Communications: Overviews
A Survey of Embodied AI in Healthcare: Techniques, Applications, and Opportunities
Liu, Yihao, Cao, Xu, Chen, Tingting, Jiang, Yankai, You, Junjie, Wu, Minghua, Wang, Xiaosong, Feng, Mengling, Jin, Yaochu, Chen, Jintai
Healthcare systems worldwide face persistent challenges in efficiency, accessibility, and personalization. Powered by modern AI technologies such as multimodal large language models and world models, Embodied AI (EmAI) represents a transformative frontier, offering enhanced autonomy and the ability to interact with the physical world to address these challenges. As an interdisciplinary and rapidly evolving research domain, "EmAI in healthcare" spans diverse fields such as algorithms, robotics, and biomedicine. This complexity underscores the importance of timely reviews and analyses to track advancements, address challenges, and foster cross-disciplinary collaboration. In this paper, we provide a comprehensive overview of the "brain" of EmAI for healthcare, wherein we introduce foundational AI algorithms for perception, actuation, planning, and memory, and focus on presenting the healthcare applications spanning clinical interventions, daily care & companionship, infrastructure support, and biomedical research. Despite its promise, the development of EmAI for healthcare is hindered by critical challenges such as safety concerns, gaps between simulation platforms and real-world applications, the absence of standardized benchmarks, and uneven progress across interdisciplinary domains. We discuss the technical barriers and explore ethical considerations, offering a forward-looking perspective on the future of EmAI in healthcare. A hierarchical framework of intelligent levels for EmAI systems is also introduced to guide further development. By providing systematic insights, this work aims to inspire innovation and practical applications, paving the way for a new era of intelligent, patient-centered healthcare.
AI-Powered Assistive Technologies for Visual Impairment
Naayini, Prudhvi, Myakala, Praveen Kumar, Bura, Chiranjeevi, Jonnalagadda, Anil Kumar, Kamatala, Srikanth
Artificial Intelligence (AI) is revolutionizing assistive technologies. It offers innovative solutions to enhance the quality of life for individuals with visual impairments. This review examines the development, applications, and impact of AI-powered tools in key domains, such as computer vision, natural language processing (NLP), and wearable devices. Specific advancements include object recognition for identifying everyday items, scene description for understanding surroundings, and NLP-driven text-to-speech systems for accessing digital information. Assistive technologies like smart glasses, smartphone applications, and AI-enabled navigation aids are discussed, demonstrating their ability to support independent travel, facilitate social interaction, and increase access to education and employment opportunities. The integration of deep learning models, multimodal interfaces, and real-time data processing has transformed the functionality and usability of these tools, fostering inclusivity and empowerment. This article also addresses critical challenges, including ethical considerations, affordability, and adaptability in diverse environments. Future directions highlight the need for interdisciplinary collaboration to refine these technologies, ensuring equitable access and sustainable innovation. By providing a comprehensive overview, this review underscores AI's transformative potential in promoting independence, enhancing accessibility, and fostering social inclusion for visually impaired individuals.
Towards the Internet of Robotic Things: Analysis, Architecture, Components and Challenges
Afanasyev, Ilya, Mazzara, Manuel, Chakraborty, Subham, Zhuchkov, Nikita, Maksatbek, Aizhan, Kassab, Mohamad, Distefano, Salvatore
Internet of Things (IoT) and robotics cannot be considered two separate domains these days. Internet of Robotics Things (IoRT) is a concept that has been recently introduced to describe the integration of robotics technologies in IoT scenarios. As a consequence, these two research fields have started interacting, and thus linking research communities. In this paper we intend to make further steps in joining the two communities and broaden the discussion on the development of this interdisciplinary field. The paper provides an overview, analysis and challenges of possible solutions for the Internet of Robotic Things, discussing the issues of the IoRT architecture, the integration of smart spaces and robotic applications.
Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks
Bidaki, Seyed Amir, Mohammadkhah, Amir, Rezaee, Kiyan, Hassani, Faeze, Eskandari, Sadegh, Salahi, Maziar, Ghassemi, Mohammad M.
