds of jokes providing a
possible exception). For this reason the analyzer is designed to go through

each sentence in a single left-to-right pass. If any part of an input sentence is
syntactically ambiguous, then all the possible analyses are developed simul-
taneously. That is to say, it is not the case that it first tries one analysis and
then backtracks to see if any others are possible. The progress of the analysis
process is recorded on a continually growing data structure, and when the end
of the sentence is encountered, each possible analysis is to be found repre-
sented as a path through this structure.

2.3

There is a good deal of evidence to suggest that the efficiency with which hu-
man beings recognize the syntactic structure of sentences is to some extent
the result of their ability, having heard part of a sentence, to predict the struc-
ture of the remainder. If one hears a sentence which breaks off suddenly in
the middle, one is not left feeling that the sentence is ungrammatical but rather

that the end of the sentence is missing. This seems to suggest that some kind
of predictive mechanism is at work and that at some stage an expected out-
come did not in fact occur. It seems likely that having heard (say) the subject

of a sentence, we are then predicting, in some sense, the occurrence of a verb

to go with that subject. If we look again at two of the examples given above,

He ruled with an iron hand and / will iron your shirt tomorrow, then it is quite
obvious that the kinds of words that can follow He ruled with an . . . and /
will. . . are different. Roughly speaking, in the first case we are predicting
either a noun or an adjective, while in the second case we are predicting a

verb. Accordingly the operation of the analyzer is a process of making and
checking predictions about syntactic structure. The source of information for

these predictions is a representation of a grammar.

2.4

If it is reasonable to assume that in recognizing the syntactic structure of a
sentence one considers all possible interpretations of ambiguous items simul-
taneously, then it seems equally reasonable to assume the converse—that un-
ambiguous items are analyzed only once, no, matter how many different pos-
sible analyses of the whole sentence or parts of the sentence they may enter
into. Thus if the first part of a sentence has been analyzed in two different
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ways and it then turns out that both analyses lead to an identical set of pre-
dictions, the rest of the sentence should be analyzed once only. It should

not be necessary to produce two distinct but identical analyses for the rest of
the sentence. Take for example the sentence When he has fixed dates he will

ring us. There is an obvious ambiguity here (in one interpretation has is taken
as an auxiliary, in the other as a main verb). But the ambiguity is confined to
the first clause, and both analyses lead to identical predictions being made at
the start of the second. Similarly in the sentence He rolled up the bright red

carpet, the phrase the bright red carpet is either the object of the phrasal verb
rolled up or the object of the preposition up. But the analysis of the bright red

carpet as a noun phrase is the same for both interpretations. In these cases
the program operates in such a way that analysis paths leading to the same

predictions are conflated.

2.5

In Spring 1966 a first simple model incorporating all the features described
above was implemented on KDF9. It had been deliberately designed to
analyze only the surface structure of input sentences because at that time
our idea was that this surface-structure analysis should then be used as the
input to a separate deep-structure analyzer. Despite this limitation, the model
(Thorne et al., 1966) was extremely useful, as it enabled us successfully to
test for the first time the feasibility of using only a closed-class dictionary, and
of using a predictive technique conflating identical predictions.
But undoubtedly its main usefulness lay in its demonstrating to us that

this approach was essentially wrong. The trouble with a two-stage analyzer,
that is, one comprising two components, a surface structure analyzer and a
deep structure analyzer, the output of the first being the input to the second, is
that in the case of many types of sentences the surface structure analyzer

produces a large number of incorrect analyses which the deep structure analy-
zer has to discard. This is particularly noticeable in the case of sentences con-
taining embedded clauses or conjunctions like and and but (where the crucial
factor is the surface structure analyzer's inability to take account of deletions
in the deep structure). Any ad hoc attempts to reduce the number of analyses
turned out to have the undesirable consequence that in many cases the num-
ber was reduced to zero. It became clear to us that the large number of wrong

analyses produced by the surface analyzer was a direct result of the fact that
it had to work independently, without access to any deep structure informa-
tion, and that an important consequence of constructing an analyzer which
would not only undertake deep as well as surface structure analysis but which
would undertake both tasks simultaneously, would be that the number of
incorrect surface structure parsings would be greatly reduced. The output of
the present model shows that it is indeed the case. Again one notices that the
result of designing the analyzer bearing in mind human behaviour (pre-
sumably in perceiving the syntactic structure of a sentence we do not first
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perceive the surface structure and then work out the deep structure) is a
considerable gain in its efficiency.

3. OUTLINE OF THE ANALYZER

The input consists of English sentences in a more or less normal orthographic
form. The sentences are read and processed a word at a time and at the end of
each sentence the analysis or analyses produced are displayed on the printer.
In analyzing the sentences the program makes use of information about the
syntactic functions of individual words derived from the closed-class dic-
tionary and information about sentence structure derived from a representa-
tion of a grammar. At the start of a sentence the analyzer has a fixed set of
initial predictions, and as it progresses through the sentence the existing pre-
dictions are tested, those which are satisfied are recorded, and new predic-
tions are formed on the basis of the satisfied predictions and information
about sentence structure obtained from the grammar. At the end of the sen-
tence the record of satisfied predictions indicates all the possible analyses of
the sentence with respect to the grammar. Because there is in principle no
upper limit to the number of predictions which may arise in the course of
analysis it is necessary to use some form of dynamic data structure to record
the state of the predictions at successive points in the sentence. The analyses
must also be recorded for subsequent output. In the surface-structure analy-
zer (as in other predictive analyzers) the prediction structure and the analysis
structure were distinct. In the present model a single structure serves for both
purposes. This may be viewed in two ways, either as an analysis record con-
trolling the selection of further predictions from the grammar, or as a predic-
tion structure in which fulfilled predictions are not discarded but are retained
to become the record of the analysis. This method of implementation reflects
quite literally the predictive principle; that is, that the way in which the later
part of a sentence may be analyzed depends upon the analysis of the earlier part.

4. THE GRAMMAR

The grammar incorporated in the analyzer is a form of transformational
grammar. A transformational grammar consists of a base component and a
transformational component. The base component specifies a set of strings
which correspond roughly to the simple or kernel sentences of the language
and the transformational component accounts for complex sentences by
deriving them from the basic underlying strings. The base component of the
grammar associated with the analyzer here described differs in a number of
respects from the type usually proposed. The three most significant diffe-
rences are:

1. The base component is (structurally) a regular grammar rather than the
customary context-free phrase-structure grammar.1 A regular ( or finite-state)

1 For an account of regular grammars (expressions) in the context of automata theory
see Kleene (1956).
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grammar enumerates a set of strings without assigning any hierarchical
structure to them. The adequacy of such a grammar as a base component
depends in part on acceptance of the principle that all recursive constructions
in a language necessarily involve transformations, since they cannot be
generated by means of the base rules alone. In the case of English this prin-
ciple has the possibly controversial consequence that all noun phrases have
to be regarded as transforms because of the occurrence of phrases like the
old man's hat, in which the relation of determiner is recursively realized by a
possessive. (In fact, since possessives are an example of left-branching recur-
sion, they are not beyond the weak generative capacity of a regular grammar;
however, the genuinely hierarchical structure of the construction cannot be
represented by such a grammar.) The total exclusion of phrase-structure
rules from the grammar may be felt to be in some ways too strong a constraint.
On the other hand, it means that we avoid some of the problems arising from
the fact that in certain cases conventional phrase-structure grammars assign
too much structure to base strings, with the result that statements of transfor-
mations become uneconomical.
2. The form of the grammar also allows for the specification of properties

like number, case, tense, etc., in the form of lists of feature-values associated
with the elements in the rules. This provides an apparatus for sub-categoriza-
tion and for the application of rules for feature concord. The fact that sub-
categorial distinctions are represented in this form and not by the addition
of extra categories results in economy both in the grammar and in the analysis
procedure.

3. Explicit recognition is given in the grammar to the distinction between
the concepts of syntactic form (involving such classificatory terms as article,
noun, nominal clause, etc.) and syntactic function (involving such relational
terms as determiner, head, subject, etc.). It is of course desirable that a syntactic
analyzer for a natural language should not simply label the components of a
sentence with category names but should also mark the relations which hold
among the components, but it is also the case that markers of syntactic rela-
tions (hereafter sR m s) are more appropriate for the statement of certain
generalizations such as those affecting feature concord.
Thus the base component is a regular grammar specifying a set of un-

stratified strings. The elements in the strings have three constituents: an SR M,
a category name, and a list of feature values. The base component directly
enumerates the prelexical strings for such simple sentences as I like Sylvia,
She visited him yesterday, He must have moved, and so forth. In addition the
grammar contains substitution rules and transformational rules proper. The
substitution rules govern the realization of elements in the grammar—for the
most part in a context-sensitive manner—either by lexical items or by trans-
forms. The structural simplicity of the base makes it possible to regard the
majority of the transformational rules as meta-rules in the sense that they
operate on other rules to produce derived rules rather than operating on
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structural descriptions to produce new structural descriptions. A practical

consequence of regarding transformational rules in this way is that in many

cases the effect of a transformational rule can be represented by a small num-

ber of derived rules of the same form as the base rules. Accordingly the

grammar table (hereafter GT) actually used by the analysis program has the

form of a finite-state network or directed graph—a form appropriate for the

representation of a regular grammar—but it contains in addition to the base

rules the derived rules for those transformations whose resultants are re-

presentable within this framework. The remaining transformational rules

have to be applied dynamically in the course of the analysis procedure. It

should be noted that the inclusion of SRMS and features in the grammar en-

sures that relevant syntactic information is preserved in the derived rules (e.g.

selectional constraints persevere and basic relations remain marked).

4.1

The output of the analyzer reflects the form of the grammar. Analyses are

displayed in the printout in a series of levels, the level structure reflecting the

transformational structure of the sentence. The analysis produced for the

simple sentence She visited him yesterday is

1 SE:STA T TEL 1

2 s u: she AV:visited oB:him m o : yesterday 2

(The letters preceding the colons are abbreviations for SRM S. SE stands for

sentence, Su for subject, Ay for active verb, OB for object, mo for modifier, and

TE for terminator. See Appendix III for full details of the conventions used

and for examples.) It will be noted that within the top-level phrase, STATe-

ment, no structure has been assigned and the syntactic relations are shown as

being realized directly by individual words. For the complex sentence He

asked who admired Descartes the analysis is

SE:STAT TE:. 1

2 su:he Av:asked OB:INDQ 2

3 s u : who AV:admired oB:Descartes 3

In this case the relation of object of the main clause is shown as being rea-

lized by a transform, IN Direct Question.

The way in which deep-structure information is preserved, despite the

considerable differences produced by different transformations in the form of

identical deep-structure elements, is illustrated by the analysis for the sentence

Mary hates my teasing her.

1 SE:STA T TE:. 1

2 su:Mary Av:hates OB:GER 2

3 su:my Av:teasing 0B:her 3
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In the interests of keeping the printout compact, the feature values associated
with the components of the sentence are not reproduced in the output. Infor-
mation about such facts as the relation of who to the pronouns he and she and
the relation of my in the D E mind to the pronoun / is contained in the dic-
tionary, so that, if one wanted to, it would be possible to amend the program
in such a way that the output relating to the deep structure would be in the
form of kernel sentences, e.g. in the case of the last example Mary hates it and
I tease her.

5. THE CLOSED-CLASS DICTIONARY

It has already been mentioned that the program does not need to have access
to a complete dictionary giving the possible form-class assignments of every
Word. It operates with a list containing only certain classes of words. Some
further consideration will now be given to the composition and use of this
closed-class dictionary ( c c D ).

5.1

Three types of items are held in the CCD. First, there is a list of the grammati-
cal formatives such as prepositions, pronouns, conjunctions, articles, and so
on; secondly, there is a list of special verbs; and thirdly, there is a list of
suffixes. Syntactic information about each word in the CCD is provided by one
or more code words, which constitute the dictionary entry for the item. Each
code word specifies a category or form class to which the item belongs and a
list of values for the features associated with that category.
The relatively small class of items which belong to the first type mentioned

above must be listed exhaustively in the CCD. This is necessary because words
of this type provide essential information about the structure of any sentence.
The second list is of words which give information about certain kinds of

sentence structure. For instance, it may be remarked that Fred gave the dog
biscuits is ambiguous, whereas Fred lost the dog biscuits is not. This reflects
the fact that the verbs give and lose have different properties. In particular,
give may take two objects while lose may take only one object. We could have
chosen to treat all open-class words as potential double-object verbs, which
would result in an unacceptable analysis being produced for the second sen-
tence. Instead it seems preferable to say that open-class words, when treated
as verbs, can take at most one object, and to list verbs like give in the CCD so
that two correct analyses are produced for the first sentence and only one for
the second. Similarly, certain other classes of verbs are listed in the cc D; for
instance, those which take a complement instead of an object (He looked a
fool), and those which take an object and an infinitive (He made her cry).

The suffixes contained in the CCD are restricted to inflections. Examples of
the endings included are -s,-ed,-ing,-'s, and -s'. Like the grammatical forma-
tives, these elements carry essential information about sentence structure.
The dictionary look-up procedure in the program automatically recognizes
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these endings and detaches them from the stem of the word. Simple checks

are incorporated to ensure that words such as bed and bus are not treated as

if they ended with the inflectional -ed or -s. Other exceptions, either individual

words (e.g. news, lens) or non-inflectional ending classes (e.g. -ss, -ous), must

be listed in the C CD. Conversely, words for which the information normally

carried by the suffixes is specified in a non-standard way (e.g. the past tense

forms of strong verbs) must also be listed as exceptions.
A fuller account of the contents of the CC D has been given elsewhere

(Bratley and Dakin, 1968). It is worth emphasizing again that, compared to a

complete dictionary of English, the c CD is very short. The list of grammatical

formatives contains a few hundred items, and while the lists of words of the

second type have not been fully enumerated at the present time, the total num-

ber of items in the dictionary should not exceed 2000.

5.2

The C CD is stored as a tree structure so that, for instance, the four words this,

the, them, and to would be represented in the form shown in figure 1, where

this

Figure 1
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(1) c , representing 'end-of-word', is treated as an extra letter;
(ii) downward links represent progression through the successive letters

of a word;
(iii) cross-wise links represent an alternative choice of letter at the same

position in a word;
(iv) there are pointers from the 'end-of-word' nodes to the relevant dic-

tionary entries.
The endings are stored in a similar tree structure, and the use of default links
from the main structure enables inflected words to be recognized in almost
exactly the same way as listed words.

Special entries are contained in the dictionary for open-class words, proper
names, and numerals. Since the information carried by an inflected word may
not be categorical but may be a function of the stem of the word as well as
the suffix, provision is made for including with each item an operation code
which is held in the 'end-of-word' node. This code specifies an operation to be
performed on the feature values entered for the stem of the word or, if the
stem is not listed, on the entry for open-class words. The use of operation
codes is not in fact confined to the ending-classes; they may also be used to
indicate the relationship of an individual word to another item. The following
fragment of the CCD in the form in which it is submitted to the set-up routine
illustrates the kind of facilities provided. (In the interests of simplifying the
set-up procedure, feature values are written as numbers corresponding to the
required binary patterns.)

-s= —(23)
-ed = —(24)
-ing= —(25)
-ss = —
the : art 0 1 0 30

a,an : art 0 10 1 0
can,must : modl 0 1 7 80

: noun 0 1 3 10
they : pro 0 1 1 2 1
their = they (1)
know: verb 0 36 8 50
knew = know (10)

known= knew (9)
fought = — (4)

6. THE ANALYSIS PROCEDURE

The task of the analysis procedure is essentially the progressive construction
of a data structure in which the predictions realized by successive words of the
sentence to be analyzed are recorded and which is then used to determine
what new predictions may be made for the following words. The procedure
has available to it the stored GT and the dictionary look-up routine which
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assigns codings to each input word in the manner described in the preceding

section. The analysis structure produced is basically a diverging tree with

nodes which may themselves represent sub-trees. At the start of the operation

the structure consists of a single node which represents the root of the main tree.

For each word of the sentence the 'open ends' of the structure (i.e. the

latest active nodes so far added on each analysis path) are traversed and the

predictions specified by them are tested. In general, the immediate predictions

which may be made from a node are determined by means of a reference to

an element in the G T, the successors of this element in the finite-state network
representing the possible continuations of the analysis path, but in a number

of cases, some of which are mentioned below, they are computed from infor-
mation held in the analysis structure. For a prediction of an element which is
realizable directly by a lexical item, the codings of the input word are matched
against the predicted values and if the match is successful a new simple node
is added to the analysis path. In the case of a prediction realizable by a trans-
form phrase, reference is made to a table (TPT) to determine if this is the
first prediction of the phrase encountered for the current word. If it is, a new
tree is established with a root node specifying the initial predictions for the

• phrase and these predictions are in turn investigated. If it turns out that none
of the initial predictions is successful, a failure indicator is set in the TPT,
otherwise a node representing the new sub-tree is added to the analysis path

• from which thefl original prediction was made. Where a transform phrase
prediction is not the first encountered, it is necessary only to perform the
last-mentioned step—unless the failure indicator is set in the TPT, in which
case no action is taken. Thus multiple predictions of the same type of phrase
give rise to the establishment of a single sub-tree.
If a node terminates a complete analysis of a transform phrase, the overall

feature values for the phrase analysis are computed and recorded so that sub-
sequently the higher-level paths on which the phrase prediction was en-
countered can be reactivated. The reactivation does not occur until all com-

plete analyses of the phrase ending on the same word have been recognized,

so that a single reactivation can be made with feature values which represent

all the analyses. For example, one possible analysis of the noun phrase the

research computing needs, in which computing needs is taken as a relative

clause, makes it singular, while the other makes it plural; the value for the
feature of number that is required for the whole phrase is therefore singular-or-

plural. The feature values for a phrase are matched against the predicted

values on the higher-level paths in the same way as for lexical items.

Certain types of node (e.g. the root nodes of sub-trees) are created pro-
visionally and do not remain on the structure unless they eventually lead to a

successful analysis of the current word, but otherwise the structure grows pro-

• gressively and analysis paths which peter out are not removed, so that, in fact,

at the end of the sentence the analysis structure represents not only all com-

plete analyses but all partial analyses as well. However, the recognition of
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identical phrase predictions—which prevents ambiguity at a higher level from
being extended to a lower level—and the single representation of multiple
analyses of a phrase—which prevents ambiguity at a lower level from being
extended to a higher level—serve to keep the size of the analysis structure and
the amount of processing required within reasonable bounds (see figure 2).
When the end of a sentence has been reached, all complete analyses recorded

on the analysis structure are traced and printed out. If at any point before the
end of the sentence no prediction remains, this indicates that the grammar
does not provide any analysis for the sentence (either because the grammar is
incomplete or because the sentence is in fact ungrammatical), and the com-
ment no complete analyses is printed out.

It was indicated in the section describing the grammar associated with the
analyzer that while the resultants of most transformational rules are incor-
porated in the G T, the effect of some cannot be completely specified in this way
and must be developed in the course of the analysis process. The two main
instances of this relate to constructions involving inversion and constructions
involving co-ordination. -

Inversion is exemplified in such interrogative and relative constructions as

Is he bringing his wife? (inversion of auxiliary)
the book which he bought (inversion of object of bought)

the boy who she said kicked her (inversion of subject of kicked)
Which hat will she buy? (inversion of both auxiliary and object)

The rules for these constructions are formulated in such a way that the in-
verted words or phrases are accepted at the point at which they occur in the
sentence (that is, their surface structure position), but with the assignment of
a dummy SRM (00) indicating that in general it is not possible at this point to
Specify what syntactic relation is exemplified by the element. All subsequent
nodes added to an analysis path involving an inverted element include a link
back to it. The effect of this is to make the item available for fulfilling a sub-
sequent prediction, so that in these cases a prediction is satisfied by a null
input (that is, without using up any words of the sentence). The realization of
a prediction in this way is marked in the output by an asterisk following the
SRM. Thus for the examples listed above the analysis printout would be:

1 SE:QUES TE:? 1
2 oo:is su:he Au:* Av:bringing OB:CNP 2
3 DE:his HE:wife 3

DE:the HE:h0Ok AT:REL
oo:which su:he Av:purchased oB:*

DE:the HE:boy AT:REL
00:WhO su:she Av:said OB:INDS

su:* Av:kicked oB:her
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a
Figure 2. Illustration of analysis structure for sentence 22 (showing only those
nodes which figure in complete analyses)
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1 SE:QUES TE:? 1

2 00:CNP oo:will su:she AU:* Av:buy ors:* 2

3 DE:which HE:hat 3

An asterisk following an SRM more generally indicates the deletion of an

element, as for example in imperative sentences like Go, where it indicates the

non-realization of the deep structure subject.

1 SE:IMP TE:.

2 su:* Av:go

1
2

Similarly in sentences like I met a man I know, the combination of the two

conventions (oo:*) is used to indicate the absence of the relative pronoun.
As with the full form of the relative clause, the deep structure position is also

Indicated (in this case by OB:*).

