Goto

Collaborating Authors

 Communications: Overviews


Designing Speech Technologies for Australian Aboriginal English: Opportunities, Risks and Participation

arXiv.org Artificial Intelligence

In Australia, post-contact language varieties, including creoles and local varieties of international languages, emerged as a result of forced contact between Indigenous communities and English speakers. These contact varieties are widely used, yet are poorly supported by language technologies. This gap presents barriers to participation in civil and economic society for Indigenous communities using these varieties, and reproduces minoritisation of contemporary Indigenous sociolinguistic identities. This paper concerns three questions regarding this context. First, can speech technologies support speakers of Australian Aboriginal English, a local indigenised variety of English? Second, what risks are inherent in such a project? Third, what technology development practices are appropriate for this context, and how can researchers integrate meaningful community participation in order to mitigate risks? We argue that opportunities do exist -- as well as risks -- and demonstrate this through a case study exploring design practices in a real-world project aiming to improve speech technologies for Australian Aboriginal English. We discuss how we integrated culturally appropriate and participatory processes throughout the project. We call for increased support for languages used by Indigenous communities, including contact varieties, which provide practical economic and socio-cultural benefits, provided that participatory and culturally safe practices are enacted.


From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems

arXiv.org Artificial Intelligence

Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.


CareerBERT: Matching Resumes to ESCO Jobs in a Shared Embedding Space for Generic Job Recommendations

arXiv.org Artificial Intelligence

The rapidly evolving labor market, driven by technological advancements and economic shifts, presents significant challenges for traditional job matching and consultation services. In response, we introduce an advanced support tool for career counselors and job seekers based on CareerBERT, a novel approach that leverages the power of unstructured textual data sources, such as resumes, to provide more accurate and comprehensive job recommendations. In contrast to previous approaches that primarily focus on job recommendations based on a fixed set of concrete job advertisements, our approach involves the creation of a corpus that combines data from the European Skills, Competences, and Occupations (ESCO) taxonomy and EURopean Employment Services (EURES) job advertisements, ensuring an up-to-date and well-defined representation of general job titles in the labor market. Our two-step evaluation approach, consisting of an application-grounded evaluation using EURES job advertisements and a human-grounded evaluation using real-world resumes and Human Resources (HR) expert feedback, provides a comprehensive assessment of CareerBERT's performance. Our experimental results demonstrate that CareerBERT outperforms both traditional and state-of-the-art embedding approaches while showing robust effectiveness in human expert evaluations. These results confirm the effectiveness of CareerBERT in supporting career consultants by generating relevant job recommendations based on resumes, ultimately enhancing the efficiency of job consultations and expanding the perspectives of job seekers. This research contributes to the field of NLP and job recommendation systems, offering valuable insights for both researchers and practitioners in the domain of career consulting and job matching.


Twenty Years of Personality Computing: Threats, Challenges and Future Directions

arXiv.org Artificial Intelligence

Personality Computing is a field at the intersection of Personality Psychology and Computer Science. Started in 2005, research in the field utilizes computational methods to understand and predict human personality traits. The expansion of the field has been very rapid and, by analyzing digital footprints (text, images, social media, etc.), it helped to develop systems that recognize and even replicate human personality. While offering promising applications in talent recruiting, marketing and healthcare, the ethical implications of Personality Computing are significant. Concerns include data privacy, algorithmic bias, and the potential for manipulation by personality-aware Artificial Intelligence. This paper provides an overview of the field, explores key methodologies, discusses the challenges and threats, and outlines potential future directions for responsible development and deployment of Personality Computing technologies.


