Goto

Collaborating Authors

 Communications: Overviews


A Survey of Stance Detection on Social Media: New Directions and Perspectives

arXiv.org Artificial Intelligence

In modern digital environments, users frequently express opinions on contentious topics, providing a wealth of information on prevailing attitudes. The systematic analysis of these opinions offers valuable insights for decision-making in various sectors, including marketing and politics. As a result, stance detection has emerged as a crucial subfield within affective computing, enabling the automatic detection of user stances in social media conversations and providing a nuanced understanding of public sentiment on complex issues. Recent years have seen a surge of research interest in developing effective stance detection methods, with contributions from multiple communities, including natural language processing, web science, and social computing. This paper provides a comprehensive survey of stance detection techniques on social media, covering task definitions, datasets, approaches, and future works. We review traditional stance detection models, as well as state-of-the-art methods based on large language models, and discuss their strengths and limitations. Our survey highlights the importance of stance detection in understanding public opinion and sentiment, and identifies gaps in current research. We conclude by outlining potential future directions for stance detection on social media, including the need for more robust and generalizable models, and the importance of addressing emerging challenges such as multi-modal stance detection and stance detection in low-resource languages.


AI-Native Multi-Access Future Networks -- The REASON Architecture

arXiv.org Artificial Intelligence

The development of the sixth generation of communication networks (6G) has been gaining momentum over the past years, with a target of being introduced by 2030. Several initiatives worldwide are developing innovative solutions and setting the direction for the key features of these networks. Some common emerging themes are the tight integration of AI, the convergence of multiple access technologies and sustainable operation, aiming to meet stringent performance and societal requirements. To that end, we are introducing REASON - Realising Enabling Architectures and Solutions for Open Networks. The REASON project aims to address technical challenges in future network deployments, such as E2E service orchestration, sustainability, security and trust management, and policy management, utilising AI-native principles, considering multiple access technologies and cloud-native solutions. This paper presents REASON's architecture and the identified requirements for future networks. The architecture is meticulously designed for modularity, interoperability, scalability, simplified troubleshooting, flexibility, and enhanced security, taking into consideration current and future standardisation efforts, and the ease of implementation and training. It is structured into four horizontal layers: Physical Infrastructure, Network Service, Knowledge, and End-User Application, complemented by two vertical layers: Management and Orchestration, and E2E Security. This layered approach ensures a robust, adaptable framework to support the diverse and evolving requirements of 6G networks, fostering innovation and facilitating seamless integration of advanced technologies.


A review on Machine Learning based User-Centric Multimedia Streaming Techniques

arXiv.org Artificial Intelligence

The multimedia content and streaming are a major means of information exchange in the modern era and there is an increasing demand for such services. This coupled with the advancement of future wireless networks B5G/6G and the proliferation of intelligent handheld mobile devices, has facilitated the availability of multimedia content to heterogeneous mobile users. Apart from the conventional video, the 360$^o$ videos have gained popularity with the emerging virtual reality applications. All formats of videos (conventional and 360$^o$) undergo processing, compression, and transmission across dynamic wireless channels with restricted bandwidth to facilitate the streaming services. This causes video impairments, leading to quality degradation and poses challenges in delivering good Quality-of-Experience (QoE) to the viewers. The QoE is a prominent subjective quality measure to assess multimedia services. This requires end-to-end QoE evaluation. Efficient multimedia streaming techniques can improve the service quality while dealing with dynamic network and end-user challenges. A paradigm shift in user-centric multimedia services is envisioned with a focus on Machine Learning (ML) based QoE modeling and streaming strategies. This survey paper presents a comprehensive overview of the overall and continuous, time varying QoE modeling for the purpose of QoE management in multimedia services. It also examines the recent research on intelligent and adaptive multimedia streaming strategies, with a special emphasis on ML based techniques for video (conventional and 360$^o$) streaming. This paper discusses the overall and continuous QoE modeling to optimize the end-user viewing experience, efficient video streaming with a focus on user-centric strategies, associated datasets for modeling and streaming, along with existing shortcoming and open challenges.