1 SE:STAT TE:. 1
2 su:I Av:met OB:CNP 2
3 DE:a HE:man AT:REL 3
4 oo:* su:I Av:know OB:* 4

The procedure for dealing with co-ordination (constructions involving and,
or, etc.) consists essentially in the reinstatement, following the co-ordinator,
of predictions which have been made at an earlier point. Co-ordinators are
not in fact predicted, and when they are encountered they are accepted without
reference to the GT. The nodes created for these words record previous predic-
tions which may now be reinstated, all subsequent nodes added to the analysis
Paths being marked with a co-ordination link (cf. the treatment of inversion).
This link indicates that at some point the two limbs of the co-ordination must
be 'brought together', i.e. analysis of the part of the sentence following the
co-ordinator word must reach the same point as that reached immediately

before it, so that a prediction common to both is satisfied.
In the output the point from which predictions were reinstated is marked

with a left bracket and the point at which a successful common prediction was
satisfied is marked by a right bracket. The brackets thus indicate the scope of
the co-ordination. The analysis of the sentences She danced and sang and
Have John and his sister arrived? is shown below. (For further examples see
Appendix iii.)

1 SE:STAT TE:. 1
2 s tr: she (Av : danced and AV:sang)

1 SE:QUES

2 oo:have (sH:John and SU:CNP
3 DE: his HE:sister
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Some of the problems of dealing with this type of construction are rather
intractable. In particular, it is difficult to devise suitable conditions regarding

the degree of similarity which has to be exhibited by the two limbs of a co-
ordination. On the one hand it is possible to impose the very strict constraint

that only predictions which have been satisfied in the first limb may be re-
instated for the second, thus requiring identity of analysis for the two limbs.

However, this would preclude the successful analysis of such entirely accept-
able sentences as Is he or is he not coming? and He asked for and was given a

glass of water. On the other hand, if the principle is adopted of permitting the
reinstatement of any prediction which has been made (but not necessarily
satisfied) in the first limb, there is a danger of accepting such examples of
syntactic syllepsis as *He said his prayers and that he died a happy man. In fact
we have adopted a principle which is nearer the second of those cited above
but which incorporates requirements of feature concord that effectively exclude
at least the more obviously undesirable cases. The ordering of transforma-
tions associated with inversion and co-ordination relative to each other is also
problematic. The two (apparently equivalent) analyses produced for sentence
28 reflect this difficulty. The problem here is not simply to eliminate one analy-
sis, but to discover criteria for determining which this should be.

7. CONCLUSION

We have shown that it is possible to construct an effective syntactic analyzer
operating under the constraints listed in Section 2. As one would expect, it has
certain limitations.

1. A result of not using a full dictionary of English is, of course, that in the
case of some sentences incorrect analyses are produced as well as the correct
analysis. For example, in the case of the sentence The cat adores fish, as well
as the analysis in which adores is taken as a verb, an analysis is produced in
which adores is taken as a noun. (Notice that in the case of a sentence like The
girl guides fish one would require these two analyses.) It should be emphasized
that only a small number of incorrect analyses are attributable simply to a
lack of form class information. It follows from this that in order to obtain a
substantial improvement by supplying the program with a complete dictionary
it would be necessary for it to provide more than merely form class informa-
tion. It would, in fact, need to contain information about other features, such
as, in the case of nouns, whether they are abstract or concrete, animate or
inanimate, etc. A possible extension of the program which would enable it to
derive information about such features automatically is discussed in
Appendix T.
2. The program is not a general-purpose analyzer for arbitrary transforma-

tional grammars. It was pointed out in Section 4 that in order to give effect to
certain transformational rules specific procedures had to be incorporated into
the program. Given the present formulation of transformational rules in
linguistic theory, it is doubtful whether a generalized algorithm is possible.
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3. The attempt to present a perspicuous representation relating deep

structure information to the actual surface structure of the sentence has led in

some cases to a certain ambivalence—for example, the assignment of SR MS

to grammatical formatives as if they were lexical elements rather than realiza-

tions of bundles of syntactic features.
4. At the present time the analyzer takes no account of derivational affixes.

As a result it is unable to recognize nominalizations like declaration, perfor-

mance, management, etc., and, relate them to their underlying sentential forms.

5. There are deficiences in the treatment of certain kinds of constructions.

Some of those affecting the analysis of sentences containing conjunctions like

and have already been noted in Section 6. Similar problems (in an even more

acute form) arise in the case of sentences containing words like as and than.
In fact such sentences are outside the range of the analyzer. The reason for this

the partial failure to handle and and the total failure to handle as and than—
is very simple. It is directly related to the fact that we ourselves have an in-

complete understanding of the grammar of and and only vague ideas about
the grammar of as and than. Only when developments in linguistic theory
have resulted in a formalism capable of explicating the structure of these

sentences will it be reasonable to expect an automatic analyzer to produce

adequate analyses for sentences of this kind. It is necessary to make this

obvious point in view of the many claims made in recent years to the effect

that the development of an automatic syntactic analyzer will in itself help in

solving these kinds of linguistic problems.
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APPENDIX I: A POSSIBLE EXTENSION OF THE PROGRAM

There is an interesting extension that could be made to the program. For the
reasons given, words like boy and laugh are not entered in the dictionary
employed in the analysis procedure, which means that no information for
them is obtained from the dictionary. But using information derived from the
analyses it produces the program could, so to speak, 'learn' that boy is a noun
and laugh a verb, and could construct for itself another dictionary — an open-
class dictionary—in which this information would be stored.

Notice that in many cases during the early stages of running the program it
is inevitable that incorrect entries would be made in the open-class dictionary.
Given the sentence The cat adores fish, the analyzer produces two analyses—
the desired analysis and one in which The cat adores is taken as a noun phrase
on the analogy of phrases like the boy scouts. Adores would therefore be
entered tentatively both as a verb and a noun. But it seems reasonable to sug-
gest that after a while an automatic correction routine could be run on the
open-class dictionary which, for example, would discover any word entered
as being both a noun and a verb but for which, while there have been un-
ambiguous instances of its being labelled as a verb, no cases have been found
in which it has been labelled as a noun without, at the same time, an analysis
being produced in which it has been labelled as a verb. In this case the dic-
tionary entry for the word would be modified by the deletion of the label
noun. If at a later stage the same sentence were submitted for analysis, two
analyses would again be produced. But now both analyses could be checked
against the open-class dictionary the program has itself constructed. If taking
the sentence as ambiguous meant treating one of the words as a part of
speech different from that the dictionary records it as belonging to, then this
would be a sufficient reason for dropping this analysis. Given an analysis of a
sentence in which every word functions as the part of speech as which it usually
functions, we are unlikely also to accept another analysis for the sentence
in which one of the words now functions in an entirely unexpected way. For
example, no one is likely to take the sentence Power corrupts as an imperative,
on the analogy of a sentence like Bring water, because this would involve
taking corrupts as a noun and there is a perfectly acceptable analysis of the
sentence in which corrupts functions in the expected way, as a verb.

Following out this procedure it would be possible for the program not only
to acquire the information that boy is a noun and laugh a verb, but also the
information that laugh is an intransitive verb. But if the program is to acquire
all the information the English speaker has about these words, it is also
necessary that it should contain the information that boy, for example, is a
concrete noun and an animate noun. It is possible that this kind of informa-
tion too might be automatically derived. For this to happen, however, it
would first be necessary for information about such properties to be supplied for
certain words. Say, for example, we were to include in the original closed-class
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dictionary the word surprise plus the information that it is a verb that must
always take an animate noun as its object. Then, when the sentence The boy
surprised the teacher has been analyzed, the program will have learnt not
only that teacher is a noun but also that it is an animate noun. If the next sen-
tence to be analyzed is The teacher laughed, it would now have learnt that
laugh is the kind of verb that can take an animate subject. In this way it seems
that the original information concerning the properties of a few words could
be spread over the whole lexicon.
Making the analytic procedure and the open-class dictionary arising from it

operate together in this way would have the following effect: as the open-
class dictionary using the information produced by the analyzer improved so
too would the analyses produced. However, there are many problems here.
Many verbs can take animate, inanimate and abstract subjects, and the fact
that up to a certain point the program has not encountered an instance of a
verb taking one type of subject is no guarantee that it will not do so. More-
over, it is by no means clear which verbs, or how many verbs, or even whether
verbs, should be chosen as the starting point. Nevertheless, this looks as
though it would be an interesting field for experiment.
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APPENDIX II: PROGRAMMING DETAILS

The analysis program runs at present on the KDF9 computer at Edinburgh,
which has 16 lc 48-bit words of core store. Core cycle time is about 4 to 6
microseconds, depending on overlapping, and simple fixed-point instructions
take about 2 microseconds to execute in the high-speed registers. The machine-
code instruction format is variable length, so that on average two or three
instructions can be held in one computer word. Of the 16K words of core
available, about 2K are taken up by the supervisor and operating system,
about 4K are occupied by the instructions of the program, and the rest are
available for data space. In addition to the analysis routines the program con-
tains routines to accept and set up the grammar and dictionary in the required
internal format. The fact that the whole C CD is small enough to be held in
main store naturally results in a considerable economy in the overall pro-
cessing time for a sentence. It is convenient to hold the compiled program,
including the grammar and dictionary, on magnetic tape, but the program
itself requires no backing store.
The program is written in Atlas Autocode, a high-level language akin to

ALGOL. This provides the essential features of recursive procedure calling
and the specification of parameters either by name or value, as well as a
number of simple facilities for handling non-numeric data. As the version of
the language currently available does not include provision for Boolean and
shift operations, a few small procedures for manipulating operands have had
to be programmed in machine code. The program currently runs to about
1000 lines of Atlas Autocode, equivalent to some ten thousand instructions
after compilation.

Sentences to be analyzed are submitted in free format on paper tape pro-
duced by a Flexowriter. At present the input is subject to the restrictions that
only proper names and the pronoun / may start with a capital letter and that
abbreviations terminated by a period may not be used.
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APPENDIX III: EXAMPLES OF OUTPUT

The computing time for each sentence and the total number of nodes in the

analysis structure are recorded on the line following the sentence. The timing

figure (in seconds to three decimal places) includes the time spent in consult-
ing the cc D; it does not include the time spent in outputting the analyses. The

arrangement of the printout is hierarchical, with the elements entering into

the analysis of each category being printed out under the category name.
The abbreviations used are listed below.

SRMS (syntactic relation markers)
[SE sentence]
TE terminator
SU subject
AV active verb
08 object
MO modifier
AU auxiliary
DE determiner
HE head (of noun phrase)
AT attribute
IN indirect object
LI link (preposition or conjunction)
PO prepositional object
PA particle
Co complement
00 INVERTED ELEMENT

301

Category names
STAT statement
QUES question
IMP imperative
INDS indirect statement
INDQ indirect question
INFC infinitive clause
No m c nominal clause
PARC participial clause
suBc subordinate clause
GER gerund
REL relative
PREC prepositional clause
NP complex noun phrase
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The Adaptive Memorization
of Sequences

H. C. Longuet-Higgins and
A. Ortony'
Department of Machine Intelligence and Perception
University of Edinburgh

1. INTRODUCTION

One of the most remarkable and useful mental faculties of human beings is
their ability to memorize, recognize and recall sequences. Familiar examples
are telephone numbers, the words of a poem, the letters of an alphabet, and
even such complicated things as the holds on a rock climb or the notes of a
piano concerto. Our memories can accommodate vast numbers of such se-
quences, and retrieve them with astonishing speed and accuracy. How would
a systems analyst set about designing such a store?
The present paper describes an algorithm for recording a large number of

data sequences and retrieving any one of them in a minimal number of ele-
mentary steps. The algorithm is specially designed to cope with non-random
sequences, in which the probability of occurrence of a particular member is
strongly dependent on the members which have already occurred. Most
natural information sources generate sequences with this property; the notes
of folk tunes and the words of sentences are cases in point. In testing our
algorithm we have actually applied it to the individual words of free English
and French text, regarding each word as a non-random sequence of letters.
No attempt has been made to memorize actual word sequences, but the
algorithm is designed to exploit the non-randomness of the word choice in
developing and maintaining an efficient search for the successive letters of
individual words.
There is one very simple—in principle—way of storing words (from now on

we shall speak of words regarded as letter sequences, though most of our
remarks will apply equally to other types of sequence), and that is to compile
a dictionary. The words of a dictionary are conventionally stored in lexico-
graphical order, that is to say, if the letter s„ occurs after the letter sn' in the

1Now with Department of Philosophy, Fourah Bay College, University of Sierra Leone.
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alphabet, then the word (s1s2 . . . sn_is„ . . .) will occur after the word
(s1s2 . . . . . .) in the dictionary. Bearing in mind the additional rule
that (s1s2 sn-1) takes precedence over (sis2 • • • sn-1 • .), we may represent
the dictionary as a logical tree, in which each node holds a letter of the alpha-
bet, except that each terminal node is left blank, indicating the completion of
a word. The tree is of course ordered: the nodes following a given node are
arranged in alphabetical order with the understanding that a blank takes
precedence over all letters. For example, the dictionary

A

ABLE

ANT

BE

BET

BUT

will be represented by the tree

A dictionary is, however, useless without a search routine, and this routine
should serve, as far as possible, both for identifying words that are already in
the dictionary and for storing those that are not. Human beings, of course,
use various tricks for locating words in dictionaries (and in locating the place
where a new word should be entered). But there is one simple and infallible
way of searching, which does not even require a knowledge of alphabetical
order—and it is highly questionable whether alphabetical order plays any
part in human word recognition. This is to search in turn for the node carrying
the first letter, the node carrying the second letter, and so on. For example,
suppose that the current state of the dictionary is as shown above, and that
the word ANTS is encountered. The primary nodes (1 and 2) are examined
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in turn for the letter A, and the examination succeeds at the first attempt. So
nodes 3, 4, and 5 are inspected for the letter N; this letter is found at node 5.

Nodes 8 and 9 are then examined in turn, and T is found at node 9. The only

successor of node 9 is node 14, and examination of this node fails to reveals,
so a new node (18, say) has to be created to carry this letter. In an ordinary
dictionary node 18 would have to be positioned below node 14, but this need

not concern us at the moment. We are now at the end of the word ANTS, so
one more node (19) must be added, and left blank.
Having stored ANTS we can now use much the same routine for retrieving

it when it next occurs. More briefly: A is found at 1, N is found not at 3 or 4
but at 5, T is found not at 8 but at 9, s is found not at 14 but at 18, and a
blank is found at 19, indicating that the word ANTS is indeed present in the

dictionary. So storage and retrieval proceed along very much the same lines,
as they should in a well-designed memory; one does not want to have to
complete the process of deciding whether a word is present or not before
starting on the process of storing it.
So far we have done little more than formalize the process of dictionary

search, but we are now in a position to appreciate one point more clearly:
there is nothing sacred about alphabetical order. The routine just described
would work just as surely if the order of the nodes emerging from a given node

were entirely arbitrary, and even if it were altered from time to time. This
fact opens the possibility of speeding up the processes of storage and retrieval

by adjusting the node orders according to the statistics of the text under
study. Indeed, if the statistical characteristics of the text change systemati-
cally, and if the process of word retrieval is to remain efficient under such a
change, the node orders in the tree must be susceptible to alteration on every
occasion when a word is stored or retrieved.
A fanciful way of seeing what sort of changes to make in the node orders is

to imagine a guessing game between two players called Memory and Senses.
Memory looks after the tree, and Senses reads each word letter by letter.
Suppose the word under study is ANT. Memory cannot read it himself, so he
looks at his tree and asks Senses 'Is the first letter an A?'. The answer is
'Yes'. Next question: 'Is that the end of the word?' (Memory is at node 3.)
Answer: 'No'. 'Then is the next letter a n?' Answer: 'No'. 'Then is it an N?'
Answer: 'Yes'. At this point we interrupt the game to consider Memory's
reactions. 'I got the first letter right first time,' he thinks, 'but it took me
three guesses to get the second. I would have done better, when trying to
guess the second letter, to ask whether it was an N before asking whether it
was a B. I must remember to reverse the order of those questions next time.'
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What this amounts to is interchanging the branches A-B and A-N, so that

the tree now looks like this:

This kind of flexibility in the tree will clearly pay off in the long run, because

by interchanging neighbouring branches one will tend to promote the com-
monest word continuations to positions of high precedence. Conversely, if a
once common word continuation becomes rare, it will gradually become
demoted in the course of time, so that the search routine adapts itself to
secular changes in the word frequencies of a long piece of text.
We will now describe how we have used ALGOL for programming the

flexible tree, and then report some results that we have obtained with it.

2. AN ALGOL SPECIFICATION OF THE TREE

At first sight ALGOL might seem a rather unsuitable language for specifying
the growth and development of the flexible tree, because in ALGOL all

arrays must be specified in advance, and we do not know in advance where

the tree is going to sprout new branches. This difficulty may, however, be

quite easily overcome by associating with each node not only a letter (or a
blank) but also a pair of 'forwarding addresses'. The first of these is to be

visited if the required letter is found at the node in question; the second is to

be visited if it is not found there. If the symbol at a node is a blank, there is

obviously no need for the former forwarding address, because if a blank is the

required symbol the search will have been completed and the word will have

been recognized. As to the second forwarding address, this may or may not

be filled in. If it is not, and the required symbol is not found at the node, a

new node or set of nodes must be created in order to accommodate the rest

of the word, which by this time will be known to be unfamiliar. The creation

of a new node calls for a new triplet of locations—to hold the letter or blank

and the two forwarding addresses—and these may be supplied from a 're-

serve' array with 3 rows and N columns, where N is bounded by the available

storage capacity.
Before explaining how to program the interchange of two branches let us

illustrate the above remarks by seeing how the program acts when given the
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first two words of the tongue-twister 'She sells sea shells on the sea shore'.
The reserve array is initially empty. The first letter of SHE ( or, rather, its
numerical equivalent) is entered in the first column, at the top; since this
symbol is not a blank another column will be needed for the next symbol, and
its address must be entered in the second place in the first column. The next
available column in the reserve array is number 2, so a 2 is entered in the
second place in the first column, and the letter H is entered in the first place
In the second column. Similarly, a 3 is entered in the second place of the
second column, and an E is entered in the first place in the third column. The
next symbol is a space (or other mark of punctuation) so column 4, which is
needed to hold this information, receives a blank as its first entry, and its
second and third places are left unfilled. (In what follows we use a 0 to
represent an unfilled place in the array.) The result is:

address 1 2 3 4
first entry S H E —
second entry 2 3 4 0
third entry 0 0 0 0

i.e.

Now for the word SELLS. The first letter —s—is looked for at the only existing
primary node— 1 —and is found there. The second letter is looked for at node
2, but is not found there. Since column 2 has no second forwarding address, a
new column must be called up from the reserve array, and the next available
is column 5. The letter E is therefore entered at the top of column 5, and
columns 6 to 9 are called into play to hold the rest of the word. But the number
5 must be entered at the bottom of column 2, to indicate that this is the
address to be visited in future if, after s, the required letter is not found in
column number 2. Result:

address 1 2 3 4 5 6 7 8 9
first entry S HE -ELLS

second entry 2 3 4 0 6 7 8 9 0
third entry 0 5 0 0 0 0 0 0 0

-
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(Note that although the E of SELLS is connected to the initial s directly in the
tree, in the array the connection is indirect; this is because the E is an alterna-
tive to the H, not a possible successor to it.)
We now come to the third word, SEA. If we carried on just as before the

end result would be like this:

address 1 2 3 4 5 6 7 8 9 10 11
first entry S HE -ELLS - A-

second entry 2 3 4 0 6 7 8 9 0 11 0
third entry 0 50 0 010 0 0 0 0 0

But we want to be able, now that SE has occurred for a second time, to give
this word-beginning precedence over Sri, which was the beginning of the first
word. We want, in fact, to interchange, two branches of the tree so that it
looks like this:

0-

This result is achieved by the simple expedient of interchanging the first
entries and the second entries, in columns 2 and 5, which are the two nodes
whose relative positions on the tree we wish to exchange. The array becomes:

address 1 2 34 5 6 7 8 9 10 11
first entry S EE -HLLS - A-

secondentry 2 6 4 0 3 7 8 9 0 11 0
third entry 0 5 0 0 010 0 0 0 00
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If we draw out the tree which is implied by this array-

0-

— we discover that not only have the nodes in question been interchanged,
but also (as we would like) the branches which are attached to them. The sim-
plicity of this operation makes it possible to save some space; if the first and
second entries in each column are amalgamated to form a single number
(from which the components can be extracted without difficulty), the
interchange of two branches involves merely the swapping of two of these
numbers, and instead of a 3 by N array we can make do with a 2 by N array.
But this is a detail of implementation rather than of logic.
Let us follow the growth of the tree just a little further, to show what

happens when the word SEA occurs again. As the reader can verify, after the
words SHE SELLS SEA SHELLS ON THE the tree will look like this:

•
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Now comes the word SEA. The first letter is found on the first guess (at node 1).
The second letter is not found at node 2, but at node 5, so the entries at these
nodes must be interchanged in the manner already described. The third letter
is looked for at node 6 but is not found there; it is found, however, at node 10,
so the entries at nodes 6 and 10 must also be interchanged. The next symbol, a
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blank, is looked for at node 11, and there it is, so the word has been recognized.
After the two interchanges the tree has this appearance:

Plainly the word SEA is the one which can now be recognized with the fewest
wrong guesses (actually none); this shows the adaptive nature of the program.
Before reporting our results on natural language storage and retrieval, it

will be useful to explain how one may conveniently assess the performance of
the program. In retrieving a word which is already stored in the tree one will,
in general, make a certain number of wrong guesses; the number of wrong
guesses per word retrieved would therefore be a quantity indicating the effi-
ciency of retrieval. But in reading a text one is constantly coming across new
words, and we also need a measure of the amount of labour taken to store one
of these. We have employed, in compiling our statistics, the number of wrong
guesses needed to identify the 'stem' of the word, using this term to signify that
part (if any) of the word which is already present on the tree. Thus the stem
of the next (new) word SHORE is simply sH; thereafter the letters ORE cannot
be located by guessing, they have to be stored anew. The point of this measure
is that if the tree were not flexible the number of wrong guesses made in
storing the stem of a word would be equal to the number of wrong guesses
made in retrieving it on a second reading of the same text (for the first word,
of course, this number is zero). With a flexible tree the two numbers are not
in general equal, but the difference has been found to be slight, and so we shall
without further apology define the 'oddity' of a word as the number of wrong
guesses made in either retrieving it or storing its stem if it is a new word.

