Communications: Overviews
Federated Continual Learning for Edge-AI: A Comprehensive Survey
Wang, Zi, Wu, Fei, Yu, Feng, Zhou, Yurui, Hu, Jia, Min, Geyong
Edge-AI, the convergence of edge computing and artificial intelligence (AI), has become a promising paradigm that enables the deployment of advanced AI models at the network edge, close to users. In Edge-AI, federated continual learning (FCL) has emerged as an imperative framework, which fuses knowledge from different clients while preserving data privacy and retaining knowledge from previous tasks as it learns new ones. By so doing, FCL aims to ensure stable and reliable performance of learning models in dynamic and distributed environments. In this survey, we thoroughly review the state-of-the-art research and present the first comprehensive survey of FCL for Edge-AI. We categorize FCL methods based on three task characteristics: federated class continual learning, federated domain continual learning, and federated task continual learning. For each category, an in-depth investigation and review of the representative methods are provided, covering background, challenges, problem formalisation, solutions, and limitations. Besides, existing real-world applications empowered by FCL are reviewed, indicating the current progress and potential of FCL in diverse application domains. Furthermore, we discuss and highlight several prospective research directions of FCL such as algorithm-hardware co-design for FCL and FCL with foundation models, which could provide insights into the future development and practical deployment of FCL in the era of Edge-AI.
Leveraging AI and NLP for Bank Marketing: A Systematic Review and Gap Analysis
Gerling, Christopher, Lessmann, Stefan
This paper explores the growing impact of AI and NLP in bank marketing, highlighting their evolving roles in enhancing marketing strategies, improving customer engagement, and creating value within this sector. While AI and NLP have been widely studied in general marketing, there is a notable gap in understanding their specific applications and potential within the banking sector. This research addresses this specific gap by providing a systematic review and strategic analysis of AI and NLP applications in bank marketing, focusing on their integration across the customer journey and operational excellence. Employing the PRISMA methodology, this study systematically reviews existing literature to assess the current landscape of AI and NLP in bank marketing. Additionally, it incorporates semantic mapping using Sentence Transformers and UMAP for strategic gap analysis to identify underexplored areas and opportunities for future research. The systematic review reveals limited research specifically focused on NLP applications in bank marketing. The strategic gap analysis identifies key areas where NLP can further enhance marketing strategies, including customer-centric applications like acquisition, retention, and personalized engagement, offering valuable insights for both academic research and practical implementation. This research contributes to the field of bank marketing by mapping the current state of AI and NLP applications and identifying strategic gaps. The findings provide actionable insights for developing NLP-driven growth and innovation frameworks and highlight the role of NLP in improving operational efficiency and regulatory compliance. This work has broader implications for enhancing customer experience, profitability, and innovation in the banking industry.
Introduction to AI Safety, Ethics, and Society
Artificial Intelligence is rapidly embedding itself within militaries, economies, and societies, reshaping their very foundations. Given the depth and breadth of its consequences, it has never been more pressing to understand how to ensure that AI systems are safe, ethical, and have a positive societal impact. This book aims to provide a comprehensive approach to understanding AI risk. Our primary goals include consolidating fragmented knowledge on AI risk, increasing the precision of core ideas, and reducing barriers to entry by making content simpler and more comprehensible. The book has been designed to be accessible to readers from diverse backgrounds. You do not need to have studied AI, philosophy, or other such topics. The content is skimmable and somewhat modular, so that you can choose which chapters to read. We introduce mathematical formulas in a few places to specify claims more precisely, but readers should be able to understand the main points without these.
Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study
Wen, Jinbo, Kang, Jiawen, Niyato, Dusit, Zhang, Yang, Wang, Jiacheng, Sikdar, Biplab, Zhang, Ping
Data augmentation is a powerful technique to mitigate data scarcity. However, owing to fundamental differences in wireless data structures, traditional data augmentation techniques may not be suitable for wireless data. Fortunately, Generative Artificial Intelligence (GenAI) can be an effective alternative to wireless data augmentation due to its excellent data generation capability. This article systemically explores the potential and effectiveness of GenAI-driven data augmentation in wireless networks. We first briefly review data augmentation techniques, discuss their limitations in wireless networks, and introduce generative data augmentation, including reviewing GenAI models and their applications in data augmentation. We then explore the application prospects of GenAI-driven data augmentation in wireless networks from the physical, network, and application layers, which provides a GenAI-driven data augmentation architecture for each application. Subsequently, we propose a general generative diffusion model-based data augmentation framework for Wi-Fi gesture recognition, which uses transformer-based diffusion models to generate high-quality channel state information data. Furthermore, we develop residual neural network models for Wi-Fi gesture recognition to evaluate the role of augmented data and conduct a case study based on a real dataset. Simulation results demonstrate the effectiveness of the proposed framework. Finally, we discuss research directions for generative data augmentation.
A Survey on Data Markets
Zhang, Jiayao, Bi, Yuran, Cheng, Mengye, Liu, Jinfei, Ren, Kui, Sun, Qiheng, Wu, Yihang, Cao, Yang, Fernandez, Raul Castro, Xu, Haifeng, Jia, Ruoxi, Kwon, Yongchan, Pei, Jian, Wang, Jiachen T., Xia, Haocheng, Xiong, Li, Yu, Xiaohui, Zou, James
Data is the new oil of the 21st century. The growing trend of trading data for greater welfare has led to the emergence of data markets. A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place as a result of data buyers and data sellers being in contact with one another, either directly or through mediating agents. It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data as the most important ones, interact to make the value of data fully exploited and enhanced. In this article, we present a comprehensive survey of this important and emerging direction from the aspects of data search, data productization, data transaction, data pricing, revenue allocation as well as privacy, security, and trust issues. We also investigate the government policies and industry status of data markets across different countries and different domains. Finally, we identify the unresolved challenges and discuss possible future directions for the development of data markets.