Enhancing Social Media Rumor Detection: A Semantic and Graph Neural Network Approach for the 2024 Global Election

arXiv.org Artificial Intelligence

The development of social media platforms has revolutionized the speed and manner in which information is disseminated, leading to both beneficial and detrimental effects on society. While these platforms facilitate rapid communication, they also accelerate the spread of rumors and extremist speech, impacting public perception and behavior significantly. This issue is particularly pronounced during election periods, where the influence of social media on election outcomes has become a matter of global concern. With the unprecedented number of elections in 2024, against this backdrop, the election ecosystem has encountered unprecedented challenges. This study addresses the urgent need for effective rumor detection on social media by proposing a novel method that combines semantic analysis with graph neural networks. We have meticulously collected a dataset from PolitiFact and Twitter, focusing on politically relevant rumors. Our approach involves semantic analysis using a fine-tuned BERT model to vectorize text content and construct a directed graph where tweets and comments are nodes, and interactions are edges. The core of our method is a graph neural network, SAGEWithEdgeAttention, which extends the GraphSAGE model by incorporating first-order differences as edge attributes and applying an attention mechanism to enhance feature aggregation. This innovative approach allows for the fine-grained analysis of the complex social network structure, improving rumor detection accuracy. The study concludes that our method significantly outperforms traditional content analysis and time-based models, offering a theoretically sound and practically efficient solution.


Review on Determining the Number of Communities in Network Data

arXiv.org Machine Learning

This paper reviews statistical methods for hypothesis testing and clustering in network models. We analyze the method by Bickel et al. (2016) for deriving the asymptotic null distribution of the largest eigenvalue, noting its slow convergence and the need for bootstrap corrections. The SCORE method by Jin et al. (2015) and the NCV method by Chen et al. (2018) are evaluated for their efficacy in clustering within Degree-Corrected Block Models, with NCV facing challenges due to its time-intensive nature. We suggest exploring eigenvector entry distributions as a potential efficiency improvement.


G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition

arXiv.org Artificial Intelligence

--Graph Neural Networks (GNNs) have achieved significant success in machine learning, with wide applications in social networks, bioinformatics, knowledge graphs, and other fields. Most research assumes ideal closed-set environments. However, in real-world open-set environments, graph learning models face challenges in robustness and reliability due to unseen classes. This highlights the need for Graph Open-Set Recognition (GOSR) methods to address these issues and ensure effective GNN application in practical scenarios. Research in GOSR is in its early stages, with a lack of a comprehensive benchmark spanning diverse tasks and datasets to evaluate methods. Moreover, traditional methods, Graph Out-of-Distribution Detection (GOODD), GOSR, and Graph Anomaly Detection (GAD) have mostly evolved in isolation, with little exploration of their interconnections or potential applications to GOSR. T o fill these gaps, we introduce G-OSR, a comprehensive benchmark for evaluating GOSR methods at both the node and graph levels, using datasets from multiple domains to ensure fair and standardized comparisons of effectiveness and efficiency across traditional, GOODD, GOSR, and GAD methods. The results offer critical insights into the generalizability and limitations of current GOSR methods and provide valuable resources for advancing research in this field through systematic analysis of diverse approaches. RAPH learning, as a significant research direction in machine learning, has been widely applied in social network analysis, recommendation systems, bioinformatics, knowledge graphs, traffic planning, and the fields of chemistry and materials science [1]. Graph Neural Networks (GNNs) have demonstrated superior performance in various node classification and graph classification tasks [2]. These methods typically follow a closed-set setting, which assumes that all test classes are among the seen classes accessible during training [3]. However, in real-world scenarios, due to undersampling, out-of-distribution, or anomalous samples, it is highly likely to encounter samples belonging to novel unseen classes, which can significantly impact the safety and robustness of models [4], as illustrated in Figure 1. Guangyao Chen is with Cornell University, Ithaca, NY, USA. Wentao Zhang is with Peking University, Beijing, China. Zhongyi Han is with King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. Rundong He and Yilong Yin are the corresponding authors. Closed-set classification cannot identify unseen classes, while open-set recognition can identify unseen classes and classify nodes belonging to seen classes.


Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks

arXiv.org Artificial Intelligence

The transition from 5G to 6G mobile networks necessitates network automation to meet the escalating demands for high data rates, ultra-low latency, and integrated technology. Recently, Zero-Touch Networks (ZTNs), driven by Artificial Intelligence (AI) and Machine Learning (ML), are designed to automate the entire lifecycle of network operations with minimal human intervention, presenting a promising solution for enhancing automation in 5G/6G networks. However, the implementation of ZTNs brings forth the need for autonomous and robust cybersecurity solutions, as ZTNs rely heavily on automation. AI/ML algorithms are widely used to develop cybersecurity mechanisms, but require substantial specialized expertise and encounter model drift issues, posing significant challenges in developing autonomous cybersecurity measures. Therefore, this paper proposes an automated security framework targeting Physical Layer Authentication (PLA) and Cross-Layer Intrusion Detection Systems (CLIDS) to address security concerns at multiple Internet protocol layers. The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments. Experimental results illustrate that the proposed framework achieves high performance on the public Radio Frequency (RF) fingerprinting and the Canadian Institute for CICIDS2017 datasets, showcasing its effectiveness in addressing PLA and CLIDS tasks within dynamic and complex networking environments. Furthermore, the paper explores open challenges and research directions in the 5G/6G cybersecurity domain. This framework represents a significant advancement towards fully autonomous and secure 6G networks, paving the way for future innovations in network automation and cybersecurity.


An exploration of features to improve the generalisability of fake news detection models

arXiv.org Artificial Intelligence

Fake news poses global risks by influencing elections and spreading misinformation, making detection critical. Existing NLP and supervised Machine Learning methods perform well under cross-validation but struggle to generalise across datasets, even within the same domain. This issue stems from coarsely labelled training data, where articles are labelled based on their publisher, introducing biases that token-based models like TF-IDF and BERT are sensitive to. While Large Language Models (LLMs) offer promise, their application in fake news detection remains limited. This study demonstrates that meaningful features can still be extracted from coarsely labelled data to improve real-world robustness. Stylistic features-lexical, syntactic, and semantic-are explored due to their reduced sensitivity to dataset biases. Additionally, novel social-monetisation features are introduced, capturing economic incentives behind fake news, such as advertisements, external links, and social media elements. The study trains on the coarsely labelled NELA 2020-21 dataset and evaluates using the manually labelled Facebook URLs dataset, a gold standard for generalisability. Results highlight the limitations of token-based models trained on biased data and contribute to the scarce evidence on LLMs like LLaMa in this field. Findings indicate that stylistic and social-monetisation features offer more generalisable predictions than token-based methods and LLMs. Statistical and permutation feature importance analyses further reveal their potential to enhance performance and mitigate dataset biases, providing a path forward for improving fake news detection.


Towards Robust and Secure Embodied AI: A Survey on Vulnerabilities and Attacks

arXiv.org Artificial Intelligence

Embodied AI systems, including robots and autonomous vehicles, are increasingly integrated into real-world applications, where they encounter a range of vulnerabilities stemming from both environmental and system-level factors. These vulnerabilities manifest through sensor spoofing, adversarial attacks, and failures in task and motion planning, posing significant challenges to robustness and safety. Despite the growing body of research, existing reviews rarely focus specifically on the unique safety and security challenges of embodied AI systems. Most prior work either addresses general AI vulnerabilities or focuses on isolated aspects, lacking a dedicated and unified framework tailored to embodied AI. This survey fills this critical gap by: (1) categorizing vulnerabilities specific to embodied AI into exogenous (e.g., physical attacks, cybersecurity threats) and endogenous (e.g., sensor failures, software flaws) origins; (2) systematically analyzing adversarial attack paradigms unique to embodied AI, with a focus on their impact on perception, decision-making, and embodied interaction; (3) investigating attack vectors targeting large vision-language models (LVLMs) and large language models (LLMs) within embodied systems, such as jailbreak attacks and instruction misinterpretation; (4) evaluating robustness challenges in algorithms for embodied perception, decision-making, and task planning; and (5) proposing targeted strategies to enhance the safety and reliability of embodied AI systems. By integrating these dimensions, we provide a comprehensive framework for understanding the interplay between vulnerabilities and safety in embodied AI.