3. RESULTS WITH NATURAL LANGUAGE

Our first experiments were carried out on a highly non-random text, namely
the Basic English Dictionary. The words were read in dictionary order, and
the average oddity of the words was computed at the same time. To estimate
the effect of interchanging the branches of the tree—the characteristically
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adaptive feature of the program-the dictionary was read twice, once with

interchange and once without. Here are the results:

flexible tree inflexible tree

first 50 words 7.70 8.50
next 50 words 4.46 7.38

100 4.77 9.15
300 5.86 13.07 .

362 8.79 25.12

The words of Basic English are almost exactly 5 letters long on the ( un-

weighted) average, so the average number of wrong guesses per symbol (there
being 6 symbols per word) is about 1.4 with interchange and about 4.1 without

when the last 362 words are being read. One can see why storage without

interchange gets progressively more inefficient; one wastes a large number of
guesses on the earlier letters of the alphabet when in fact the initial letter of a
late word must lie near the end of the alphabet. No significance should be
attached to the slight drop in oddity between the first 50 and the next 50
words of the dictionary; this is an accident of the distribution of word

lengths.
Next we decided to give the program a field trial on literary English-or

rather American-namely some of Damon Runyon's short stories. Runyon
makes frequent use of the apostrophe, which we decided to treat as a word
terminator. For instance, DIDN'T was treated as two words, DIDN and T;
with this convention Runyon's words are only 4 letters long on the average.
Here is a table giving the average oddity of successive groups of words in
Guys and Dolls:

flexible inflexible
first word 0.00 0.00

next 3 words 2.00 2.00
5 5.00 5.00
10 6.20 6.90
30 6.57 7.17
50 6.92 7.28
100 8.62 9.35
300 8.81 9.57
500 8.61 9.28
1000 8.68 9.67
3000 8.53 10.72

(In passing, we may mention that after the reading of these 4999 words 913
words were present in the dictionary, and the number of columns of the
reserve array taken to store these words and their terminators was 3647-
almost exactly 4 columns per word. To fill our reserve array, which had 8000
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columns, we needed to read about 16,000 words of Runyon, at the end of which

process there were 1998 words occupying 7994 columns.)
Various points about this table are worth noting. First, the effect of inter-

change is much less than in the case of the Basic English Dictionary; this is

because the early part of the story is a fair statistical sample of the whole, so

that even without continuous adjustment the tree works quite efficiently,

provided (as in this case) the order of precedence at each node is set by the

text itself rather than imposed arbitrarily from outside. Secondly, it is re-

markable how rapidly the average oddity of the words attains a plateau

value and stays there, particularly when interchange is in force; the average

oddity of the last 3000 words is almost exactly the same as that of the first

200. This encourages one to think that the program will be able to handle

really large dictionaries without serious loss of efficiency.
As just remarked, the interchange routine, though effecting a noticeable

improvement, is less important in this experiment than it would be if the
tree were ̀ primed' with a rather different sort of text from the story itself.
This contention is borne out by the results of our next experiments, in which
we primed the tree with the Basic English Dictionary (B.E.D.), not allowing
interchange of branches when the dictionary was being read in. The average
oddity of the words in the B.E.D. was 17.08 under this restriction. Having thus
primed the tree we then read in the first 3850 words of Guys and Dolls
(G. &D.); in the first run interchange was called for, and in the second run it
was ruled out. Here are the results:

flexible inflexible
first 50 words 15.14 17.12
next 100 12.49 16.26

200 11.41 17.86
500 9.79 16.81
1000 9.38 16.91
2000 8.98 17.13

The results are striking, and show that after about 1000 words of G. &D. the

flexible tree had almost completely recovered from the malign influence of

the alphabetical order of the B.E.D. The inflexible tree, however, was still

suffering the ill effects of its early training, with no sign of recovery.
These experiments employing the B.E.D. have a certain artificiality, so we

thought it worth while to test the flexible tree on literary text from two diffe-

rent sources, namely Runyon and Proust. The average oddity of 1000 words

of each text, presented to the flexible and the inflexible trees, was as follows:

flexible inflexible
Runyon (English) 8.45 9.13
Proust (French) 9.40 11.21

(Prouses words are longer, on the average, than Runyon's.) Having deter-

mined these overall properties of the two texts, we then proceeded to read
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them in successively, first with the interchange facility and secondly without.

The results were:

1000 English words
then 1000 French words

1000 French words
then 1000 English words

flexible inflexible
8.55 9.1
11.0 15.5
9.4 11.2
10.3 15.0

Again we note an improvement, of about 5 units of oddity, in the ability of

the tree to adapt itself to a new language when interchange of the branches is

called into play.
We feel that these results show beyond doubt the gain in efficiency and

adaptability resulting from the interchange routine. We must add that in our

thinking about how to construct this adaptive program we owe much to the
work of Samuel, whose checkers program (see Samuel, 1959) uses an idea
of much the same kind for referring to previously encountered board positions.

Before ending this section we would like to make some remarks about the
information-theoretical aspects of the flexible tree. The average oddity of a
Runyon word, presented to the flexible tree, is about 8.6. The average word
length is 50 symbols (4.0 letters), so the average number of answers (e.g.
'Yes, the next letter is an A', or 'No, the next letter is not an A') needed to
retrieve a word is 13.6. The answer to a yes-or-no question provides not
more than One bit of information on the average, so the average number
of bits per symbol of text cannot exceed 13.6/5.0 = 2.7. A random sequence
of letters and spaces would require log2(26 + 1)=4.8 bits per symbol to
specify it. The ratio 2.7/4.8 is thus an upper limit to the redundancy of English
prose, regarded as a stochastic sequence of letters and terminators, and this
ratio is about 0.6. In the classic book The Mathematical Theory of Com-
munication, Shannon (1949) estimates the redundancy of English as 0.5.
The closeness of this figure to the upper limit 0.6 estimated from the flexible
tree indicates that the tree is working close to the theoretical optimum —a most
surprising result if one bears in mind that questions of the form 'Is the next
letter a vowel?' are not available in the program.

4. A PRACTICAL APPLICATION-THE CAT

In the course of developing the flexible tree we realized that it could be used as
the basis for a potentially useful invention, the Computer-Assisted Type-
writer, or CAT. The CAT is based on the idea that when one is typing someone
looking over one's shoulder can often predict what letter one will type next,
given the first letter or letters of a word. (He can also often predict what word
one will type next, but this process is beyond our present programming
capabilities.) Prediction is particularly reliable when one is working within a
small vocabulary, because the number of possible continuations of a given
letter sequence is then more restricted. There are various ways in which the
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CAT can operate. One may feed it with a dictionary before starting to type,
and then get it to intervene and type the remaining letters of any word which

one has begun to type and which has a unique continuation; or one may let it
build up a vocabulary as one types, or both. Since, very often, one will want

to use a word which the CAT has not yet met, it is useful to be able to cancel
the CAT'S guesses. This is done by typing a stroke (/) followed by a space,

after which the CAT types back the letters one originally typed before it
interrupted. One will also make mistakes oneself, and these can be cancelled

(back to the beginning of the current word) by typing two strokes in succes-
sion. The resulting text will tend to be rather messy in appearance, so the
CAT is also programmed to keep a record of what was not cancelled, and to
type this out on demand in fair copy. At the present stage of development

the CAT takes no account of punctuation—it identifies letters but treats all
punctuation marks as spaces—so it is not yet a commercial proposition. But

with some refinement it could be of real assistance to someone working
within a small vocabulary such as that of a programming language; such
words as ̀ BEGIN' or 'PROCEDURE' or identifiers introduced by the pro-
grammer, would be automatically completed by the CAT after the program-
mer had typed only one or two symbols.
Here is an actual collaboration with the CAT, carried out on the console

typewriter; the capitals are typed by the CAT, the lower case letters by the
operator, who also signals the end of his text by typing the symbols + +:

tomorrow and tOMORROW aND tOMORROW creeps in tOMORROW/This
petty pETTY/ Pace from day tOMORROW/TO dAY till thIS/THe last
syllable of recordef// recorded tiL L/ Time + +
PLEASE TYPE 1 FOR A FAIR COPY . . . 1

TOMORROW AND TOMORROW AND TOMORROW CREEPS IN THIS

PETTY PACE FROM DAY TO DAY TILL THE LAST SYLLABLE OF

RECORDED TIME

The reader will doubtless think of many ways in which this idea could be

refined and extended; we are working on some of these at the moment.
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INTRODUCTION

Euler's discussion of the Konigsberg bridge problem can be said to have been
the beginning of graph theory as a mathematical discipline. This now famous
article dealt with an essentially graphical problem, little imagination being
required to consider the various places to be visited as points, these points
being connected by lines representing the bridges. Indeed the problem can be
drawn out on paper as points connected by lines without loss or addition of
relevant information. It was not however until a century later, when it was
realized that electrical networks and the structures of molecules and crystals
could be represented by a graphical structure of essentially similar kind that
there was a resurgence of interest in graph theory. At about the same time
graph theory escaped from its pictorial origins with the study of binary rela-
tions as graphs, the representation of a graph as a drawing of points inter-
connected by lines becoming merely a visual aid rather than an essential part
of the problem. This has remained so for the ever widening range of subjects
to which graph theory has since been found applicable—from game theory and
programming through switching circuits and communications theory, con-
sumer behaviour and psychology, to problems from biology.
However, recent suggestions that graph theory might prove useful in pattern

recognition (Narasimhan, 1964; Philbrick, 1966), have, on this one small
branch of the subject, elevated the picture of points and lines to the position
of being not merely a visual aid, but the starting point of the problem itself.
This means that the situation is in some ways more restricted than that gene-
rally dealt with by graph theory; for example we know that, by their very
nature, the graphs with which we deal must be finite, planar and undirected.
On the other hand we usually do not know in advance whether a graph is

1 Present address: Derbyshire House, St Chad's Street, London W.C.1
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connected, whether it is a tree, what the maximum degree of its nodes is, etc.,
and we certainly cannot apply to it the elegant theories constructed around
such special systems as for example ordered rooted binary trees. Because of
this, and also because we are rapidly taken outside the scope of graph theory
by such considerations as the actual positions of points and the length and
curvature of lines, it is in answering the more basic questions such as 'Is this
graph connected?' that we have found the techniques of graph theory most
useful.

FROM PICTURE TO ABSTRACT GRAPH

One definition of a graph as an abstract mathematical concept (based on
that given by Ore (1962)) is the following:
There is a set N consisting of elements which shall be considered to be con-
nected in some fashion. These elements are called nodes, and N the node set.
A graph G(N) is a family of associations or pairs

a = (m,n) m,neN

which indicates which nodes shall be considered to be connected. Each pair
(m,n) we call an arc.

With a picture that consists basically of line-like elements, as in bubble and
spark chamber, photographs, and in our own field of chromosome analysis
(see figure 1) it is simple to see intuitively the structure of the picture as a
graph—the line-like elements being the arcs, their ends and points of inter-
section the nodes. However, having obtained a digitization of such a picture
(this is usually in the form of a rectangular raster or matrix of points, the
value of each element of the matrix being related to the darkness of the corre-
sponding part of the picture) a formalization of these intuitive ideas is neces-
sary—in particular the idea of a line must be precisely defined. This is some-
what difficult in the usual case where width and length of lines are variable,
and noise is an ever-present problem. A method of overcoming this difficulty
is described by McCormick (1963) and Narasimhan (1964) for use, in
particular, in bubble chamber work. Their method consists of thinning and
gap filling the line-like elements of a picture to reduce distortion due to varia-
tions in width, and gaps and holes in the lines. After the line-like elements
have been standardized in this way they are recognized as being lines by the
ratio of their length to their breadth. At about the same time Blum (1964)
proposed a transformation for applying to patterns, which he called the
'Medial Axis Transform'. This produces a line drawing from a plane figure of
any shape. It can probably be most simply described by the grass fire analogy
—if we consider the boundary of some shape drawn out on a uniform dry
grass field, and then the grass at all points on the boundary set alight at the
same moment, the front of the fire will move away from the boundary at a
steady rate until at certain points different parts of the front will meet. The
medial axis is the locus of points at which this occurs. This set of points, plus
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Figure 1. A metaphase spread. This picture is a photograph of a typical cell of
the type which we are attempting to analyse ( x 2900)

a function giving for each point the time at which the fronts met, completely
defines the original shape. This locus of points forms a type of 'skeleton' for
the picture. Philbrick (1966) simulated the Medial Axis Transformation on a
digital computer—the original pattern being digitized on a rectangular grid,
and time units quantized so that the pattern boundary propagates a discrete
distance of two units in each time unit, and after each step, points at which
the fronts intersected are detected and listed as belonging to the medial axis.
The method which we have implemented for producing skeletons of chromo-
somes is somwhat similar to this in that it depends on propagation of the
boundary of the object from the edge inwards in discrete steps (in our case
steps of one unit). However, we are dealing with pictures which already have a
line-like structure (chromosomes) and this makes it possible for us to place
much greater constraints on the form of the final skeleton.

THE SKELETON

I shall not describe in detail the method we use for producing the skeleton,
but simply say that having obtained a digitization of the pattern on a rectan-
gular raster, with points in the pattern given the value one and points outside
the value zero, the boundary points of the pattern are removed layer by layer,
and at each step all those points on the edge of the pattern whose removal
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would not alter connectivity and which do not lie at the tip of a line are de-
leted. (Connectivity is defined by considering each pattern point to be adja-
cent to its eight immediate neighbours as shown in figure 2, though it is of
course possible to define connectivity in other ways.)

4- 3 Z

5 pc I

6 7 8

Figure 2. The neighbours of a point. With a square raster the point x may be
considered to be adjacent to the eight points 1 to 8, or only to the points 1, 3, 5
and 7, (and of course there are other possibilities)

The resulting skeleton usually follows the main features of the original
configuration (as would be hoped) but in addition, in order to make its treat-
ment as a graph as simple as possible, we have tried to ensure that it is as
close an approximation to a line drawing as is possible in a discrete space. To
be more precise, the skeleton is such that the removal from it of any one point
other than the tip of a line would alter its connectivity. An example is shown
in figure 3. Each point of the skeleton has one, two or more neighbouring points
also in the skeleton. Connected sets of points each having exactly two adjacent
points in the skeleton we call arcs, connected sets of points each having more
than two adjacent points in the skeleton are called junctions, and individual
points with only one neighbour in the skeleton are tips. In general the arcs
correspond to the line-like parts of the original pattern, the junctions to the
places where these meet, and the tips to their ends.
To treat the skeleton as an abstract graph we consider each tip or junction

to be a node, and this gives us the node set N, and, following the intuitive idea
that two nodes should be connected if there is a line joining them, we define
two nodes n1 and n2 to be connected if there exists an arc a such that a point
of n1 is adjacent to a point of a and a point of n2 also is adjacent to a point
of a.

LABELLING THE SKELETON

To produce this graph it is necessary to identify the nodes, and determine
which of them are connected to each other. Having obtained the skeleton as a
matrix of points having positive values if they lie on the skeleton and value
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Figure 3. A line printer representation of a chromosome and its skeleton. Imagesare initially digitized on a scale of seven grey levels; however, before the skeleton
can be produced certain noise filtering operations are applied to the image and it isthen converted to binary form. It is this binary image from which the skeleton is
obtained, and which is shown above
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zero otherwise, the arcs and nodes are identified as follows: first the arcs are

differentiated from the nodes by the simple procedure of setting negative all

points with exactly two non-zero neighbours; the arcs and nodes are then

labelled by assigning a unique positive value to the points of each node and a

unique negative value to the points of each arc. This is done by applying an

algorithm based on one described by Rosenfeld and Pfaltz (1965).
Suppose we are given a finite domain D, and a functionf on D, and wish to

transform f so that it takes a unique value on each connected subset of D on

which it is greater than some lower limit LIM; at all other points of D it is

to be given a value BKGRND<LIM. This can be done by repeatedly apply-

ing the following algorithm at each point of D in turn:

Let L:= max(f(D)+ K) where K is some large number, then for each point x
iff(x)<LIM f(x):= BKG RN D
else f(x):=max (L,{f(n)})
and then iff(x)=L L:=L —1
where {f(n)} is the set of values of the neighbours of the point x — i.e.
those points which are considered adjacent to x — and the point x itself.

In this way the value of x is set to the value of that one of its neighbours
which has been given the label of highest value, or if none of them has been
labelled it is given the label L and L is decremented to provide another new
label when required. L must of course be given a sufficiently high initial value

to remain greater than max{f(D)} after it has been decremented.
This algorithm can be used for various types of connectivity by suitably

defining the neighbours of a point; for example, working with a square raster,
we take the neighbours of point x to be the eight points 1 to 8 shown in

figure 2. An alternative method would be to consider only the four points

1, 2, 5, and 7 as being neighbouring points of x. The algorithm is applied to

all points of the domain repeatedly until a pass is made in which the value of

none of the points is altered. It can be shown (see Rutovitz et al., 1968) that

at this stage each connected area of points has been given a unique label lying
between the initial and final values of L.

This is made more efficient by applying the algorithm to the points in for-

ward raster sequence ( starting at the upper left corner and working down to

the lower right) at the first pass, so that labels are propagated downwards and

to the right, then in exactly the opposite order at the next pass so that they are

propagated upwards and to the left. If the order in which the points are dealt

with is reversed at each pass in this way the number of passes required to

label a picture is dependent upon how sinuous the connected areas in the

picture are. For example the area in figure 4 (a) would require only one pass

to label it and a second pass to determine that labelling was complete, whereas

the area in figure 4 (b) would require six or seven passes. The skeletons which

we require to label consist of comparatively straight lines and so require only

a few passes, and this method is not therefore too inefficient.
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Figure 4. Two hypothetical components of a picture. Component (a) would require
only one pass of the labelling algorithm to label all its points with the same value,
whereas component (b) would require six or seven

The algorithm described above could equally well be inverted, i.e. points
with value less than LIM being labelled, L being given an initial value much
lower than LIM, f(x) being set to the minimum of L and the values of its
neighbours, and L being incremented instead of decremented. In order to
label our skeletons and give a unique positive value to each of the nodes and
a unique negative value to each of the arcs we apply both these approaches at
once, labelling independently the connected areas of points with positive
values (the nodes) and the connected areas of points with negative values
(the arcs). The exact algorithm is as follows (using the same notation as
before):

Points with value greater than LIM HIH are labelled with values starting
at LH, where L11>> LIMH111.?..BKGRND and points with value less
than LIML OW are labelled with values starting at LL (LL< <L IM L OW
<B KG RN D)

if LIML OW<f (x)<LIMHIH f(x):= B KG RN D
if f(x)>LIM HI H f(x):= maximum

(L11,{f(n)})
and iff(x)=LH LH:=LH— 1

if f(x)< L IML OW f(x):=minimum
(LL,(f(n)))

and if f(x) =LL LL:=LL+1

Figure 5 shows an example of a resulting labelled skeleton.
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ADJACENCY MATRIX

In the abstract graph defined by the labelled skeleton an arc a connecting
nodes n1 and n2 can be considered as the point (n1,n2) in the product space
N x N. As usual the elements in this product can be represented in a square
array A with the elements of N serving as coordinates along the two axes. At
the position with coordinates (n1,n2) one places the figures 1 or 0 depending
on whether or not there is a corresponding arc in the graph. Thus one obtains
a node incidence matrix which completely describes the graph if it has single
arcs, i.e. only one arc joining any two nodes. If the graph has two or more
arcs joining the same pair of nodes one can replace the symbols 0 or 1 at
(n1,n2) by the multiplicity p(n1,n2)—that is the number of arcs joining n1 and
n2. A graph may also be defined by an incidence matrix of another kind—this
has rows corresponding to nodes, and columns corresponding to arcs, an
element at (a,n) being non-zero if and only if the arc a terminates or begins
at node n. This is called a node-arc incidence matrix.