Gen-AI for User Safety: A Survey

arXiv.org Artificial Intelligence

Machine Learning and data mining techniques (i.e. supervised and unsupervised techniques) are used across domains to detect user safety violations. Examples include classifiers used to detect whether an email is spam or a web-page is requesting bank login information. However, existing ML/DM classifiers are limited in their ability to understand natural languages w.r.t the context and nuances. The aforementioned challenges are overcome with the arrival of Gen-AI techniques, along with their inherent ability w.r.t translation between languages, fine-tuning between various tasks and domains. In this manuscript, we provide a comprehensive overview of the various work done while using Gen-AI techniques w.r.t user safety. In particular, we first provide the various domains (e.g. phishing, malware, content moderation, counterfeit, physical safety) across which Gen-AI techniques have been applied. Next, we provide how Gen-AI techniques can be used in conjunction with various data modalities i.e. text, images, videos, audio, executable binaries to detect violations of user-safety. Further, also provide an overview of how Gen-AI techniques can be used in an adversarial setting. We believe that this work represents the first summarization of Gen-AI techniques for user-safety.


Urban Region Embeddings from Service-Specific Mobile Traffic Data

arXiv.org Artificial Intelligence

--With the advent of advanced 4G/5G mobile networks, mobile phone data collected by operators now includes detailed, service-specific traffic information with high spatiotemporal resolution. In this paper, we leverage this type of data to explore its potential for generating high-quality representations of urban regions. T o achieve this, we present a methodology for creating urban region embeddings from service-specific mobile traffic data, employing a temporal convolutional network-based autoencoder, transformers, and learnable weighted sum models to capture key urban features. In the extensive experimental evaluation conducted using a real-world dataset, we demonstrate that the embeddings generated by our methodology effectively capture urban characteristics. Specifically, our embeddings are compared against those of a state-of-the-art competitor across two downstream tasks. Additionally, through clustering techniques, we investigate how well the embeddings produced by our methodology capture the temporal dynamics and characteristics of the underlying urban regions. Overall, this work highlights the potential of service-specific mobile traffic data for urban research and emphasizes the importance of making such data accessible to support public innovation. Mobile phone activity data is a well-established and widely explored type of mobility data used in various applications, including mobility, health, socio-economic, and demographic studies. In the past years, mobile phone data was typically studied in the form of Call Detail Records (CDRs), which capture users' connections to cell towers during calls or messaging activities. However, this type of data is often sparse and irregular, limiting its potential for broader and more scalable applications. With the rise of 4G/5G cellular networks, mobile phone usage has shifted towards extensive use of data services, such as mobile applications, which generate massive volumes of data traffic. The information related to the data traffic volume generated by these services can offer rich spatio-temporal details and insights into the characteristics of the underlying urban regions. To this end, in this work, we consider the NetMob 2023 dataset [1], which provides detailed data on mobile traffic volume across multiple data services. Orange, the mobile operator providing the dataset, recorded upload and download traffic for 68 different mobile applications across 20 major French cities.


Transforming the Hybrid Cloud for Emerging AI Workloads

arXiv.org Artificial Intelligence

This white paper, developed through close collaboration between IBM Research and UIUC researchers within the IIDAI Institute, envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads through innovative, full-stack co-design approaches, emphasizing usability, manageability, affordability, adaptability, efficiency, and scalability. By integrating cutting-edge technologies such as generative and agentic AI, cross-layer automation and optimization, unified control plane, and composable and adaptive system architecture, the proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness. Incorporating quantum computing as it matures will enable quantum-accelerated simulations for materials science, climate modeling, and other high-impact domains. Collaborative efforts between academia and industry are central to this vision, driving advancements in foundation models for material design and climate solutions, scalable multimodal data processing, and enhanced physics-based AI emulators for applications like weather forecasting and carbon sequestration. Research priorities include advancing AI agentic systems, LLM as an Abstraction (LLMaaA), AI model optimization and unified abstractions across heterogeneous infrastructure, end-to-end edge-cloud transformation, efficient programming model, middleware and platform, secure infrastructure, application-adaptive cloud systems, and new quantum-classical collaborative workflows. These ideas and solutions encompass both theoretical and practical research questions, requiring coordinated input and support from the research community. This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms, fostering breakthroughs in AI-driven applications and scientific discovery across academia, industry, and society.