Sentiment Analysis of Cyberbullying Data in Social Media
Susmitha, Arvapalli Sai, Pujari, Pradeep
Social media has become an integral part of modern life, but it has also brought with it the pervasive issue of cyberbullying a serious menace in today's digital age. Cyberbullying, a form of harassment that occurs on social networks, has escalated alongside the growth of these platforms. Sentiment analysis holds significant potential not only for detecting bullying phrases but also for identifying victims who are at high risk of harm, whether to themselves or others. Our work focuses on leveraging deep learning and natural language understanding techniques to detect traces of bullying in social media posts. We developed a Recurrent Neural Network with Long Short-Term Memory (LSTM) cells, using different embeddings. One approach utilizes BERT embeddings, while the other replaces the embeddings layer with the recently released embeddings API from OpenAI. We conducted a performance comparison between these two approaches to evaluate their effectiveness in sentiment analysis of Formspring Cyberbullying data. Our Code is Available at https://github.com/ppujari/xcs224u
The State and Fate of Summarization Datasets
Dahan, Noam, Stanovsky, Gabriel
Automatic summarization has consistently attracted attention, due to its versatility and wide application in various downstream tasks. Despite its popularity, we find that annotation efforts have largely been disjointed, and have lacked common terminology. Consequently, it is challenging to discover existing resources or identify coherent research directions. To address this, we survey a large body of work spanning 133 datasets in over 100 languages, creating a novel ontology covering sample properties, collection methods and distribution. With this ontology we make key observations, including the lack in accessible high-quality datasets for low-resource languages, and the field's over-reliance on the news domain and on automatically collected distant supervision. Finally, we make available a web interface that allows users to interact and explore our ontology and dataset collection, as well as a template for a summarization data card, which can be used to streamline future research into a more coherent body of work.
Survey on Semantic Interpretation of Tabular Data: Challenges and Directions
Cremaschi, Marco, Spahiu, Blerina, Palmonari, Matteo, Jimenez-Ruiz, Ernesto
Tabular data plays a pivotal role in various fields, making it a popular format for data manipulation and exchange, particularly on the web. The interpretation, extraction, and processing of tabular information are invaluable for knowledge-intensive applications. Notably, significant efforts have been invested in annotating tabular data with ontologies and entities from background knowledge graphs, a process known as Semantic Table Interpretation (STI). STI automation aids in building knowledge graphs, enriching data, and enhancing web-based question answering. This survey aims to provide a comprehensive overview of the STI landscape. It starts by categorizing approaches using a taxonomy of 31 attributes, allowing for comparisons and evaluations. It also examines available tools, assessing them based on 12 criteria. Furthermore, the survey offers an in-depth analysis of the Gold Standards used for evaluating STI approaches. Finally, it provides practical guidance to help end-users choose the most suitable approach for their specific tasks while also discussing unresolved issues and suggesting potential future research directions.
A Guide to Misinformation Detection Datasets
Thibault, Camille, Peloquin-Skulski, Gabrielle, Tian, Jacob-Junqi, Laflamme, Florence, Guan, Yuxiang, Rabbany, Reihaneh, Godbout, Jean-Franรงois, Pelrine, Kellin
Misinformation is a complex societal issue, and mitigating solutions are difficult to create due to data deficiencies. To address this problem, we have curated the largest collection of (mis)information datasets in the literature, totaling 75. From these, we evaluated the quality of all of the 36 datasets that consist of statements or claims. We assess these datasets to identify those with solid foundations for empirical work and those with flaws that could result in misleading and non-generalizable results, such as insufficient label quality, spurious correlations, or political bias. We further provide state-of-the-art baselines on all these datasets, but show that regardless of label quality, categorical labels may no longer give an accurate evaluation of detection model performance. We discuss alternatives to mitigate this problem. Overall, this guide aims to provide a roadmap for obtaining higher quality data and conducting more effective evaluations, ultimately improving research in misinformation detection. All datasets and other artifacts are available at https://misinfo-datasets.complexdatalab.com/.
Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis
Zbeeb, Mohammad, Ghorayeb, Mohammad, Salman, Mariam
Artificial Intelligence (AI) research often aims to develop models that can generalize reliably across complex datasets, yet this remains challenging in fields where data is scarce, intricate, or inaccessible. This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize one of the most demanding structured datasets: Malicious Network Traffic. Our approach uniquely transforms numerical data into text, re-framing data generation as a language modeling task, which not only enhances data regularization but also significantly improves generalization and the quality of the synthetic data. Extensive statistical analyses demonstrate that our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data. Additionally, we conduct a comprehensive study on synthetic data applications, effectiveness, and evaluation strategies, offering valuable insights into its role across various domains. Our code and pre-trained models are openly accessible at Github, enabling further exploration and application of our methodology. Index Terms: Data synthesis, machine learning, traffic generation, privacy preserving data, generative models.