Finally one can consider an arc incidence matrix which has both rows and
columns corresponding to arcs, and elements are non-zero if and only if the
two arcs have a common endpoint. For our purposes the node incidence
matrix has been found the most convenient, with notation chosen such that the
elements (ni,ni) corresponding to loops (arcs starting and ending at the same
node) lie on the diagonal, and this we call an adjacency matrix. As our arcs
are undirected (if an arc connects n1 to n2 it equally connects n2 to n1) the
matrix is symmetric. In the case when the graph has no more than one arc
connecting any two nodes, and thus elements take only the values 0 and 1, a
variation of the adjacency matrix has been found useful. In this a non-zero
element at (n1,n2) is given the value of the label assigned to the arc connecting
nodes n1 and n2. We call this matrix a labelled adjacency matrix; it is very
similar to the matrix of a line drawing described by Hodes (1961). Although
with graphs as sparse as those with which we are working the adjacency
matrix representation is rather wasteful of storage space, our graphs are in
general so small as to make this unimportant. Figure 5 shows an example of a
labelled adjacency matrix for the skeleton of a chromosome.

CHROMOSOME ANALYSIS

At this stage I feel I should describe briefly what chromosome analysis in-
volves. This is most clearly shown by an illustration. Figure 6 shows a normal
chromosome spread, with its karyotype underneath. Karyotyping consists of
grouping the chromosomes as shown, the grouping being done according to
the length of the chromosomes, and the positions of their centromeres, i.e.
the constrictions where the arms are joined (though the trained cytologist is in
fact aided by certain other qualitative factors which we shall not concern
ourselves with here). The normal human has 46 chromosomes falling into
the groups shown, and abnormalities (inherited, or due to environmental
damage) are recognized by the total number of chromosomes being incorrect,
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9I

Z
z 

8YYY7 •

6
5XXX XX VV

XXXXXXXX V
VV

VVVVV
4

ADJACENCY MATRIX
9 8 7 6 5 4

9 • • • Z • •
8 .• Y • • •
T . Y • • • •
6 Z...XV
5 • • • X • •
4 • • • V • •

Figure 5. Line printer representation of a labelled skeleton, and its labelled adjacency
matrix. Points with positive value are represented by numbers, and points with
negative value by the letters of the alphabet. Thus each different letter represents an '
arc and each different number a node

or certain groups having the wrong number of chromosomes, or chromosomes
having abnormal shapes, e.g. ring chromosomes, dicentrics (chromosomes
with two centromeres), fragments of chromosomes with no centromere, etc.
At present this task is performed either by photographing the cell, cutting out
the chromosomes and arranging them into their groups, or, as in our labora-
tory in Edinburgh, by eye, directly down the microscope, by trained techni-
cians.
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n ix ti
1 2 3 4 - 5

Ai IX U xx ;3 II A
6 - 12 + X

13 - 15

XX XX

19- 20

it 6

16 17- 13

4* xis I

21 - 22 Y

Figure 6. A photomicrograph of a human cell at mitosis, and the karyotype pro-
duced from it. The karyotype is obtained by grouping the chromosomes according
to length and centromere position ( x 1600)
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If, as in figure 6, the chromosomes were always well separated from each
other the problem of automating their analysis would be comparatively simple;
however, as in any biological system complexity is the norm, and the cell shown
in figure 1 is more typical, with overlapping chromosomes, bent chromosomes,
and chromosomes lying so close together that after digitization they will
undoubtedly appear to be touching. Nevertheless, the majority of chromo-
somes are still of the more easily analysable type. Because of this we are
working towards a system which involves a hierarchy of programming tech-
niques, described more fully by Rutovitz (1967) and Hilditch and Rutovitz
(1967). Within this system the simpler techniques are applied to the chromo-
somes first, with acceptance criteria to decide whether or not they are applic-
able. For those chromosomes which do not prove amenable to these tech-
niques we go on to more complex and time expensive methods, such as that
which I am describing, and it should be born in mind that the techniques
described here are intended for application only to the less straightforward
chromosome configurations.

Nevertheless we shall start by considering the simpler case:

THE CHROMOSOME GRAPHS

A normal, free standing chromosome which does not have its arms twisted
over each other in any way should produce a skeleton which is a realization
of one of the four graphs shown in figure 7(a); these we call 'chromosome
graphs'. Figure 7 also shows digitizations of four chromosomes and their
skeletons, each of which corresponds to one of these graphs. Conveniently
enough the chromosome graphs happen to be four of the simplest graphs that
there are. They are all connected; they are all trees, i.e. they have no loops or
cycles. Moreover, if we ignore nodes of degree two, and consider the two arcs
terminating at such a node to be one continuous arc, as illustrated below, then
the chromosome graphs can be shown to be the only trees with four or less
tips (except of course for the trivial case of the isolated node):

Having obtained a graph from a digitized object, our approach is to test
whether or not it is a chromosome graph, and if not then to convert it to one
or more chromosome graphs in some way.
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(a)

i

(c)

Figure 7. (a) The four chromosome graphs. (b) and (c) Four chromosomes, and
their skeletons, each of which is an example of one of the chromosome graphs.
The chromosomes are digitized on a seven level grey scale, and in the line printer
representations shown here the characters are chosen so that the grey level at each
point of the digitization corresponds approximately to the overall darkness of the
printed character
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OBTAINING A CONNECTED TREE

The first steps in doing this are to test whether the graph is connected, extract
its components if it is not, and then determine if these components are trees.
The adjacency matrix can conveniently be used to determine whether the

graph is connected, the rows and columns of the matrix being exchanged in
such a way that the matrix can be factored into the direct sum of the adja-
cency matrixes of its disjoint components. This is done as follows: Let the
node corresponding to row i (or column i) in the adjacency matrix be referred
to as node i. The rows and columns of the matrix are exchanged so that the
nodes adjacent to node 1 become nodes 2 to al (say). Then further rows and
columns are exchanged to make those nodes adjacent to node 2 and not
already included in 1 to al become nodes al +1 to a2, those adjacent to node
3 become a2+ 1 to (23, and so on. Eventually a value i is reached such that
nodes 1 to ai consist of all those in the component of the graph which contains
node 1. Subsequent operations do not therefore add any new nodes to this
component. When n=ai we will find that all the nodes adjacent to node n
have already been shifted to the left of column n, and this signals the com-
pletion of the component containing node 1, and the sub-matrix

A(k,j), 1 ‘..n, 1 .4. j<n

is the adjacency matrix for this component of the graph. Continuing from
node n +1 will then produce the adjacency matrix for the next component,
and so on, until the whole graph has been exhausted. If the original graph
were connected then the first component obtained by this method would
consist of the whole graph.
We now need to determine whether these components are trees, and, as it is

Possible to show that a connected graph is a tree if and only if the number of
nodes in the graph is one more than the number of arcs, this is a very simple
attribute to test. If the graph is not a tree then it is desirable to determine the
Position of its cycles so that these can be more closely examined to discover
the cause, e.g. touching or overlapping chromosome arms. Cycles only a few
arcs in length can be identified from the adjacency matrix. For example a
loop or cycle of length 1, consisting of one arc starting and ending at the
same node i is indicated by a non-zero element au on the diagonal of the
adjacency matrix, and an element au with value greater than 1 indicates more
than one arc connecting nodes i and j, and hence a cycle of length two passing
through these nodes.
More generally if we define a walk as being a sequence of arcs

W = (n 0,n 1)(ni,n2) (n2,n 3)   (n,,,_1,n„,)

such that consecutive arcs always have a common endpoint (noting that the
same arc may appear more than once in the sequence), it can be shown that if
we consider the adjacency matrix raised to the power m

= (a(7j)

337



PATTERN RECOGNITION

the element aii(m) gives the number of walks of length m between nodes land j.

Thus for example if
aii moo

then there exists at least one node k giving a walk

(i,k)(k,j)

so that if we also have

aii0 0

i.e. an arc joining i to j, then there must be a cycle of length three passing

through nodes i, k and j unless k=i or k=j in which case there is a loop at

either node i or node j.
This cannot however be generalized to find cycles of any length, since a

walk of length m between nodes i and j implies the existence of a walk of

length m+2 between them, namely that obtained by backtracking along one

arc of the sequence, and these two walks of different lengths between nodes i

and j certainly do not imply a cycle through 'and j. So, although cycles which

occur in chromosome work are generally short enough to be identified by
considering the elements of the adjacency matrix and its powers, alternative

approaches are required for the longer cycles which are bound to occur.

THE TIPS

Of the nodes of a graph the tips (nodes of degree one) are of special interest

to us as they usually correspond to the ends of chromo some arms. The junction

of the chromatids at the centromere should give rise to one or more nodes of

higher degree of course, but these may equally well be due to touching or

overlapping arms, or some combination of these. The tips become important

once the graph of a chromosome configuration has been found to be a tree, or

has been converted to a tree. For example the simple procedure of counting

the tips will determine whether or not a tree is one of the chromosome graphs.

If it is found to have too many tips, then, assuming that noise filtering proce-

dures have not left any spurious tips, we require to find subgraphs which,

having four or less tips each, are chromosome graphs.
- It is sometimes possible to do this, for example, by determining that the

tips in a certain subset belong to the same chromosome; the smallest subgraph

of the tree needed to connect these tips would then be the graph for this

chromosome. That such a subgraph will always exist is proved below:

THE CONNECTING GRAPH

Let T be a finite tree defined on a node set N, and let R be any subset of the

nodes N.
We define the connecting graph of R to be a subgraph C of T satisfying the

following conditions:
(1) the node set of C includes .R;
(2) Cis connected;
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(3) if Cl is any subgraph of C with a node set which includes R then either
C1 is not connected, or Cl = C.

Such a C exists; for T1 satisfies conditions (1) and (2), and if it does not satisfy
(3), then it has a subgraph T10 T which satisfies (1) and (2). This subgraph

either satisfies (3) or itself has a subgraph satisfying (1) and (2) and so on.
Thus as T is finite it must be possible in a finite number of such steps to

obtain a subgraph of T satisfying all three conditions. This C is also unique.
If not we assume that there are two such, namely C1 and C2

and let 1= Cin C2 (I is not the zero graph because it

contains at least all the nodes in R)
If 1 is connected then by (3)

1=C1 and I= C2, i.e. C1—C2
If us not connected then it must consist of two or more disjoint components.
Let i be a node in one of these and] a node in another.
Now ieN and jEN and T(N) is a tree, therefore there is a unique path Pin

T connecting land] (a path is a walk in which no arc appears more than once).
But i and] are both in the node set of C1, and C1 is connected, so there is a
path in C1 connecting i and]. As C1 is a subgraph of T this must be the path
P. Similarly P is also a path in C2. So all the arcs constituting P are in both C1
and in C2. They are therefore in 1, and thus P is a path in I. But P connects i
and], which is contrary to the assumption that i and] are in disjoint com-
ponents of!. Therefore C is unique.

EXTRACTING THE CONNECTING GRAPH

The program which we have developed for finding the connecting graph for a
given subset of the nodes of a tree uses the adjacency matrix as follows:
Starting from any one of the given subset of nodes (node I, say) the elements
of the corresponding column in the adjacency matrix are tested in order.
When a non-zero element is found the corresponding row number (j, say)
gives the number of the next node. The jth column is now tested for a non-
zero element other than the element (i,j). This gives the next node, and so on.
A temporary record is kept of the path followed (i.e. the value of each node
and arc visited) and whenever a node belonging to the specified subset is
encountered the current state of the temporary path record is copied to a
permanent list—at least those parts of it which have not already been added
for some earlier node. The process is continued and whenever a tip is reached
the path is retraced, its temporary record being deleted at the same time, until
a node with an alternative branch is reached, i.e. a column with a non-zero
element succeeding that just retraced, but not the one by which this node was
first reached.

This continues until all the nodes in the subset have been found. This must
happen eventually as the process, if allowed to continue, will finally cover the
whole graph. When all the nodes have been found the permanent record con-
tains a list of all nodes and arcs in the required connecting graph.
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This method is in effect a 'depth first' type of tree search. The tree is con-
sidered as rooted at the chosen starting node, and ordered in that the branches
to nodes which come earlier in the adjacency matrix are considered as pre-
ceeding those to nodes later in the matrix. This is illustrated in figure 8.

It

(a) (b) (c)

Figure 8. The connecting graph for a subset of the nodes of a tree.
(a) An example of a tree with the nodes numbered according to their positions in
the adjacency matrix.
(b) The same tree with node 1 taken as root, and the branches ordered according
to the values of their terminal nodes.
(c) The same tree with node 11 taken as root, and the branches ordered.
If the tree is considered to take the form shown in (b) a 'depth first' type search
will find the connecting graph for nodes I, 2, 11 and 12. This connecting graph is
shown by the double lines in (a) and (b). The double lines in (c) show the connect-
ing graph for nodes 11, 7, 1 and 8

LIMITATIONS OF GRAPH THEORY

Using these methods it is possible, if a tree is thought to represent more than
one chromosome, to select some subset R of the nodes of the tree and then
extract the connecting graph for R. However the only tips in such a connecting
graph must be elements of the chosen node set R (because otherwise they could
be removed without causing the graph to become disconnected). So if R has
four or less elements, then whichever nodes these may be, the connecting
graph must have four or less tips, and being a tree is therefore a chromosome
graph. This means that in order to select those subgraphs most likely to
correspond to chromosomes we must go outside the realms of graph theory
and take into consideration such factors as the spatial relationships between
the nodes and arcs in the skeleton in selecting R.

AN APPLICATION

A brief description of the method used for choosing subgraphs in the case of a
particular configuration, and the way in which these subgraphs are used to
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reconstruct the constituent chromosomes of the configuration is given below
as an example of the way in which the graph theoretic methods described
earlier can be used. Various steps in the process—from the original digitiza-
tion to the reconstructed chromosomes—are illustrated in figure 9.
The configuration chosen is a comparatively straightforward and also

comparatively common one. It consists of two of the larger chromosomes
overlapping at or near their centromeres. From this is produced a connected
graph which is recognised as being a tree with eight tips.
We wish to obtain the two subgraphs of this graph (each having four tips)

which are most likely to correspond to the two chromosomes. This is done by
selecting two sets of four tips from the eight, and then taking the connecting
graph for each of these sets. The tips are chosen using a combinatorial
method; all possible selections of two sets each consisting of two pairs of
tips are considered.
For each selection the distance between the tips in each pair, d1(1= 1,4), is

calculated, and also the distance between the two pairs in each set, Di(i= 1,2).
The correct selection should have the tips in each pair close together, and the
two pairs in each set far apart. The selection chosen is therefore that which
minimises the expression.

4

i1 iI

The skeleton corresponding to the connecting graph for each of these two
sets of four tips is then constructed in a domain equal to that of the original
digitization. A distance transformation (Rosenfeld and Pfaltz, 1965) is then
applied to this domain, so that each point is given a value equal to its 'dis-
tance' from the skeleton ('distance' being in a metric which is a rough
approximation to Euclidean distance). From these distance transforms two
chromosomes are then constructed. This is done by dividing the density
value at each point in the original digitization between the new, chromosomes
in a proportion dependent on the 'distance' of the point from the two skele-
tons. This proportion is determined by a matrix {pii}; the element pii is the
proportion given to a point which is at ̀distance' i from its skeleton, and at
`distance' j from the other skeleton. Thus, if a point is far from one skeleton
and near to the other, then the whole of the density value at that point is
given to the latter, whereas if a point is equidistant from the two, the value is
divided equally between them. In the first instance the values of the elements
pa, have been determined in an entirely ad hoc manner. Nevertheless, as can
be seen from figure 9, the results are, we feel, sufficiently encouraging to vali-
date the use of this method and justify its further development.
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Figure 9. Resolving the two component chromosomes in an overlap.
(a) Digitization of a configuration consisting of two overlapping chromosomes.
(b) Skeleton of the configuration
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Figure 9 (el) and (e2). Two skeletons obtained by selecting two sets of tips from
the original, finding the connecting graph for each of these, and reconstructing the
corresponding parts of the skeleton
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Figure 9 (gl) and (g2). The resulting reconstructed chromosomes
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Some Semantics for Data Structures

David Park
Programming Research Group
University of Oxford

1. INTRODUCTION

The aim of this article is to describe some ways to discuss problems of inter-
pretation arising in connection with 'data structures', as they are provided
for high-level programming languages.

It is well known to machine-code programmers and to users of list pro-
cessing languages that methods of representing data by means of systems of
'pointers' and 'code-words' are indispensable for certain sorts of problem.
This has been particularly the case for heuristic programming, and the use of
such structures is now widespread in other areas also; the design of an
appropriate 'data structure' to represent some feature of interest in a particu-
lar problem is now accepted practice, as well as sophisticated techniques for
manipulating the pointers and code-words involved.
In designing a high-level language, therefore, it is now desirable that it

include powerful features for doing this sort of thing, in as general a way as
can be managed. However, this gives rise to certain problems in connection
with defining the 'semantics' of the language (i.e. what the user is to expect
of his program when run). It becomes important to distinguish rigorously

between those data structures which are 'pointer-like' and those which are
conceived of more conventionally.
As an example of the confusion which can arise, we will consider a particu-

larly simple data-structure, constructed from a pair of real numbers. Suppose
we want to add to a language, which will be taken as CPL here, a facility for
constructing and decomposing such objects. The syntactic problem is trivial;
we add a new type pair to the type symbols of the language, and three basic
functions to the repertoire of system functions. These are Pair, a function

taking two real parameters, and constructing an object of type pair from

them, and selector functions H, T, each taking a parameter of type pair and

producing a real result, the appropriate component of the pair. We suppose
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that variables of type pair can be assigned to, and that assignments to com-
ponents, such as

H[A]:= 3.14

are permitted. These last possibilities give rise to the confusion. Consider, for
example, the following fragment of a CPL program:

let A =Pair [2, 2]
let B=Pair [2, 2]
let a=H[A] II Initialization ̀ by reference'; see 3.1.

Write [A= B] II Output true or false
H[B]:=3
A:=B

With the following three possible continuations:
(i)

H[B]:=4 H[A]:=4 a:=4
each followed by

Write[a,H[A],H[B],(A=B)]
The two interpretations (A), (a) I have in mind produce the following

output:
(i)

(A) true,3,3,4,false
(a) false,2,4,4,true

(ii)
true,4,4,3,false
false,2,4,4,true

(lii)
true,4,4,3,false
false,4,3,3,true

The discrepancies between these results are explicable, of course, by saying
that in (a), pointers are held as representations of pairs, which indicate the
storage space containing their values; a has a location within the storage space
originally associated with A, but after A: =B this association no longer holds.
On the other hand, interpretation (A) associates A once and for all with a
particular storage area, and an assignment to A copies into this area.
This is fine, for such a simple-minded structure, if one understands about

pointers and storage areas. But it does raise some fundamental problems for
the language designer, of the following sort:
(a) How can such explanations be rigorized, say in order to prove

results about programs involving pairs?
(b) Does the explanation characterize all that the programmer needs

to know about pairs?
(c) Are there other sorts of pairs with similar characteristics, but

nevertheless different in some obscure way?
These are questions about the ̀ abstract' nature of data structures, and as
such it seems fair to call them ̀semantic' questions.

It is important to appreciate that the real difficulties here arise from
assignment statements in the language, in particular from the interaction
between the assignment A:= B, and assignments to components of A and B.
In a language without assignments these problems disappear, and one could
confine oneself to a description of the objects in traditional mathematical
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terms. Nevertheless, programmers continue to use assignments in their pro-
grams, often in very natural and powerful ways, especially in connection with

complicated data structures.
These problems will be attacked in two rather different ways. In Section 2

we sketch an axiomatic system which can be used to prove results about
'computational objects', and derive some results concerning the 'pairs' of

Section 1. This is intended primarily as an exercise in formulation (the proofs
involved are more or less trivial), the aim being to put the formulation in a
form which could without difficulty be applied to the semantics of any pro-

gramming language. What this section is primarily concerned with is the
relationship between assignment operations, various notions of identity, and
notions of 'location'.
In Section 3 a method is described for representing a particular choice of

data structure in terms of other objects whose properties might already be
known to the user. These are the objects known in CPL as 'functions',
'routines', 'load-update-pairs'. To the extent that the semantics of the latter
sort of object are defined unambiguously, so will the semantics of the data
structures concerned, using this method.
CPL (CPL Working Papers, 1966) is used throughout as an exemplar of

the sort of programming language to which these methods are applicable.
However, of current programming languages, only CPL has the features
which enable the reduction of Section 3 to go through, as far as I know.
The L-value—R-value distinction in Section 2, and the L UP device used in

Section 3, are due to Strachey (1966, 1968); without these crucial ideas,
the sort of development I describe would not be possible.

2. SOME ABSTRACT CONSIDERATIONS

It is possible to formulate some of the relevant properties of data structures,
assignments and 'locations' in an abstract fashion, which does not seem to
depend too much on the particular programming language involved, and
which avoids any reference to particular representations of the objects
involved. This section will describe one approach to such a formulation; we
first present (informally) (2.1) an abstract model for talking about 'computa-
tional objects', then state (2.2) some plausible basic propositions about this
model, and finally (2.3) deduce some consequences of these. Theorem 2.3.1
will show that, assuming these basic propositions, there is a very close two-
way relationship between the interpretation of assignment statements of the
language and notions of identity in the abstract model. This theorem appears
to embody a useful general principle, and will be used here to exclude from
consideration a number of alternative interpretations of the data structures
of the last section which might otherwise appear plausible.