Federated Continual Learning for Edge-AI: A Comprehensive Survey

arXiv.org Artificial Intelligence

Edge-AI, the convergence of edge computing and artificial intelligence (AI), has become a promising paradigm that enables the deployment of advanced AI models at the network edge, close to users. In Edge-AI, federated continual learning (FCL) has emerged as an imperative framework, which fuses knowledge from different clients while preserving data privacy and retaining knowledge from previous tasks as it learns new ones. By so doing, FCL aims to ensure stable and reliable performance of learning models in dynamic and distributed environments. In this survey, we thoroughly review the state-of-the-art research and present the first comprehensive survey of FCL for Edge-AI. We categorize FCL methods based on three task characteristics: federated class continual learning, federated domain continual learning, and federated task continual learning. For each category, an in-depth investigation and review of the representative methods are provided, covering background, challenges, problem formalisation, solutions, and limitations. Besides, existing real-world applications empowered by FCL are reviewed, indicating the current progress and potential of FCL in diverse application domains. Furthermore, we discuss and highlight several prospective research directions of FCL such as algorithm-hardware co-design for FCL and FCL with foundation models, which could provide insights into the future development and practical deployment of FCL in the era of Edge-AI.


Leveraging AI and NLP for Bank Marketing: A Systematic Review and Gap Analysis

arXiv.org Artificial Intelligence

This paper explores the growing impact of AI and NLP in bank marketing, highlighting their evolving roles in enhancing marketing strategies, improving customer engagement, and creating value within this sector. While AI and NLP have been widely studied in general marketing, there is a notable gap in understanding their specific applications and potential within the banking sector. This research addresses this specific gap by providing a systematic review and strategic analysis of AI and NLP applications in bank marketing, focusing on their integration across the customer journey and operational excellence. Employing the PRISMA methodology, this study systematically reviews existing literature to assess the current landscape of AI and NLP in bank marketing. Additionally, it incorporates semantic mapping using Sentence Transformers and UMAP for strategic gap analysis to identify underexplored areas and opportunities for future research. The systematic review reveals limited research specifically focused on NLP applications in bank marketing. The strategic gap analysis identifies key areas where NLP can further enhance marketing strategies, including customer-centric applications like acquisition, retention, and personalized engagement, offering valuable insights for both academic research and practical implementation. This research contributes to the field of bank marketing by mapping the current state of AI and NLP applications and identifying strategic gaps. The findings provide actionable insights for developing NLP-driven growth and innovation frameworks and highlight the role of NLP in improving operational efficiency and regulatory compliance. This work has broader implications for enhancing customer experience, profitability, and innovation in the banking industry.


Introduction to AI Safety, Ethics, and Society

arXiv.org Artificial Intelligence

Artificial Intelligence is rapidly embedding itself within militaries, economies, and societies, reshaping their very foundations. Given the depth and breadth of its consequences, it has never been more pressing to understand how to ensure that AI systems are safe, ethical, and have a positive societal impact. This book aims to provide a comprehensive approach to understanding AI risk. Our primary goals include consolidating fragmented knowledge on AI risk, increasing the precision of core ideas, and reducing barriers to entry by making content simpler and more comprehensible. The book has been designed to be accessible to readers from diverse backgrounds. You do not need to have studied AI, philosophy, or other such topics. The content is skimmable and somewhat modular, so that you can choose which chapters to read. We introduce mathematical formulas in a few places to specify claims more precisely, but readers should be able to understand the main points without these.


Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study

arXiv.org Artificial Intelligence

Data augmentation is a powerful technique to mitigate data scarcity. However, owing to fundamental differences in wireless data structures, traditional data augmentation techniques may not be suitable for wireless data. Fortunately, Generative Artificial Intelligence (GenAI) can be an effective alternative to wireless data augmentation due to its excellent data generation capability. This article systemically explores the potential and effectiveness of GenAI-driven data augmentation in wireless networks. We first briefly review data augmentation techniques, discuss their limitations in wireless networks, and introduce generative data augmentation, including reviewing GenAI models and their applications in data augmentation. We then explore the application prospects of GenAI-driven data augmentation in wireless networks from the physical, network, and application layers, which provides a GenAI-driven data augmentation architecture for each application. Subsequently, we propose a general generative diffusion model-based data augmentation framework for Wi-Fi gesture recognition, which uses transformer-based diffusion models to generate high-quality channel state information data. Furthermore, we develop residual neural network models for Wi-Fi gesture recognition to evaluate the role of augmented data and conduct a case study based on a real dataset. Simulation results demonstrate the effectiveness of the proposed framework. Finally, we discuss research directions for generative data augmentation.