2.1. L-values.R-values

We want to examine just the effects of single commands (in fact, assignment

353



PROBLEM-ORIENTED LANGUAGES

commands) in a programming language, which we take here to be CPI, (to

avoid having to talk of syntax). Commands may contain occurrences of

expressions. Certain expressions are identifiers. Expressions are classified into

types; the type of an occurrence of an expression is a 'manifest' property, i.e.

determined by inspection of the text of the program alone. We restrict our-

selves here to single commands which are not qualified by declarations of

new identifiers. An occurrence of an expression within a command can be
classified as an L-occurrence or as an R-occurrence, depending on its context;

in CPL this classification is determined by certain assumptions about the

operator (i.e. arithmetic operator, function identifier, assignment operator,

routine identifier, etc.) which 'governs' the occurrence of the expression,

and this classification is 'manifest' also. In an assignment command of the

form
= E2

the occurrence of E, is an L-occurrence, and that of E2 an R-occurrence (we
use the letter E with a subscript as a variable standing for an expression, and
the letter / with a subscript as a variable standing for an identifier). The
significance of this classification will be made clear below. (Of course there
are occurrences which are neither L- nor R-occurrences, e.g. occurrences
within quotation marks of some sort.)

It is necessary to talk about the effect of a command. The device adopted
here is to refer to an instantaneous state of a computation. The state <2,C>
consists of two mappings 2 and C;..29 is a map from a certain class of ex-
pressions, the class of legal expressions at that point, into a class of locations;

C is a mapping from the class of locations into a class of objects (which need

not be disjoint from the class of locations). The composition of C and2 is
denoted by R. Thus C(...T(E1))= (Ei) for any legal expression E,. 2(E1) is
referred to as the L-value of Ei ; .R(Ei) is the R-value of El.
The method adopted here will be to relate certain assertions about the

state at a given moment to assertions about states resulting from commands

which might be executed immediately afterwards. Subscripts on C,2,M will

be used to indicate which state is referred to. Thus 0(ED is the R-value of

El at the moment in which we are interested, and 1(E1) is the R-value which

results after some given command (which should be clear from context) has

been executed. The effect of the given command determines the new state
<21,C1>. Thus if two commands produce different mappings 2, or

their effects can be said to be different.'

It seems undesirable to assume the converse; if the command is an 'output' command,

it has an effect not reflected in the state as envisaged here. On the other hand, the

effect of an 'input' command is determined by some 'environment' which again is not

specified in the state. This, of course, leaves the concept of 'effect' somewhat vague,

which may be its right and proper condition if it is to stand for what computer people

have in mind when they use the word. The most we need assume here is that the effect of

a command is determinate in so far as it affects the state; and there is some general
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The intention of the R-value-L-value distinction should be clear to those
familiar with the CPL literature (Strachey, 1966, 1968; CPL Working Papers,
1966). Roughly speaking, the R-value of an expression is its 'value' in the
conventional sense, of the ALGOL 60 Report (Naur, 1963), say. Thus, after

let a, b=2, 2
a:=a+b

the R-value of a is 4 (the numeral '4', the number 4, or some representation
of either, according to taste.) On the other hand, the L-value of a is what is
required to make sense of the command a:= a+ b above, and distinguish its
effect from that of b:= a +b. What is relevant here is clearly not the current
R-value of a (which happens to be the same as that of b). On the naive level,
what does seem to be relevant is some concept of the 'location' of a; it is this
naive sense which is intended to be captured by the concept of ̀L-value'. The
term 'value' is used, since many expressions can be construed as descriptions
of location, as well as of the objects which live in them; the process of
obtaining the location described can be regarded as a sort of evaluation.
For example

(a>b-›-a, b):=0

makes intuitive sense, as assigning 0 to the larger of a and b; the expression
on the left is evaluated by taking .R(a), a(b), comparing them and giving
result 2'(a),29(b) depending on the comparison. In an R-context, of course,
the relevant value would be .2(a) or
In fact it makes some sense to turn this idea on its head, as we do here,

and maintain that the only evaluation process to be accounted for in specify-
ing the language is the L-evaluation process; R-evaluation is obtained from
L-evaluation by composition with C, i.e. M(E1)= C(2(E1)), for all ex-
pressions El. This implies a certain artificiality when it comes to expressions
such as (a+b) which do not describe locations as well as objects. It is
necessary to adopt the device that 2)(a+b) is always a constant location,
where such a location /has the property that C(/) does not change (of course
a (a +b) may change, under assignments to a and b, but at any instant this
value is a constant location). Thus

a+b:=2

criterion for saying whether the 'effects' of two alternative commands are the same or
not. Another way of putting this is that an 'interpretation' of this abstract formulation
would need to specify not only a particular machine, and a way of translating our states
into machine states, but also an environment for the machine, some notion of what the
'essential' effects of the machine on its environment are, and some rules as to how the
environment reacts to these effects. This point is, fortunately, irrelevant to the issue at
hand, except in providing some justification for approaching the problem of semantics
via formulations for deducing incomplete assertions about effects from incomplete
assertions about states and environments, rather than attempting complete descriptions
of them.
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must be considered erroneous at some stage (situations can be devised for

which such an error can only be detected dynamically). This device may be

not completely without intuitive content; fancifully, it gives semantic sense

(in our very limited use of the word) to the constant-variable distinction of

informal mathematics; an expression denotes a 'variable' if it has an L-value

whose contents can in principle change.
To give L-evaluation the principal role is almost as much as to say that

L-values are to the identifiers of a program as numerical values are to

variables of a numerical formula. However this analogy does not go through

completely, since it is not possible in general to L-evaluate an expression out

of context, knowing just the L-values of the identifiers it mentions (which

would be the case if the analogy did hold); one may also need R-values for

them, which may depend on the context of the occurrence. This is the case,

for example, with the expression (a> b-). a, b), whose L-value depends on

?(a), .2 (b).
An alternative way of conceiving of L-values and R-values is to take as

primitive notions equivalence relations L-equivalence, R-equivalence which

here appear as 'having the same L-value', 'having the same R-value'. L- and

A-values can then be regarded as equivalence classes of legal expressions with

respect to these relations (the contents mapping C becomes the mapping

taking an L-equivalence class into the R-equivalence class containing it). We

are interested, however, in the interpretation of L- and R-values as the repre-

sentations manipulated by a machine, and in whether certain commands

'change' these; it requires some additional apparatus to talk about change in

the equivalence class formulation, in order to 'label' equivalence classes as

they vary during execution.
Translated in terms of these equivalence relations, the statement that ex-

pressions cannot in general be L- or R-evaluated out of context is to say that

there is no overall notion of ̀substitutivity of equivalence' with respect to the

equivalence notions, unless one can guarantee somehow that the equivalence

is one which holds throughout any execution of the portion of program under

consideration (as one can for L-equivalent identifiers, having due regard for

scope rules). One can formulate substitution rules of very limited validity,

and these are presented below as basic propositions 2.2.1, 2.2.2.

2.2. Basic Propositions

It is necessary to assume, in formulating 2.2.1-2.2.6 below, which concern

the effects of single commands, that only legal expressions 'without side-

effects' are involved in the commands considered, i.e. that no effect of a

command is attributable to the evaluation process for its component ex-

pressions, and, particularly, that the R- and L-values of these do not depend

on the order in which they are evaluated, or on the number of times they are

evaluated. This is an annoying restriction to impose, but it is not possible to

extend these principles very far in the absence of such a condition without

356



PARK

referring in more detail to the evaluation rules of the language, which we
wish to avoid doing here.
2.2.1 If 20(E)=.290(E,), then E1 may be substituted for E2 (or vice versa) at
one or more L-occurrences or R-occurrences in a command K without
alteration to the effect of K; in particular 23,c3, are independent of the
substitution.
2.2.2 If .20(E1)=M0(E2), then 2.2.1 holds when restricted to R-occurrences
of E,,E2.

It should be emphasized that 2.2.1, 2.2.2 are not to be regarded as defini-
tions of the notions of L-equivalence, R-equivalence. Even if one restricts
considerations of 'effect' to considerations of the resulting state <21,C1>,
the conclusions of 2.2.1, 2.2.2 turn out to be undecidable properties of El, E2
and the state, when one comes to consider the functions and LUPs of
Section 3.
The essential property of the assignment command itself appears to be the

following:
2.2.3 If =E2 is a legal assignment' then after =E2 the following
identity holds:

C1(20(E1)) = .R0(E2)

We are assuming here rather more general properties of locations than are
associated with the notion of 'address' in a machine. This is essential because
we wish, for example, to investigate the relationship between .2 9(A),
(H[A]) where A is an identifier of type pair as in Section 1. One of the

questions one can ask is whether these locations 'share', i.e. whether assign-
ments to one change the object in the other or not. What is characteristic of
machine addresses is the relation of disjointness. This can be taken as a
primitive symmetric relation on locations, with the following properties.
2.2.4 If 11 is disjoint from 12 then (i) 110 /2; (ii) C(12) is unchanged by any
command E,:= E2 with 20(E1)=11.
We will not use the disjointness relation in this section, but it is clearly

relevant to the following momentary property of expressions.
Definitions. Ei affects (E2) (or R(E2)) if there is a legal assignment
=E3 which changes 2(E2) (or .R(E2)).
El is tame if no legal assignment El: =E2 changes 2(E1).

Thus, if El does not affect 2(E2) and 20(E1) is disjoint from 20(E2), then
E1 does. not affect R(E2). Note that there are non-tame expressions, for
example the left side of

(b --> b, c):= false

with .R0(b)=.a(true) and 2 (b)0 (c).

An assignment E1:= Ey is legal if El., E1 are legal expressions, of the same type, and
20(E1) is not a constant location.
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2.2.5 For identifiers I, 2(4) is not affected by any assignment.
Therefore every identifier is tame. 2.2.5 amounts to a convention for label-

ling certain L-equivalence classes. (There is an awkwardness in applying this in

the case of parameters called by name in ALGOL 60 procedures; either 2.2.5
stands, in which case 9(4), for such an identifier 4, must be chosen to be
distinct from other L-values, although it might satisfy the conclusion of 2.2.1

from time to time; or occurrences of 4 must be dealt with as calls for para-
meterless procedures which can be used on the left sides of assignments, in

the way that 'call by name' is treated in the current proposal (Sept. 1967) for

ALGOL X; the simplest device is probably to drop 2.2.5 for such identifiers.)
For 2.3 it will be necessary to refer to a further primitive property of

locations, of being basic. The intention of this notion is that the state is
completely determined by specifying just 9 restricted to identifiers, and C
restricted to basic locations, the language rules determining how 9 and C
may be extended. There are non-basic locations in CPL (see LUPs in
Section 3.1).
2.2.6 Let <9, C> be a state and E1 a legal expression of type T in this state.
Then there is a state <2', C'> such that

(i) C' extend 9, C;
(ii) there is a legal identifier 4 of type Tin state <2', C'> such that

Ri(h)= (EI)=M(E1), and 9(4) is basic;
(iii) for any E2 legal in <2 ,C> , 4 does not affect 9'(E2), R'(E2),

and E2 does not affect R'(4).

Note. (1) <2', C'> is effectively the state which results from obeying the
CP L declaration

let /1=E1

where 4 is chosen to be distinct from previously legal identifiers. Property
(iii) results from the choice of 9(4) to be disjoint from all previously
allocated L-values.
(2) Properties 2.2.1-2.2.5 should be viewed as constraints on states

and on effects, which are implied by the complete body of language rules;
the word 'state' should be 'taken as 'state satisfying the language rules' in
2.2.6, and this is implicit in the other rules also. The state resulting from a
command is, of course, assumed also to satisfy the language rules.
(3) For notational reasons, an application of 2.2.6 is referred to as 'choosing

a new identifier', and the notation for the current state <9, C> used rather
than referring to the revised state <9', C'>.

2.3. Some Consequences for pairs

We can establish the following very simple result.
2.3.1 Theorem. Let .9- be any function from expressions to expressions (which
preserves legality). The following conditions on states satisfying the language
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rules, on a type T, and on legal expressions E,,E2 of type T, are equivalent:

(i) if (E1) =(E2) then 2(F(E1))=2(.F(E2)).
(ii) If 2'(E1) is basic,' and if El is tame and does not affect R(E2) or

Y(.F(E2)), then after E1:= E2, 2'1(g. (ED) = Yo("(E2)).

Proof. (i)(iii). This is a direct consequence of 2.2.3; El is tame, so
2'i(E1)=20(E1). Therefore MI (Ei) = Ci(-To(E1))=Ro(E2) by 2.2.3. Since
Ei does not affect R(E2), al(E0= RAE2). Therefore 21(-F(E1))=21(g-
(E2)) by (i); the conclusion follows, since El does not affect 2(,(E2)).
(ii)(i). Suppose M0(E1)=R0(E2). From 2.2.6, choose ./1 of type T, not

affecting .2(E1), a(E2), 2(.(E,)), 2(.9-(E2)). Consider the effect of
From (ii) and 2.2.5, 21(.F(h))=20(..F(E1)).

But from 2.2.2, the effect is the same as that of /1:=E2. Therefore

•°1.(Y(4))=270(Y(E2)). Hence 20(Y (E0)=-29o(Y(E2)).
Remarks. (1) The result holds with .W(.(E)) replacing 2(.9-(E)) through-
out, and can easily be extended to cover a variety of other transitive sym-
metric conditions on .4E2.
(2) Without further restrictions on .9", the conditions on ai(E2), • 29 (Y(E2))

in (ii) are necessary. Suppose the language is CPL., but the rules always permit
p as a boolean identifier; (ii) fails taking p as El, —p as E2,(E:-=p) for .F(E)
(I) affects a)( but not 2'( —p==p)); it also fails with p as El, false as E2,
•-p for .F(E), with .90(p)=.R(true) (this time p affects 2(—p), but not
.(false)). (Note that Y(true) .29(false)).
From 2.3.1, the basic propositions, and a number of additional assumptions

about pairs, it is possible to narrow down the class of plausible interpretations
of these data structures.
We confine ourselves here to properties of legal identifiers .4,/2 etc., of type

pair, about which we assume the following:
2.3.2 If 2(4) is basic, after I1:=12, al(HUI3)=M0(H[4]) and

ai(T[4])=Ro(T[4]).
2.3.3 The expressions H[4], T[4] are always tame and never affect each
others' L- or R-values.
The bifurcation of interpretations of pairs can be looked at as springing

from the two following alternative definitions of identity between pairs.
2.3.4A .1(4)=R(/2) iff R(H[4])=.2(1/[4]) and R(T[4])=M(T[4]).
2.3.4B R(.11)=M(12) if 2(H[4])=2(1-1[4]) and .29(T[4])=2(T[4]).
We will assume that these two conditions are incompatible, i.e. that there

exists a state with /1,12 satisfying the right hand condition of 2.3.4A, but such
that 2(H[A] )0 2(1J[/2]), say. We will also assume that for any ./1 there
is an /2 such that M(H[4])0.2(H[/2]).
How do changes to pairs and their components interact? We consider for

the moment just the component H. Firstly what is the effect of an assignment

The assumption is not necessary for (i) (ii).
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.4:=.4 with 2'(11.) basic, on (H[I1]) (H[4]) is covered by 2.3.2)?

There appear to be two reasonable possibilities again:

2.3.5A After /1:=12, 2VH[4])=20(1/[4]).
2.3.5B After /1:=4, (i) 2'1(H[4])=2'0(H[4])

(ii) C1(9'0(H[41))=9l'0(11[A])

From 2.3.1, if 2.3.5B holds, then a (4) = (4) implies 2(H[11])=

(H[12]); so that 2.3.4B is the only choice for 2.3.4 compatible with 2.3.5B.

On the other hand, if 2.3.4B holds, then 2.3.5B(i) holds for 4 not affecting
R(/2), (HIM); from 2.2.6 and the assumption above 4,4 can be chosen

withthis property, and with a 0(H [I1]) 0(11[12]), so that 20(H [4])0

(H[121); and 2.3.5A cannot hold. So that of the four combinations for 2.3.4,

2.3.5, two are incompatible.

From 2.3.2, 4 affects .(H[I1]) in both sorts of interpretation. But does
H[4] affect a (I)? Assuming 2.3.4A any change to a) (H [li]) affects a (4).
Assuming 2.3.4B, however, one can show that H[fI] never affects .2 (4). The

proof of this fact goes as follows: from 2.2.6, choose /2 such that .9(12) is not

affected by H[11]; and 0(12) = 0( 4). Then 20(H[/2 ])= 0(11[ /I]) and
Yo( T[4])= 20( T[4 ]) by 2.3.4B. Consider the effect of H [4]: = 13; since

4 is not affected by H[4], a 1(12) = a0(12); since H[h] is tame and does not
affect (T[4]); by 2.3.3, (H ; (T[11]) are unchanged. Since

.00(11[4])=20(1/[4]), H[11]: = 13 has the same effect as H[12]:=13, by

2.2.1. By repeating the above argument, 2(H[12]), 2(T[12]) are unchanged.

So .91(4)=RI(T2), by 2.3.4B. But then ai(4)=./1(4)=M0(4)=Ro(4).
These results are summarised in (i), (ii) and (iii) of the following:

2.3.6 Theorem
(i) The pairs (2.3.4A, 2.3.5B), (2.3.4B, 2.3.5A) are each incompatible.

(ii) Assuming 2.3.4A, any command affecting .2(H[4]) also affects

a (4).
(iii) Assuming 2.3.4B, H[4] never affects (A).
(iv) Assuming 2.3.4A, the occurrence of /1 in H [II]: =12 is not an

R-occurrence, if ao (4) mo(11[4 ]).
To establish (iv), choose /3 not affected by H[4], with ao(i3)=R0(4). If
in H = 12 is an R-occurrence, the effect is the same as that of H[4]:= 12;

but the latter command affects /3, and the former does not, by choice

of 13.
Remarks (1) Statement above, can be looked at as implying that a (A),

assuming 2.3.4B, is 'pointer-like', in the sense that it is invariant with respect

to changes in the objects pointed at. On the other hand, (ii) implies that

(H[4]) is a ̀ sublocation' of 2(4), in the sense that any changes to

a (HUI]) change .2(4).
(2) Similar results hold for the T component. If one considers a mixed

interpretation, for which, say a (4) = (4) iff (H[11]) = (H [4]) and

2(T[4])=2(TV2D, then 2.3.5A, 2.3.6 (ii), (iv) hold for H components,

and 2.3.5B, 2.3.6 (iii) hold with T substituted for H.
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(3) There are (pathological) counterexamples to the assertions
2.3.4A 2.3.5A
2.3.4B (ii),

using the method of 3.2.

2.4. Pailia,13]=Pair[a,b]?

We have not discussed properties of the function Pair in 2.3, since in one
important case, the Pair function for representation (n) in 3.2, this function
must be considered to have a side-effect, and is therefore not covered by the
propositions of 2.2. For this version of Pair, it happens that the evaluation
of M(Pair[a,b]) affects the next value of this expression. This gives rise to
the disturbing feature that the value of

Pair[a,b]=Pair[a,b] (*)
may be false. This is disconcerting, and calls for some explanation (the
question has worried a number of people; in particular it was raised by
J. McCarthy at the Edinburgh Workshop from which this volume arises).
In fact the value of the expression(*) is ambiguous without further

specification of the evaluation process. Representing it in the following form
value of § let A=Pair[a,b]; result is (A= A) §

the value is certainly true; and some languages do permit this sort of manipu-
lation of expressions ('collecting common sub-expressions'), which is of
course valid in the case of expressions without side effects.
Some such result is to be expected of any interpretation of pairs satisfying

2.3.4, assuming that this is incompatible with 2.3.4A, and that g(a=b)=
a (true) only if a (a)=.a (b). To be more precise, a contradiction is obtained
if we assume that there exists a state, and legal identifiers a, b with the follow-
ing properties

go(a)=Mo(b)
(ii) Y0(11[17])0 o(H[b])
(iii) after a:=b, 2'1(H[a])=2'0(H[b])
(iv) after a:=a, 21(H[a])=Y0(H[a].)

All that is involved is an application of 2.2.2 to the command a:=b.
If we assume in addition that (ii) is demonstrably the case, viz, that there

is some continuation K which produces different observable effects depending
on whether (11[a]). 2(H[b]) or not, and that a does not affect2(H[b ]),
then the violation of 2.2.2 is a verifiable one, i.e. the two continuations

a:=a; K
a:=b; K

have different observable effects. (An example of such a K might be § H [a ] : =
H[a]+1; Write[H[b]] §.)
In (A)-like interpretations, of course, the value of the expression (*) is

always true. Also, one can deny that .(a) =(b) should be a necessary
condition for M(a=b) to be true; however, one would then have to accept
that one had identified discernibles; with the proviso that the method adopted
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here, of varying the commands executed while holding the initial state fixed,

is regarded as a valid means of discerning differences between 'computational

objects'. In a programming language without assignments or their equivalent,

such as 'pure' LISP, of course these facilities for discernment do not exist

and an interpretation in which (*) was false would give cause for reinter-

pretation.

3. REPRESENTING DATA STRUCTURES IN CPL

3.1 Functions. Routines. Load-Update Pairs

We will represent the two choices (A), (a) for interpretations of pairs in
terms of CPL functions, routines and LUPs (load-update pairs). We first

give a brief account of the relevant semantics of these latter objects, using

the notation of Section 2. This is done here by indicating the effect of various
constructions on the state <2, C>.
As indicated in 2.2, the state <2, C> is determined by the language rules

for CPL from a reduced state <.9, C> where .9 is the restriction of 2 to
current legal identifiers, and C is the restriction of C to a certain subset of the
basic locations, (the current basic locations); it is not assumed that there is
any containment relation between range (.9) and domain (C); there may be
non-basic L-values for identifiers, e.g. constant locations or LUPs; and there
may be current basic locations which are not L-values of current legal
identifiers.
Declarations. .0 is affected by declarations but not by commands. Every
declaration has a scope, a segment of program within which .9 takes the
modified form given it by the declaration. The previous .9 is restored when
execution or evaluation 'leaves' the scope. The scopes of the declarations

below are all that portion of the smallest 'block' containing the declaration
which follows the declaration (we will not here give an account of recursive
definitions, or definitions involving in or where). Blocks are indicated by
matching pairs of the brackets § § ( which correspond to the symbols begin

and end of ALGOL).

Simple Declarations

(i) let /1=Ei,

has the effect of modifying .9 so that .91(4) = 20(Ei) (we refer to this

process as initialization by reference of 4 to (E1)).

(ii) let I1=

has the effect of extending the domain of C by a further basic location !which

is disjoint from all other basic locations. 2 is modified so that 21(4)=1,
and e1(/)=R0(E1) (this is initialization by value of 4 to a(E1)).

(iii) let constant 11=E1,

has the effect of modifying 2 so that 2 (4)= 1 where 1 is a constant location

with C(/)=.90(E1) (this is constant initialization of .!1 to ao(Ei)).
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Remarks. (1) The possibility of side-effects in the evaluations of E1 above

cannot be excluded (the function Pair[a,b] for interpretation (a) below has
a side-effect); these would be reflected in Ci.
(2) The interpretation of initialization by value presents a problem in

connection with side-effects. Regardless of whether .R(E1) has a side-effect
or not, e is changed by obeying the definition, since its domain is extended.
In the terms of Section 2.2, it is not clear whether the trivial expression

value of § let x= 1; result is x §

should be taken to have a side-effect or not (this is the syntactic form for

converting a block into an expression whose L-value is a constant location,
in this case 2(1)). The problem is that of the extent of basic location 2(x)
as opposed to the scope of the identifier x. Is C restricted on leaving the
block, at the same time as 2 is restored to its previous condition? Here the

natural answer appears to be that it is; the expression would then not have a
side-effect. However, below we will come across examples (expressions pro-
ducing ' functions) where the other choice seems to be natural (although
unfamiliar to implement; storage for local variables would in general be
'off-stack' and subject to more sophisticated garbage-collection problems).
We will therefore consider basic locations here to be 'immortal', in that e is
not altered on leaving blocks. (This is contrary to the current interpretation
of CPL; to obtain declarations legal in the current sense, it is necessary to
replace our let 4= E1 below by let 4= Store [E1], Store being a basic function
to obtain 'off-stack' storage). This interpretation has the disadvantage that in
the terms of Section 2, any expression whose evaluation calls for local
variables must be considered to have a side-effect, strictly speaking.
Functions and Routines. A formal parameter list has the form of a (possibly
empty) sequence of identifiers separated by commas, each identifier possibly
preceded by indicators of type and 'mode' (value or reference). The type and
mode of a formal parameter are obtained by searching leftwards for type
and mode indicators from its occurrence in this list. If there is no mode
indicator to the left, the mode is value. We omit type and mode indicators in
the forms below for explaining function and routine declarations.

Functions and routines are intended as objects representing evaluation and
execution processes. Routines resemble very closely ALGOL 60 procedures,
with the exception that 'call by reference' replaces the concept of 'call by
name' (and is different). ' functions resemble ALGOL 60 type procedures,
only the body is an expression, and not a block. Free variables of these pro-
cesses are called by reference, and in this respect they resemble ALGOL 60
procedures. =' functions, however, call their free variables by value, and
these values are 'frozen' at the time of definition of the function. This distinc-
tion turns out to be a crucial one.

(i) let 4[12, I3 • . = Ex

363



PROBLEM-ORIENTED LANGUAGES

is a constant initialization of /2 to r, where r is an object with the following

property: let <20, Co> be the reduced state on obeying the declaration,
then in reduced state Ci>, if a,(Ei)=r, then (E2[E2, £3, . En])

= x(Ex), where <.r.,cz> is the state determined by the reduced state
ex>, with „=e, (possibly modified by side-effects of E3,E2,

and is obtained by constant initialization of each 'free identifier' Ix of Ex-.

(identifiers in Ex which are not formal parameters, and not subject to

declaration within Ex) to .90(/x), and initialization by reference or value of

each formal parameter ../j,2.‹.j‹n to 2' (E5)or gi(Ei), depending on the

mode of

(ii) let l [12,13,

has the same effect as in (i), with the exception that each free identifier Ix of

Ex is initialized by reference to

(iii) let /1 [I2,4, .,4] be K

where K is a command, causes constant initialization of I to r, where the
effect of any command, in reduced state <2i,Ci>,

[E2,E3, . . .,E„1
with .Ri(E1)=r is obtained by executing K with <Lx,Cx> as in (ii).

(iv) the insertion of variable after let modifies the effect of (i)—(iii)
so as to initialize 4 by value.

Load-Update Pairs. There is a 'basic function' LUP, taking as parameters a

parameterless function and a routine with one parameter, such that, if

.,T0(L UP [E1,E2])=1, then 1 has the following properties in state <2',C>

Ci(1)=Ri(l1[ ]), assuming .2(11)=.90(E1)
(ii) the effect of E,:= E4 with .T(E3)= l

is the same as that of /2[E2], assuming Mi(4)=R0(E2) (the assumptions

about 11,12 may be eliminated, using suitable initializations of these identi-

fiers.)
Remarks. (1) In strict CPL, LUP is not a basic function; there is a special

syntactic device for obtaining load-update pairs. In terms of this, LUP can

be defined for a particular type, say real. The definition is

let function LUP [real function f, routine R]

be § load f[]
update R [rhs] I

(2) The function LUP provides a way to construct non-basic locations.

We can define a function Sign, for example, by

let Sign [reference real x]= reference of

let R [character c] be
§ x:=(c=` -1-'-+Mod[x],—Mod[x])

result is L UP[f, R]
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after which the sequence

let a, b= 1 , — 2
Sign[a]:= Sign[b]

has the effect of setting a to be —1. Note that 2 (Sign[a]) is a ̀sublocation'
of .'(a), in the sense of 2.3. The reference of construction is described below.
(3) The characteristic property 2.2.3 of locations is not guaranteed for load-

up-date pairs, and this device can therefore be misused. The intention is,

however, that 2.2.3 should hold, although this general property off, R (that
after R(Ei], .W1(f[])=.R0(E1)) is recursively undecidable, in general. Note
that this property holds for values of the function Sign, and for the LUPs
given below.
Result Clauses. The symbols value of, reference of form expressions from
blocks containing occurrences of commands of the form

result is E1

The L-value of such an expression is obtained by executing the block until a
command of the above form is reached in state <..Fi, Ci>, say, and is either
a constant location 1 with C(/)=.Ri(E1), or the location 2i(E1), depending
on whether value of or reference of is used.
Other features. A detailed description of CPL is to be found in CPL Working
Papers (1966). In particular, that document should be referred to for rules
concerning 'types' of expressions.
Identity. The boolean expression L'I=E2 has the interpretation that

.R(EI=E2) =.2( true) iff .2(Ei) =R(E2).

It is necessary to specify rules for the latter identity. These are the natural
ones on objects of numerical or logical types, but require definition for
functions, routines, and also for locations.
(i) Functions and Routines. The weakest relation satisfying 2.2.2 can be shown
to be recursively undecidable for functions and routines; any decidable
relation satisfying 2.2.2 must in practice depend on the text associated with
the object, in some way. The rule adopted in CP L is as follows, for functions
and routines produced by the forms of declaration discussed above:

Let r1,r2 be the two objects involved, then r1=r2 iff

(a) r1, r2 resulted from the same declaration in the text of the CPL
program being run (this is to say that every such function or
routine R-value is associated with some point in the text of a
program).

(b) Suppose r1, r2 resulted from obeying the declaration in states
<2'1, CI> <22, C2 > ; then, for each free identifier 4 of the body
of the declaration either .R1(4)--..a2(4), in the case of '=' function
declarations, or 21(4)=22(4), in the case of ' a ' function
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declarations and routine declarations. (Note that recursive functions

and routines are not discussed here; in these cases it is necessary

to test the isomorphism of the two graphs obtained from r1, r,

by following chains of free variable connections.)

(ii) Locations. Identity between basic locations is a primitive notion (i.e. very

strong).
For constant locations, /1= /, if C(11)= C(12).

For LUPs, suppose 11, /2 are formed from functions r1, r, and routines

s2. Then 11=12 if ri=r, and s1=s2.

These definitions of R- and L-identity satisfy 2.2.1, 2.2.2.

3.2 Pairs

The representation of pairs in terms of functions, routines and LUPs is now

quite straightforward. We will define versions of the functions Pair, H and T

to replace the basic functions assumed in Section 1. This will provide a

representation of pairs as real functions of one parameter, the parameter

being a real function of two real parameters. These representations will have

the properties of the interpretations (A), (B) respectively, of Section 1, under

assignment and identity.

We need two auxiliary functions:

let First [reference real x, y]= x
let Second [reference real x, y]. y

The definitions for Pair, H, T are then the following:

(A) let Pair [real x,y]=value of § let f[real function g]= g[x,y]
result is f §

let H[reference real function f]= reference of
§ let h[]---- f[First]
let [real x] be
§1:=Pair[x, f[Second]] §
result is LUP[h, R] §

let T[reference real function f]. reference of
§ let h[]-7.- f[Second]
let R [real y] be
§ f:=Pair[f[Firsay] §
result is LUP[h, R]

(B) let Pair [real x, y]=value of
§ let xl=x
let yl =y
let f[real function g[x1, yl]
result is f

let H [real function f]=f[First]

let T[real function f]=f[Second]
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The function produced by Pair in (A) is a '=' function, so that 2.3.4A holds
for objects produced by a particular occurrence of this definition of Pair,
according to the rules for function identity given above. 2.3.5A holds, since
h, R in H take f by reference only, so that ..2' (H[f]) is unaltered by assign-
ments to f. Also 2.3.6 (iv) is satisfied, since the parameter fin H is taken by
reference.
On the other hand, Pair in (B) produces a 4:---- ' function, and 2.3.4B holds.
2 (H[f]) depends only on .R(f), therefore 2.3.5B (i) holds, and 2'(H[f]) is
basic, and disjoint from 2(f), so 2.3.5B (ii) and 2.3.6 (iii) hold.

Finally, the programs of Section 1 produce the results indicated for inter-
pretations (A) and (B), using these representations (the reader should try
hand-simulating these, if he is unfamiliar with the concepts introduced in 3.1).
Other representations suggest themselves, for example the representation

(c) obtained by taking Pair as in (B), and H, T as in (A). This has some of
the properties one requires, but does not satisfy 2.3.4A or 2.3.4B. In fact, the
condition for identity lies strictly between these two conditions. The opposite
case, with Pair as in (A), H, T as in (B) does not permit assignments to
components.
A 'mixed' representation is obtained as follows

(D) let Pain l [reference real x,y]= value of § let f[real function g]..---
g[x, y] §

let Pair [real x, y]= value of § let constant xl =x
let yl =y
result is Pain [xl, yl] §

let H[reference real function f]= reference of
§ let h[]5---f[First]
let R [real x] be
§ let constant xl =x
f:=Pairl[xl, f[Second]] §
result is LUP[h,R] §

let T[real function f]=f[Second]
This representation has the property that

g(f)=.2(g) iff M(H[f])=.R(H[g]) and2 (T[f])= 51'(T[g])

and the mixture of (A) and (B) properties pointed out in 2.3.

3.3 Other Data Structures

List Structure. In this section we will indicate how (A)- and (0-like repre-
sentations of more complex data structures can be obtained. These repre-
sentations may be considered not quite so satisfactory as those of 3.2, since
it will be necessary to invoke items of type general in CPL. Such items are
intended to carry a type indication with them dynamically. There is a basic
function Type which takes one parameter of type general and has as its value
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the current type (other than general, but possibly general function) of that
parameter. We make the following assumptions:

(i) The symbol general replaces the symbol real throughout the
definitions of 3.2.

(ii) The transfer function General[x], which converts its parameter to
type general, is inserted around all actual parameter expressions
of functions and routines in 3.2 and below.

(iii) The definitions below are subject to the declaration
prefer general

which sets the type to be general for formal parameters whose
types are not otherwise specified.

Note. The representations given below are idealistic; type general has not
been implemented on CPL compilers. More satisfactory facilities for declaring
data structure types will be provided in the final version of CPL. The problem
of specifying such types is an interesting one, but is rather a different problem,
and will not be discussed here.

List processing functions can be represented in the following way:

let Cons =Pair; let Car= H; let Cdr =T;
let Atom [x]=(Type [x]= string)
let NIL [g]= Error [] II causes Error if called.
let Null[f]=(f=N1L)

With either (A) or (a) representations of Pair, H, T, these are essentially the
functions of 'pure' LISP (McCarthy, 1962), although without property lists
for atoms. Thus

Cons[` A' ,Cons[Consr B' ,Cons[`C',NIL]l,N1Lll

is a representation of the S-expression

(A, (B, C)).

However the interpretation of a = b depends on whether (A) or (a) is chosen.
With representation (A) a=b has the same interpretation as the LISP function
equal[a;b]. With representation (B) a=b is the eq[a;b] of Lisp.

Functions from 'impure' LISP can be added along the following lines:

let Rplaca [reference a,b]= reference of § Car[a]:=b;
result is a §

and so on (the symbol reference is unnecessary for the (B) representation).
The function nconc of LISP can be represented very neatly. We need a

recursive function definition (whose intention should be clear, though not
specified in 3.1).

let recursive End [reference a] = (Null[a]-÷a, End[Cdr[a]])
let Nconc [reference a,b]= reference of § End[a]:=b

result is a I
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As might be expected, with representation (B) these correspond to the
functions of LISP with the same names. They are also meaningful with

representation (A). In this case

Car[a]:=6

has the same effect as

a:=Cons[b, Cdr[a]J,

and

End[a]:=b

the same effect as

a: =Append[a, b]

with Append as defined in LISP. Notice that with this representation,
(End[a]) is a LU P which, in effect, specifies a route back through the list

structure to a basic location 2(f), where f is the free identifier of the routine
R. In this LUP is a further LUP specifying the previous Cdr, and this LUP
contains another 'incarnation' of R for which (f) specifies the previous
Cdr; and so on, back to an 2(f) which is a basic location. If a is not null,
then the effect is just the same for

End[Cdr[a]]:=b.

Representation (A) therefore provides a version of list processing which,
in effect, is incapable of exploiting 'sharing' properties of list structure (in
*fact the machine storage for list structure is shared, assuming that implemen-
tations of functions do not copy 'free variable lists', which is the intended
method of implementing function assignments; 'pure' LISP functions, with
Parameters by value, would run comparably well, or badly, on either
representation).
Vectors. To represent vectors it is necessary to avoid introducing ̀ variadic'
functions (functions taking an indeterminate number of parameters), since
these are not definable in CPL, although the basic system functions New-
Vector, Form Vector are ̀ variadic'. We do this here by defining a constructor
function Vector, which takes as parameters a function! to generate values for
elements, and the subscript upper and lower bounds, m and n. Vector and
Sub are recursive functions, again.

let recursive Vector [f, index m, n
= (m> n I L, Pair[Pair[m,f[m]],Vector[f,m+1,n]])

let recursive Sub [reference A, value index i]
=(A —NIL--i. Error [], subscript out of range.
H[H[A]]=General[i]-+T[H[A]],
Sub[T[A], i])
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Sub[A,i] is then in effect the element Al of the vector A. This representation,

as an 'association list', is of course ludicrously inefficient, but does have the

formal properties expected of vectors. With representation (A) of Pair, H, T,

this corresponds to the interpretation of vectors in ALGOL, PL/I and other

languages. CPL has (3)- type vectors. Note that, as with nconc, assignment

to a vector element causes copying of the path through the list back to a

basic location, with representation (A) (this is analogous to the technique of

'aliasing' sometimes used in implementing (A)-type arrays so that their

storage can be shared, although in that technique one copies back only as

far as there are other references to locations on the route).
Matrices. These can be represented as vectors of vectors; f[i, j] is taken as a

function to generate values for A 0. The matrix bounds are (m, n), (p, q).

let Matrix [j index m,n,p,q]
= value of § let g [index i]= value of § let h [index j]=f[i, j]

result is Vector[h,p,q] §
result is Vector [g,m,n] §

let Sub2 [reference A, value index i,j] = Sub[Sub [AAA

Some ingenuity is required to extend this method to defining a general
constructor Array, with a parameter specifying the dimensionality required;
and to defining a corresponding general subscripting function. This task is
left as a diversion for the reader.

4. COMMENTS AND CONCLUSIONS

Section 2.3 indicated, though not conclusively, an essential dichotomy be-
tween interpretations of a very simple data structure. This dichotomy was

based on the relationship that held between identity of structure and identity
of components. Since it appeared sensible to talk about two principal sorts of

identity between computational objects, there were two corresponding
identity rules between structures (and various 'mixed' interpretations, which

treated different components in different ways). The choice was seen to
determine other properties which might be relevant to a complete characteri-

zatiOn of the properties of the data structure, particularly under assignment

commands, which at this stage cause all the trouble. Whether a 'complete
characterization' is obtainable just in the terms of 2.2, and what its nature
would be, is not clear. The counterexamples obtained suggest that the notion

of 'location' requires further assumptions to be made, in order to obtain a
cleaner theory, and these assumptions remain to be formulated.
In Section 3 it was shown how one could define interpretations along the

lines of those singled out in 2.3, in terms of various processes in CPL. How-

ever sophisticated these processes may be to implement, they also appear to

me to be logically more primitive than the structures which they are used to

represent. If one looks behind the scenes at the implementation of such

objects, one sees that what goes on in 'evaluating' a process (obeying a
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function or routine definition) is in effect a data structure construction
operation; space is reserved for a 'free variable list'. The structures con-
structed in this way can be regarded as finite directed graphs (trees if there
are no recursive functions) with processes at nodes communicating with

(calling or returning a result to) adjacent nodes. A call to a process can be
regarded as a selection operation, with function and parameter reversed
(recall that one pair of definitions for H, T was H[f]=f[First], T[f]=
f[Second]). This suggests to me that, if one is looking for a 'most general'
form of data structure, the acceptance of such 'processes' as fully mani-
pulable computational objects may be the crucial step.
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Writing Search Algorithms in
Functional Form

R. M. Burstall
Department of Machine Intelligence and Perception
University of Edinburgh

1. INTRODUCTION

A great many machine intelligence programs perform some sort of search,
and a number of investigators have discussed techniques of searching trees.
One well known method, which we will call 'depth-first' search is particu-

larly attractive because it is very easy to program by recursion. The resulting
programs are short and rather transparent. It has the disadvantage however
that it is by no means the most efficient sequence of searching a tree in many
cases. Indeed if the tree is infinite it may cause the search to go right out of
control. The attractiveness of 'depth-first' recursive searching was pointed out
a long time ago by Newell, Shaw, and Simon, but they also remarked on its
pitfalls. More recently Slagle in his ̀ Deducom' program (see Slagle, 1965)
used a ̀depth-first' recursive search for convenience, but found that it led to
severe limitations on the problem-solving ability of his program. A number of
examples of problems amenable to tree search methods are given by Golomb
and Baumert (1965).
Most machine intelligence tasks are difficult enough to make ease and trans-

parency of programming an important consideration. Hence it would be
interesting to discover a programming technique which would preserve the
simple program structure associated with recursive depth-first search while
allowing a more efficient and flexible sequence of searching. This paper puts
forward such a technique. The search method in question which we will call
'controlled' search is that used by the Doran and Michie 'Graph Traverser'
program (see Doran, 1967, 1968; Doran and Michie, 1966; Michie,
1967).
We first consider different methods of searching, quite apart from the

question of programming. We then describe the recursive programming
technique for depth-first searching and discuss the possibility of introducing a
new form of expression into programming languages to enable us to treat
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more general searches without restructuring the program. It turns out that
this new form of expression is not really a special extension of programming
languages but can be defined in terms of Landin's generalized jump operator.
This is much more satisfactory.

2. SEARCH TECHNIQUES

We will consider the problem of searching a tree to find a node with.a given
property. If it is necessary to search the whole tree, e.g. to find the node which
is optimal in some sense, the sequence in which the search is carried out is
unimportant. If however we are content to discover just one node with the
given property the sequence in which the nodes are searched may be of great
interest. We will consider three possibilities and illustrate them using the
following simple problem.
The tree is defined in terms of two functions of integers

f(n) = n2 —2n+ 3
g(n)=2n2 — 5n + 4

The problem is to find a value of n with some property p by repeatedly
applying either f or g to a starting value no. For example

no =
p (n) = 30 <n < 40

Part of the corresponding search tree is shown in figure 1.

2.1. Depth-first search

To search a tree starting from a node n by depth-first search:

1. Check whether n itself has the required property. If so the search
terminates successfully;

2. If n has no successors the search terminates unsuccessfully;

3. Take each successor of n in some specified sequence and perform a
depth-first search starting from that node. Continue until one of the
successors leads to a successful search.

The sequence of search for the problem stated above is shown in figure 2,
making the assumption that the tree is restricted to a finite one by ignoring all
nodes greater than 500, and taking f(n) before g(n).
If this restriction is removed the search fails completely as only the topmost

branch of the tree will ever be explored.
The effectiveness of a depth-first search can be improved by choosing a

suitable sequence for taking the successors of a given node, e.g. smallest
first. But this will not remedy the inability of a depth-first search of an infinite
tree to recover from a single wrong decision.
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g(n)=2n2-5n+4
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Figure 1. The search tree

Figure 2. Stages in depth-first search

< <
Figure 3. Stages in parallel search
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2.2. Parallel search

This is in a sense the opposite of depth-first search. To search the trees starting

from a set of nodes N by parallel search:
1. If N contains a node with the required property the search

terminates successfully.

2. If N is empty or no node in N has any successors the search
terminates unsuccessfully.

3. Let N' be the set of all nodes which are successors of a node in N

(taken together for all nodes in N). Search the trees starting from N'

by parallel search.
The sequence of search for the example problem is shown in figure 3. It

avoids the difficulties associated with infinite branches but is very rigid and

does not take advantage of any information that one branch is more promising

than another, i.e. it leaves no scope for heuristics.

2.3. Search controlled by a reluctance function

In this method of search we may think of a 'frontier' of those nodes whose

successors have not been examined. This frontier is extended by choosing

any node in it and examining its successors. The node chosen may be that

which has the minimum value of some function called a 'reluctance function',

normally chosen on heuristic grounds. (Doran and Michie call this an 'evalua-

tion function' but we use the word 'evaluate' here in another sense which would

lead to confusion.)
This method of search has been extensively discussed by Doran and Michie

who used it in their program called the 'Graph Traverser'. They have shown

that given a suitable reluctance function it is an effective method of tackling a

number of problems.
The sequence is illustrated in figure 4. The main point to notice is that the

next node whose successors are examined is not necessarily one of those pro-

duced at the previous move, i.e. the frontier will be pushed forward for a

while in one region, but if the reluctance function indicates that further ad-

vances here are not as profitable as had been anticipated some other part of

the frontier may be extended.

It is easy to see that by choosing a suitable evaluation function parallel

search and depth-first search can be produced as special cases of search con-

trolled by a reluctance function. Specifically:

(i) Parallel search. The reluctance function is the distance (number

of arcs) between the starting node and the given node. The rule that

the frontier node with least value of the reluctance function is taken

first causes the frontier to advance one layer at a time (see figure 5)..

(ii) Depth-first search. Taking a tree with binary branches for simplicity

the reluctance function assigns to each node a binary fraction whose

digits are (left to right) 0 or 1 according to the choices made in

obtaining that node from the original node (see figure 6).
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Figure 4. Controlled search. Reluctance function: r(n)---- n— 35 I.Values of reluctance are written above the frontier nodes
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Figure 5. Values of reluctance function to produce parallel search

•
.00

•
.010

•

• 000

.001

.011

Figure 6. Values of reluctance function to produce depth-first search
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3. PROGRAMMING

We will write programs in functional notation using the Is WI m language
(Landin, 1966). The only point which needs explanation is that get X= D'
denotes a definition qualifying the expression which follows, otherwise the
notation should be fairly obvious even without an acquaintance with Is w m.
We also use the conventional notation for sets and operations on them.
We continue to use the previous example—this involves no real lack of

generality, since the particular functions f and g are irrelevant, and the cases
of more than two successors of a node or of more complicated trees follow
naturally from our discussion.
We introduce one extra predicate terminal which is to be true if n has no

successors, i.e. f and g are not to be applied to it.
Suppose first that we wish to obtain the set of all nodes which satisfy the

predicate p. This set is computed by pnodes where

recursive pnodes (n)=if terminal (n) then nil
else if p(n) then {n}

else pnodes (f(n))upnodes (g (n))

We have assumed for convenience that if a node n satisfies p we are not inte-
rested in the successors of n.
If we wish to obtain just one node satisfying p it is found using depth-first

search by pnode, where

recursive pnode (n)= if terminal (n) then nil
else if p(n) then {n}

else let pfn = pnode (f(n))
if null(pfn) then pnode(g(n)) else pfn

It is this simple form of recursive program which makes depth-first search
attractive in spite of its pitfalls. Its power may be seen by a slightly more
complicated example where we require as a result the cost of getting to a node
with property p, the cost of going from n to f(n) being cf(n) and that of
going from n ,to g(n) being cg(n).

recursive cost (n) =if terminal (x) then co
else if p(n) then 0

else let costfn=cost(f(n))
if costfn= oo then cg (n)+ pcost (g (n))

else cf(n)+ costfn

Here some work (adding up costs) is done on exit from the recursion.
It seems at first sight that in order to program the more sophisticated con-

trolled search method a completely different program structure is necessary
and the elegant recursive approach must be abandoned. Doran and Michie in
their 'Graph Traverser' use an approach which in its essentials may be ex-
pressed thus:
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Suppose that (n)= {f(n), g (n)} ,i.e. the set of successors of n, and that r(n)

is the reluctance function for a node, saying how undesirable it is.

pnode(n)=
let N={n}
loop: let nmin= least ( r ,N);

if 3 n&,6(nmin) [p(n) ] then goto out;
N:=N—{nmin}u knmin); goto loop;

out: result any(p,0 (nmin))

Here least(r,nodes) finds the member of N with least value of r and

any (p, (nmin)) finds any member of (nmin) satisfying p.

This could of course have been written recursively, although it is essentially

an iterative algorithm. Thus:

recursive pnode (N)=
let nmin=least(r,N);

if 3 n egnmin) [p (n)] then any (p (nmin))
else pnode (N — {nmin} u ç6(nmin))

The depth of recursion now corresponds to the total number of nodes exa-

mined and not as previously to the distance along the branch from the start

to the current node. The problem above of costing the path from the start to

the solution node is no longer so easy. It would require that a back pointer be

passed on explicitly with each node so that when the solution is found a

retrace can be done and the cost can be worked out. This is an important

limitation of this way of programming controlled search: dealing with the

answer when found needs special programming.

4. ALTERNATIVE EXPRESSIONS

The point of this paper is to show how the controlled search can be programmed

in a manner very similar to the recursive method for depth-first search. To do

this we may introduce a new kind of expression called an 'alternative expres-

sion' which could be thought of as an extension of any programming language

of the ALGOL family. This kind of expression involves a special evaluation

rule which we will explain informally. In the next section we will show that the

rules for alternative expressions can be made quite precise in terms of ̀.1'

operator, a form of generalized jump (Landin, 1966). Indeed if our pro-

gramming language is equipped with this operator or an equivalent genera-

lized jump facility, we do not need to introduce alternative expressions as a

new feature at all since a function can be defined which has the same

effect.

Consider the expression

h(x+1, y-2)

380



BURSTALL

To evaluate it we must evaluate BOTH X+1 AND y — 2.

But consider the expression

h(x) < 3 and k(x)> 0

To evaluate this it is sufficient to evaluate EITHER h(x)<3 OR to evaluate
k(x)>O provided that the one evaluated has truth value false (if not, the
other expression must also be evaluated).
Now suppose that fpos(n) is the smallest number greater than n which has

a property p and fneg(n) is the largest number less than or equal to n which
hasp. Then if we just want an expression whose value is some number which
has p we might write

fpos(0) alternatively fneg (0 ) (alternatively is a new basic symbol)

Here it would be sufficient to evaluate EITHER fpos(0) OR fneg(0).
To evaluate this expression we might get the computer to work on both

in turn taking as result whichever it managed to evaluate first.
Evaluating fpos(0) might well involve evaluating another such alternative

expression and we would think of the possible calculation as a tree of which it
would be sufficient to evaluate completely just one branch. If we do not
wish the computer to use its discretion as to which branch to evaluate we
must provide some extra information about each branch, i.e. reverting to our
controlled search idea we must provide the value of the evaluation function
for that branch. We will call this an alternative expression.

<alternative expression> ::= <expression> reluc <real expression>
alternatively

<expression> reluc <real expression>
fpos(0) reluc 5 alternatively fneg(0 ) reluc 10

We now program a search controlled by an evaluation function in a manner
corresponding exactly to a depth-first search (we use r for the reluctance
function).

recursive pnode(n)= if p(n) then {n)
else (pnode(f(n)) reluc r(f(n))

alternatively pnode (g (n)) reluc r (g (n)))

The idea here is that in the recursive evaluation ofpnode a lot of alternative
expressions will be activated each with two component expressions. The
evaluation mechanism is to consider all the component expressions which
have been produced by activation of alternative expressions but have not yet
been evaluated themselves, and evaluate the one which has least value of the
reluctance. This means that the evaluation mechanism has somehow to keep a
list of component expressions to be evaluated, with suitable information
about their environments, and a link to the alternative expression to which
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they belong. We assume at the moment that there is only one such list for a
particular program.
One or two remarks are worth making. There is no reason why a program

should not contain more than one alternative expression. In this case the tree
of possible evaluations will not be homogeneous—it will have nodes, some of
which correspond to activations of one alternative expression, some to activa-
tions of other alternative expressions.

Likewise there is no reason why an alternative expression should have just
two components. We may allow more or even less than two. We may easily
want the number of components to be determined dynamically.
We have not included in our last definition of pnode the case where n is a

terminal node. One way of dealing with this would be to insert there an alter-
native expression with no components i.e. the other branches of the tree
already in existence are to be followed but this node does not give rise to any
new branches.

It is a bad principle, however, to extend a programming language to give
some new features unless we are quite sure that the extension is of sufficient
generality. Can we make use of some more generally desirable feature of
programming languages and avoid the need for 'alternative expressions'?

5. USE OF THE J OPERATOR

In another paper presented at this symposium* Landin puts forward a jump
operator ̀ .1' which enables his functional programming language Is wi m to
handle departures from the normal sequence of evaluation, such as error
exits. The case of a search which is to be terminated as soon as it is successful
is closely analogous to an error exit, and we now show how J may be used to
program 'alternative expressions'. This means that we withdraw the above
proposal for alternative expressions (which was merely an explanatory device)
and offer instead an equivalent library function called oneof.
We keep the component expressions to be evaluated together with asso-

ciated values of their reluctance function on a list called jobs. They are ranked
in ascending order of the values of their reluctance function.
How are we to represent the component expressions? If we simply write

down the expressions they will get evaluated straight away, which is not our
intention. What we need is a function which when applied to a list of jobs
will produce the required value. It is this function which is stored on the jobs
list. Before it is stored however, we must apply J to it. This means that if it
ever gets applied it will return its result as the result of the oneof' expression
of which it is a component.
Thus the task of the function oneof is to add to a list of jobs supplied to it

as a parameter the two component functions supplied to it with their asso-
ciated values, but only after applying J to them. It must then take the first
component function off the jobs list and apply it to the rest of the jobs list.
*See note at end of this paper.
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The function oneof is as follows:

oneof(f,rf,g,rg,jobs)=
let jobs= addjob(J(f),rf,jobs);
let jobs= addjob(J(g),rg,jobs);
let ((jh,rh),jobs)=next(jobs); N.13. next produces the head and tail

jh(jobs) of a list.
where recursive addjobuf,rf,jobs)=if null (jobs) then ((jf,rf)) else

let ((jh,rh),jobs)=next(jobs);
if rf <rh then (jf,rf):: (jh,rh)::jobs N.B. :: is an infixed

else (jh,rh)::addjob(jf,rf, jobs) operator for 'cons'.

Given oneof we can now write pnode again very easily

recursive pnode(n)=pnoden
where pnoden(jobs)= if p(n) then {n}

else oneof(pnode(f(n)),r(f(n)),
pnode(g(n)),r(g(n)),jobs)

To find a node satisfying p starting from a node nO we evaluate

pnode(n0)(nil)

The action is not difficult to grasp once we realize that the functions denoted
by jf, jg, jh above always jump back as soon as they are executed to the oneof
expression which gave them birth, returning their value as the result of that
expression.
We have written oneof to take two components but there is no difficulty in

writing it to take a list of any number of components (we supply a list of
function-reluctance pairs and use maplist).
The difficulty about terminal nodes can then be dealt with by invoking

oneof and giving it an empty list of component jobs. This allows existing
branches of the tree to be processed further without creating any new ones.
Thus the definition of oneofas a library function enables us to carry out con-

trolled searches in an elegant and transparent recursive manner without ex-
tending the language with any new form of expression or special evaluation
mode. Although our example has been a simple one, much more complex
searches may be programmed using the same function oneof.

NOTE ON LANDIN'S J OPERATOR

P.J.Landin gave a talk at the Machine Intelligence Workshop about his J
operator, a generalized jump facility. Unfortunately the written version was
not available in time for publication in this volume. Since my paper makes
use of this operator, Mr Land in has kindly agreed to my including a short
explanation of it here. He hopes to publish a fuller account shortly and the
reference may be obtained from him at Queen Mary College, University of
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London. Thus, the work described below is due to Landin, but the explanation

is mine and he is not responsible for any defects in it.

In a previous paper Landin (1966) introduced the notion of a 'program

point'; this is analogous to a function (or ALGOL procedure) but has a non-

standard mode of exit. Instead of returning control to the point from which

it is called, it returns control to the point from which the function in which it

is defined is called. An example in ALGOL format may help.

integer procedure f(x); integer x;
integer program point fl(y); real y; fl:= entier(y x 100);

real procedure g(z); integer z;

if trouble >0 then fl(1/z) end; z: = z + 1 ;

end of g;
• • •
v:=g(31x);
• • •

end;
. . .
u:=f(0); u:=u+1;

Here fl is an integer program point (i.e. an integer procedure with non-

standard exit) defined directly within the integer procedure f. Its job is to

return an answer which would do as the answer to its parent fin case com-

puting the answer to f ran into some trouble, e.g. during the internal pro-

cedure g. Thus, if g calls fl during execution off, the subsequent statement

`z:=z+1' is not executed, but instead an immediate exit from its parent

procedure f takes place, the result of f being f1(1/z), i.e. entier(11z x 100).

This value is assigned to u and the next statement executed is ̀ u: = u+ 1'.

Thus the remainder of g and f have been short circuited, with a forced exit

returning the result off 1 as the result of its parent f.

In Iswim we have
let f(x)=

let program point fl(y)=entier(y x 100)

and g(z).
• • •

if trouble >0 then/1(1/z); z:= z +1;

• • •

u:=f(0); u:=u+1;

A possible improvement to this device, suggested by Landin in his talk, is

to replace fl by an ordinary integer procedure, say JO, and have a special
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operation J which when applied toll) converts it into a program point. The
parent off 1 would then be determined by the procedure in whose body the J
occurred (i.e. the innermost such procedure). Thus we could write for example

let f0(y)= entier(y x 100);

let f(x)=
let f1=J(fO)
and f(z)=

if trouble >0 then fl(14);
etc.

The point is that J incorporates a 'fire escape' leading to the exit point of
its parent procedure, and attaches this fire escape to the procedure to which
it is applied, for use instead of that procedure's normal exit mechanism.

REFERENCES

Doran, I. E. (1967), An approach to automatic problem-solving. Machine Intelligence /,
pp. 105-23 (eds Collins, N.L. & Michie, D.). Edinburgh: Oliver and Boyd.

Doran, J.E. (1968), New developments of the Graph Traverser. Machine Intelligence 2,
pp. 119-35 (eds Dale, E. & Michie, D.). Edinburgh: Oliver and Boyd.

Doran, J.E. & Michie, D. (1966), Experiments with the Graph Traverser program.
Proc. R. Soc. (A), 294, 235-59.

Golomb, S.W. & Baumert, L.D. (1965), Backtrack programming. J. Ass. comput.
Mach., 12, 516-24.

Landin, P.J. (1966), The next 700 programming languages. Communs Ass. comput.
Mach., 9, 157-66.

Michie, D. (1967), Strategy building with the Graph Traverser. Machine Intelligence 1,
pp. 105-23 (eds Collins N. L., & Michie, D.) Edinburgh: Oliver and Boyd.

Slagle, I. R. (1965), Experiments with a deductive question-answering program.
Communs Ass. comput. Mach., 8, 792-8.

385
132



,

—.der



23

Assertions: Programs written without
specifying Unnecessary Order

J. M. Foster
Computer Research Group
University of Aberdeen

1. INTRODUCTION

This paper describes a language for writing algorithms in which less informa-
tion about the order in which the individual operations are carried out is
given than is normal for programming languages. It is at present partly im-
plemented on an Elliott 4120. Various other systems have been described and
suggested (see Anderson, 1965; Laski and Buxton, 1962; Markowitz, Haus-
ner, and Karr, 1962; and Opler, 1965).
There are various motives for avoiding the giving of specific information

about the order of the component statements of a program. First, it enables
transformations to be carried out more easily on the program. This is im-
portant both for compilation, where the processes of optimization and of
translation into machine code are both transformations into equivalent
algorithms, and for artificial intelligence, if we try to improve the computer's
representation of its problem. Secondly, there exists a class of problems where
the order of the operations cannot be easily specified in advance. This includes
the recognition of complex objects, as in syntax analysis, and certain problems
of simulation of events occurring in time.

2. ASSERTIONS

The basic elements in the system are not instructions to do something, as are
the statements of ALGOL, but assertions about the data, such as a=b or
a+b=c. The evaluation of a program of assertions is not the obeying in
specified sequence of a set of instructions, but an attempt to find data which
satisfies the assertions.
For the purposes of exposition, let us consider the ordinary type of syntac-

tic description of a computing language.

<identifier list> ::= <identifier> i< identifier>, <identifier list>
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This means that an example of an identifier list may be constructed either from

an identifier, or from an identifier followed by a comma followed by an iden-

tifier list. Looked at from the point of view of a syntax recognizer, this says

that a program for recognizing an identifier list may be made from one which

recognizes an identifier or an identifier and then a comma and then an identi-

fier list. This could be written out in some such way as the following:

identifier list = identifier or (identifier andthen comma andthen identifier list)

Notice that the compound operator andthen means both that all the items so

connected must be true (and) and also that they correspond in a particular

sequence to the input (then).

The normal relation between and and or, and the restriction to a particular

stream of characters can be removed by introducing parameters.

identifier list(a,b)=identifier(a,b) or (identifier (a,c) and comma(c,d) and
identifier list (d,b))

where identifier list(a,b) means that from the place a (a tape index number)

to the place b there is an example of an identifier list, and similarly for the

other assertions. The identifiers c and d belong only to these assertions so they

might be localized

identifier list(a,b) new c,d= identifier (a,b) or
(identifier(a,c) and comma(c,d) and identifier list(d,b))

The intention of the new part of the definition of the assertion is that the

assertions in the body of the definition refer to the same new variables c and d.

There need be no implication that the assertions are tested in any particular

order.
Before describing how the assertions can be tested in a sensible order, and

how ordering can be imposed externally, two examples will be discussed.

Example 1. To write an assertion that between two specified places on an

input stream there is an identifier followed by an equals sign followed by an

identifier, and that the internal variables which correspond to the textual

forms of the identifiers are equal. This can be imagined as part of a simple

interpreter.

F(s,u) new x,y,p,q,z,t= tape (s,x,y) and tape(y,'=',z)
and tape (z ,t ,u) and lookup (x,p) and lookup (t,q) and p = q

tape is a primitive assertion that between the places sandy (in the first example

of it) there occurs a textual identifier which is the value of x. The primitive,

lookup (x,p), is the assertion that the textual identifier which is the value of

x corresponds with the variable p in the environment.

The operator'='  is intended to mean 'is substitutable for'. Thus the defini-

tion can be rewritten

F(s,u) new x,y,p,z,t= tape(s,x,y) and tape (y,' =',z)

and tape (z ,t,u) and lookup (x ,p) and lookup (t,p)
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Example 2. To write the assertion that between two specified places on an
input stream there is the textual form of an expression and that, when the

identifiers occurring in it are made to correspond with internal variables and
the expression is evaluated, the resulting value is that of a particular variable.
An expression is confined to identifiers and the + sign.

E(a,b,c) new d,e,f,h,i,j= (tape(a,d,c) and lookup(d,b))
or (tape(a,e,f) and tape (f,` +',i) and E(i,j,c)

and lookup (e ,h) and plus(h,j,b))

In this definition a and c are the places on the tape, and b is the variable of
which the value is the value of the expression. The primitive plus (h,j,b) asserts
that h+j = b.
Note that it is possible to carry out the following transformation on the

above assertion. This transformation has a similarity to the distributive law,
and is one that might add efficiency (by avoiding unnecessary evaluation).

E(a,b,c) new d,f,h,i,j=tape(a,d,f) and ((lookup(d,b) and f=c))
or (lookup (d,h) and tape (f,` +' ,i) and E(1,j,c)

and plus (h,j,b))

3. ORDERING

There are three methods for deducing ordering information for attempting to
test assertions, in the system.

First, a number may be associated with an assertion to indicate the cost of
attempting it. Clearly it is worth while to test assertions which immediately
throw away information like '='  and '+'  and there may be other costs
known to the programmer from the nature of his problem.
Second, each assertion has a number of pass sets associated with it. There

is no point in attempting to satisfy tape(a,b,c) if none of the variables has a
value, but if a has a value or if b and c have values or if a and b and c all have
values, then it may be worth while attempting the assertion. In this case the
pass sets would be

a, b, c
a
b, c

The effect of testing the assertion would be different in each of these cases. If
all the variables had values, testing the assertion would be a check on its
validity. If it were false, there would be no need to continue testing the other
assertions connected to it by the operator and. If a alone had a value, then
values could be supplied for b and c and the other assertions tested to see if
they were consistent with these values. Likewise, if b and c had values, a value
could be generated for a.
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Suppose that the pass sets for lookup(x,y) are

x, y

and those for plus (p,q,r) are

q
p, r
q, r
p, q, r

and consider the version of E(a,b,c) given at the end of Example 2.

Suppose that the value of a alone is given. Then the tree structure below

expresses the necessary ordering. In other cases, such as E(a,b,c) where all

the arguments have values, the ordering cannot be expressed in so simple a

tree structure.

E(a,b,c)

4,
tape (a,d,f)

4. 4, 4,
lookup (d,b) f= c lookup(d,h)

plus (h,j,b)

The third method of ordering is intended to prevent too uneconomical a

use of the store. If two disjoint sets of assertions use one identifier each, then

these two identifiers can share the same store provided that, as soon as one of

the sets of assertions has been started, the other is locked out until the first is

completed. However, there need not be any reason to choose one set to test

first rather than the other. This corresponds to the locking out of sections of

program from one another, which is normally done in interrupt control pro-

grams; however, the locking belongs to an identifier rather than to a segment

of program.
• It may be that the use of this principle of ordering will lead to a situation in

which nothing can be done, because every assertion is locked out. For example

f(xa,ya) g(xa,yb) h(xb,ya) i(xb,yb)

where xa and xb are sharing a store and so are ya and yb, will lead to an

impossible situation. This can be resolved by copying one of the variables,

and by making all references to this variable refer to the new copy.
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This is precisely what is done in recursion, where the use of a new variable
of the same name as an old one leads to the use of a copy of the new item in

schemes where a stack is used, and to a copy of the old item in schemes where

the program refers to the same store and its contents are pushed down.
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The Design Philosophy of POP-2

R.J. Popplestone
Department of Machine Intelligence and Perception
University of Edinburgh

INTRODUCTION

Pop-2 (Burstall & Popplestone, 1968) represents a fairly far-reaching revi-
sion, extension and systematization of the author's Pop-1 (Popplestone,
1968). The thoughts expressed here consequently represent a point of view
elaborated jointly with my co-designer of Pop-2, Dr R. M. Burstall.

AIMS

POP-2 is a language to be implemented on real machines, using modest
resources of manpower. An implementation of the language must be possible
which permits large problems to be tackled. This implementation must not be
too inefficient in its use of machine time, or too profligate in its use of store.
The language must also take into account such properties of real machines
as overwritable store—that is to say it must not be a purely constructive
language: it must allow assignment.
Pop-2 handles a large range of structures such as list cells (cf. Lisp), func-

tions (cf. CPO and records (called beads in AED). Efficiency is important
here—Lisp is perfectly general, but its representation of such structures in
list-cells is inefficient in its use of store.

Bearing in mind the need for a wide range of structures, the concepts
should be as few and simple as possible. An example of this simplification is
that such apparently diverse things as ALGOL procedures, ALGOL arrays,
binary operators, and A ED 'components' can all be represented in a natural
fashion as Pop-2 functions. Functions in Pop-2 differ in their semantic pro-
perties, and in the syntactic properties of their names, but they are all the
same in essence: not only are they all handled in the machine as data struc-
tures, but they constitute a single class of data structure.
This brings us to the subject of items. Anything which can be the value of a

variable is an item. All items have certain fundamental rights.
1. All items can be the actual parameters of functions
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2. All items can be returned as results of functions
3. All items can be the subject of assignment statements
4. All items can be tested for equality.

Equality does not, however, follow the usual mathematical axioms, e.g.
c °Ns (2 ,3) c oN s (2,3), where Com is the LISP list-cell constructor. The
impracticability of providing a computed version of mathematical equality is

clear if one considers the case of functions. Nevertheless, care is taken in the
definition of the language to make sure that the meaning of the equality is

clearly defined. It corresponds to the Lisp 'EQ', or the concept of equal address

in mechanistic terms.
It should be noted where existing languages fail to provide an adequate

'item's charter of rights': ALGOL arrays cannot be returned as results of
procedures. AED components cannot act as parameters of procedures.
Certain consequences follow from the charter of rights given above. Thus in
Pop-2 we can say SQRT-*PIG; and later discover that P o (144) has the
value 12. It should be noted also that certain words and symbols in Pop-2
are not the names of items. Thus, while +, LOG, CONS, are the names of
items, ), THEN, and GOTO, are not. Statement labels are not items: i.e.
'computed gotos' are not permissible. The same effect can be obtained by
exploiting the freedom to assign to functions. The role of non-item words is
syntactic.
A consequence of clause 2 of the items' charter of rights is that Pop-2

requires a more general form of storage control than is provided by a stack or
push-down store. In fact a generalized form of the LISP scheme is provided.
An ALGOL array can be placed on a stack precisely because it cannot survive
the activation of the procedure or block in which it occurs. This has a pro-
found effect on the class of problems which it is possible to tackle in a natural
way using Pop-2. An important corollary is that the space occupied by the
code which represents functions is itself under the general storage control
scheme.
The syntax of the language should be neat, unobtrusive and simple, rather

than elaborate. Additional semantic power should not be locked away from
the user by syntactic devices. Thus a Pop-2 array is created by applying a
function NEWARRAY to a description list, and assigning the result to a
variable, none of which operations involves any new syntax.
Pop-2 is designed for on-line use. The language features which reflect this

are (1) the ability to have expressions executed immediately, and (2) the
limited block structure of the language. A Pop-2 program tends to be a
sequence of independent function definitions, which can be redefined inde-
pendently.

ITEMS

Items are simple or compound. This distinction is made for practical reasons:
a simple item is an economical quantity of information to move around a
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machine, a compound item is not. Thus the limit to what is to be regarded as a
simple item has been set with an eye to the amount of information that can be
put in one word of a machine.
Items are classified into types. The words item class and type are synono-

mous. It is possible to determine the type of any item at any time. Except in
the case of functions, it is not possible to restrict the range of variables to any

particular type of item. This means that type checking must be done dynami-
cally, that is to say, all functions must check that they have been supplied

with appropriate arguments. This leads to reduced efficiency. The other

reason for attaching types to variables is to permit errors to be discovered at

compile-time. The conceptual type structure of the programmer is very much

finer than the type structure of languages like ALGOL. Thus when we say let
s be the speed of the vehicle v' or 'let w be the weight of the house h', s, v, w,
and h, are, at one level, of different type, and a language that fully mirrored
the thought processes of the human would allow this distinction to be made.
Thus it is felt that if Pop-2 were to have type restrictions on variables at all
then it must have a type structure extendable by the user.
However, type structure is not simple. For instance, it is meaningful to say

`let w be the weight of the vehicle v' but it is not meaningful to say 'let s be
speed of the house h'. Thus any extended type structure would be too complex
to put in what is conceived of as essentially a simple language. Not only would
it be too complex, it could be too cramping. One could not define a function
MAPLIST to apply any function to all members of any list if one had to specify
the types of its arguments. Indeed, the ability to write 'metaphorical programs'
where a set of functions for, say, performing a search procedure can be used
with widely differing types of object being searched for, is very important in
machine intelligence. Thus on the one hand, Burstall's (1968) program for
fact retrieval uses one set of functions for both syntax analysis and deduction,
while on the other hand the Graph Traverser, an ALGOL program (Doran
and Michie, 1966) is handicapped by operating solely on rectangular arrays.
Numbers, integer and real, are simple. For reasons of efficiency the truth

values TRUE.and FALSE are represented as the numbers 1 and 0 respectively,
and as such are simple. There are also operations which allow numbers to be
treated as bit-patterns.
Type conversion between integer and real items is performed automatically

at run-time.
Compound items can be thought of mechanistically as pointers to areas of

store. Certain standard compound items are provided. These include

List cells

List cells and operations of the LISP type are provided. There are, however, a
class of entities, which are variously called streams or files, the processing of
which is sequential, and which it is desirable to handle in a manner analogous
to the manner in which lists are handled. It is not practicable to convert these
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things into lists because of the prohibitive amount of store they would occupy.
Landin (1966) proposed a representation in terms of functions without side
effects. In Pop-2 a more efficient solution is provided: dynamic lists. These
are lists of the LISP type, except that the last cell in the list contains a func-
tion. There are operations HD and TL on dynamic lists, which, like CAR and
CDR of LISP, select respectively the first member and the remainder of the
list. When the last cell of a dynamic list is reached, the resident function is
applied to no arguments, and the result is taken to be the next member of the
list.
The list is terminated when the function produces TERMIN as its result. In

this case TRUE is written into the first position in the last cell. The function
NULL which tests for the emptyness of a list, returns the result TRUE when it
is given a list cell with TRUE in its first position and a function in its second.
As an example, suppose f is a function to read a character off an input tape.

The statement

FNTOLIST(F)->X;

using the standard function FNTOLIST, will set x to be a dynamic list built
from F. The function COUNT defined by

FUNCTION COUNT X;
VARS N; 0->N;

LOOP: IF NULL(X) THEN N EXIT
IF HD(X)=HD(TL(X)) THEN N-F1->N CLOSE
TL(X)-÷X; GOTO LOOP

END

which counts the number of pairs of identical adjacent characters on the input
tape, is only fractionally more convenient than the same function written
using F directly, but the gain increases with the complexity of the operations
being performed.

Words

System routines are available for converting sequences of symbols into data
cells called words. These contain the first eight characters of the word.
Characters are converted into words according to the conventions of the
Pop-2 compiler. Thus CAT), and ++ are words. Quotes are used to dis-
tinguish words from identifiers e.g. "CAT" denotes the word CAT while CAT
denotes the current value of an identifier CAT.
Words are standardized. That is to say, on construction of a word, a check

is made to see whether a word having the same sequence of letters has been
encountered before, and if so the previous incarnation is used. Constant words
are quoted in program, and "D 0 G" = "D 0 G" always produces TRUE, because
of this standardization. There is a function MEANING on words which asso.
ciates an item with a word (similar to the property list of a LISP atom).
"CHIEN"->MEANING ("DOG").
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This function allows one to construct an updateable dictionary, the entries
of which are undefined until assignment is first made to them. This example of

assignment is analogous to x -÷ H D (Y).
Users may themselves define classes of compound items.

Records

Records are data cells with a number of components fixed over a record class.
Thus the class of list cells is a record class each member of which has two

components, namely, HD and TL. The amount of information in each com-

ponent of a record is specified in a description list, which is handed to the

function RECORDFNS which is used to create a record class. The description

list for list-cells would be [0 0], 0 in a description list being used to indicate a

component which can be a full compound item. The result of RECORDFNS is

a number of functions for manipulating the records of the class being defined.

Thus the class of list-cells would be defined by

RECORDFNS("LIST", 1000, [0 0])-÷BACK-÷FRONT-9-DEST—>CONS;

where FRONT and BACK are CAR and CDR in Lisp, and PEST is a function

that 'explodes' a list-cell into its components.

Strips

Strips are cells with a number of components which is variable over a class
of strips. The components of a strip are all of the same size, and are accessed
by a subscripting function associated with each strip class. Thus, ifs is a strip,
w is an integer and SUBS CR is a subscripting function for the class of strips
to which s belongs, then S CBS CR(N,S) produces item N of s.

Arrays are functions which have strips attached to them as work-space.
The way in which this attachment is performed will be described in the section
on functions.
There seems to be a need for classes of objects with properties intermediate

between strips and records. These would have the variable size of strips, and
the different component types of records. Thus, a record of a person might
have a selector-subscriptor NAMECHAR, such that NAMECHAR0,19 took
the fth character of the name of the person P.

FUNCTIONS

Functions are compound items, and as such are the values of variables.
LAMBDA X; XX END-÷SQUARE; (for lambda notation see Landin, 1966)
assigns that function which takes x onto its square to the variable SQUARE. A
'sugared' version of this is

FUNCTION SQUARE X; XX END

Binary operations like + — <> (<> is the infixed version of concatenate
as applied to lists) are identifiers which are the names of functions. These
identifiers are recognized by the compiler as naming infixed operations. The
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modifier NONOP causes them to be treated as normal functions, e.g. NONOP*

-+ PROD; causes the value of PROD to be set to the multiplication function.

Note that only the semantic, not the syntactic, content of * passes to PROD

in this assignment, so that to apply the new function we must say PROD(X,Y).

If we had wished PROD to be an infix, we would have proceeded as follows:

VARS OPERATION 3 PROD;
NONOP * -4- PROD;

now X PROD Y=x* Y gives the value TRUE. The numeral in this declaration

sets the precedence.
Some functions have a meaning when used to the right of an assignment

arrow. Thus 4 -->A(3,2) is meaningful if A is an array, or 34 ->iiD(L); if Lisa

list. Every function has a component called its UPDATER. Suppose we are

keeping records of people in lists, giving details of their ages and sexes. Thus:

[ SOCRATES MALE 2436] Or [SATAN MALE 100000]. One can define the

functions AGE and SEX on these records. Thus:

FUNCTION SEX X;
HD(TL(X))

END

Everyone who has an age has birthdays. According to Malleus Maleficarum
(Institoris, 1948), Satan, for reasons which need not detain us here, needs to
change his sex frequently. The functions AGE and SEX as defined above will
not perform this updating operation. However the statement

LAMBDA X Y; X-+HD(TL(Y)) END-->UPDATER(SEX);

will change the UPDATER component of SEX in such a way that if we say

[SATAN MALE 100000]->F;

then later

"FEMALE" ->SEX (P) ;

will update the record P as required.
There are two methods of creating new functions dynamically. One is

POPVAL, which is a function which compiles program, in the form of a list.

The other is partial application.
Suppose that F is a function of n arguments: we may 'partially apply' it to an

argument list of only m elements by writing F( % x1, x2,  x. %). The

result is a new function of n-m arguments, obtained by 'freezing' the values of

the last m arguments to the values possessed by x1, x2, . x. at the time of

the partial application. Thus suppose DIST is a function for finding the dis-

tance between pairs of places, and EDINBURGH is a place, then DIST( %

EDINBURGH %) is a function for finding the distance of a place from Edin-

burgh, and we would be at liberty to assign it, e.g. DIST( % EDINBURGH %)

-+MILEAGE. MILEAGE(LONDON) now gives 380.

398



POPP LESTONE

The following illustrates the use of partial application in defining a func-
tional. Suppose ZERO is a function for finding one zero of a function. Consider
the function INVERSE defined by

FUNCTION INVERSE F;
AUXINVERSE( % F

END

where AUXINVERSE is the function defined by

FUNCTION AUXINVERSE Y F;
ZERO(LAMBDA X; Y—F(X) END)

END

Then, leaving aside the niceties of numerical analysis, INVERSE is a functional
which takes a function of one argument over the reals onto its inverse. Thus
INVERSE(SIN) is ARCSIN. This is deduced as follows: according to the
definitions INVERSE (SIN) is AUXINVERSE( % SIN %), that is, AUXINVERSE
with F 'frozen' to SIN, that is a function with the same result as

LAMBDA Y; ZERO(LAMBDA X; Y—SIN(X) END) END

Given Y, the result of this function will be that x for which Y—SIN (X) = 0,
that is that x for which s IN(x) = Y, that is AR cs N(Y).
The above definition of INVERSE will seem unnecessarily complicated on

first reading. Could F not be a non-local of AUXINVERSE and the partial
application be dispensed with? If this were so, when we came to evaluate
ARCSIN the value of F might have been changed, for instance by another
application of INVERSE to, say, LOG. However, with the partial application in
place, if we say INVERSE(LOG)-+EXP, then ARCSIN and EXP are two func-
tions which are obtained from AUXINVERSE by freezing F to the values SIN
and LOG respectively.
Landin (1966) uses an equivalent scheme. The frozen formal parameters of

P o P-2 correspond to the environment part of his closures. While his method,
as embodied in CPL, is syntactically more elegant, partial application tech-
nique of Pop-2 is perhaps more flexible, because the user can decide which
variables are to be frozen.

FUTURE DEVELOPMENTS

Now that an implementation of Pop-2 is available on a machine (an Elliott
4120) it is time to consider the future. There are three lines of development.
The first is to make extensions to the language to make use of backing store
and to make more efficient use of machine time.
The second is to build a library of functions to be used as building bricks of

intelligent programs. The increased power that partial application gives
P o P-2 is very important here. In languages like ALGOL, one can write learn-
ing programs: it is difficult to write learning procedures. This is because the
only memory that a procedure can have to itself is in the form of 'own' variables.
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Since these have only one incarnation, the learning mechanism enshrined in a

procedure can only be used in one sub-problem of the whole problem. In
Pop-2 on the other hand, a learning mechanism encoded in a function can be
attached to data concerned with many sub-problems by partial application.

Arrays may be regarded as rote-learning functions, a point of view implicit in

the 'memo function' concept proposed by Michie (1968).

One can write in, Pop-2 a function which one might call, by analogy with

NEWARRAY, NEWINTERP. NEWINTERPO produces a function called an

interpolator. Suppose we are studying devices called tripistors. These pass a

current that depends on the applied voltage. If we say NEWINTERPO-4-

TRIPISTOR; we have a function which we can teach to represent tripistor

behaviour. Suppose we have observed that a tripistor passes a current of

10 amps when 1 volt is applied, and 0 amps when 0 volts are applied, then this

information is conveyed by the statements:

10-+TRIpisT0R(1); 0—>TRIpisToR(0);

If we now ask for TRIP IsToR(0.5) the machine produces the estimate of 5,
by linear interpolation. As further information is fed in so better interpola-
tions will be possible. Meanwhile, in another part of the program, the same
interpolation mechanisms have been learning the behaviour of livertrons.
When these lessons have been adequately learnt, they can be applied in pre-
dicting the behaviour of a circuit containing both tripistors and livertrons.

Finally, as Pop-1 was used to develop Pop-2, so Pop-2 will be used to
develop its successor. What sort of language will this be? One can regard
existing algorithmic languages including Pop-2 as being imperative. They are
used to describe the solution to a problem. The next generation of languages
will be indicative. They will be used to describe a problem.
Both kinds of language have been used by logicians: the lambda calculus is

their imperative language, the predicate or functional calculus the indicative

languages. Algorithms for interpreting these languages are known — e.g. the

resolution principle for the functional calculus. Let us consider the following

statements in BNP--which can be regarded as an indicative language:

<NP>::=THE <NOUN>

<NOUN> ::=CATI DOG

We can regard this as a 'sugared' version of the following statements in

functional calculus.

V x (isr:P(x) < = > ( 3 y (IsNotn4(y) and x= [THE] < > y)))

isNouN([cAT]) and IsNouN([Doo])

In order to use resolution, these have to be rewritten in conjunctive normal

form. Leaving out the => of the < = > we get:

(1) not(IsNouN(Y)) Or not ((THE] < > y=x) or isru(x)
(2) isNoux([cAT])
(3) isNotniaDoGD



POP PLESTON E

These , statements can be used analytically or generatively. To use them
analytically, suppose it is conjectured that 'SNP ( [THE] <> [CAT]), i.e. that
[THE] <> [CAT] is a nounphrase. Then one adds the denial of this statement
to 1-3 and asks for a contradiction.

(4) notOsNE([THE] <> [cAT]))

Resolving (4) with (1) gives

(5) not(isNotni(y)) or not([THE] < > y= [THE] <> [CAT])

Resolving (5) with (2) gives

(6) not([THE] <> [cAT]=[THE] <> [CAT])

a contradiction, by resolution with x =x-- an equality axiom.
To use (1)—(3) generatively one need only deny the existence of a noun-

phrase.

(4a) not(isHE(x))

Resolving (3) with (1) gives

(5a) not([THE] <> [DOG]X) or isNE(x)

Resolving (5) with x=x gives

(6a) isNP([THE] <> [DoG])

a contradiction with (4a), and an instance of a nounphrase.
While the deduction process in such an indicative language is algorithmic,

the choice of deductions to be made is not. Foster, in this volume, proposes a
method whereby a user of such a system could control the direction of deduc-
tions. With sufficiently rigid control one would have an imperative language.
Work at Edinburgh would be concerned with a heuristically controlled

system. The study of imperative systems viewed as highly constrained indica-
tive systems seems important to the understanding of milder heuristic con-
straints.
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