Online Continual Learning (OCL) is a critical area in machine learning, focusing on enabling models to adapt to evolving data streams in real-time while addressing challenges such as catastrophic forgetting and the stability-plasticity trade-off. This study conducts the first comprehensive Systematic Literature Review (SLR) on OCL, analyzing 81 approaches, extracting over 1,000 features (specific tasks addressed by these approaches), and identifying more than 500 components (sub-models within approaches, including algorithms and tools). We also review 83 datasets spanning applications like image classification, object detection, and multimodal vision-language tasks. Our findings highlight key challenges, including reducing computational overhead, developing domain-agnostic solutions, and improving scalability in resource-constrained environments. Furthermore, we identify promising directions for future research, such as leveraging self-supervised learning for multimodal and sequential data, designing adaptive memory mechanisms that integrate sparse retrieval and generative replay, and creating efficient frameworks for real-world applications with noisy or evolving task boundaries. By providing a rigorous and structured synthesis of the current state of OCL, this review offers a valuable resource for advancing this field and addressing its critical challenges and opportunities. The complete SLR methodology steps and extracted data are publicly available through the provided link: https://github.com/kiyan-rezaee/ Systematic-Literature-Review-on-Online-Continual-Learning
Software Engineering and Foundation Models: Insights from Industry Blogs Using a Jury of Foundation Models
Li, Hao, Bezemer, Cor-Paul, Hassan, Ahmed E.
Foundation models (FMs) such as large language models (LLMs) have significantly impacted many fields, including software engineering (SE). The interaction between SE and FMs has led to the integration of FMs into SE practices (FM4SE) and the application of SE methodologies to FMs (SE4FM). While several literature surveys exist on academic contributions to these trends, we are the first to provide a practitioner's view. We analyze 155 FM4SE and 997 SE4FM blog posts from leading technology companies, leveraging an FM-powered surveying approach to systematically label and summarize the discussed activities and tasks. We observed that while code generation is the most prominent FM4SE task, FMs are leveraged for many other SE activities such as code understanding, summarization, and API recommendation. The majority of blog posts on SE4FM are about model deployment & operation, and system architecture & orchestration. Although the emphasis is on cloud deployments, there is a growing interest in compressing FMs and deploying them on smaller devices such as edge or mobile devices. We outline eight future research directions inspired by our gained insights, aiming to bridge the gap between academic findings and real-world applications. Our study not only enriches the body of knowledge on practical applications of FM4SE and SE4FM but also demonstrates the utility of FMs as a powerful and efficient approach in conducting literature surveys within technical and grey literature domains. Our dataset, results, code and used prompts can be found in our online replication package at https://github.com/SAILResearch/fmse-blogs.
Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities
Cui, Qimei, You, Xiaohu, Ni, Wei, Nan, Guoshun, Zhang, Xuefei, Zhang, Jianhua, Lyu, Xinchen, Ai, Ming, Tao, Xiaofeng, Feng, Zhiyong, Zhang, Ping, Wu, Qingqing, Tao, Meixia, Huang, Yongming, Huang, Chongwen, Liu, Guangyi, Peng, Chenghui, Pan, Zhiwen, Sun, Tao, Niyato, Dusit, Chen, Tao, Khan, Muhammad Khurram, Jamalipour, Abbas, Guizani, Mohsen, Yuen, Chau
With the growing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and sixth-generation (6G) communication networks has emerged as a transformative paradigm. By embedding AI capabilities across various network layers, this integration enables optimized resource allocation, improved efficiency, and enhanced system robust performance, particularly in intricate and dynamic environments. This paper presents a comprehensive overview of AI and communication for 6G networks, with a focus on emphasizing their foundational principles, inherent challenges, and future research opportunities. We first review the integration of AI and communications in the context of 6G, exploring the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The first stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The second stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, such as digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services, supporting application scenarios like immersive communication and intelligent industrial robots. In addition, we conduct an in-depth analysis of the critical challenges faced by the integration of AI and communications in 6G. Finally, we outline promising future research opportunities that are expected to drive the development and refinement of AI and 6G communications.
OpenGU: A Comprehensive Benchmark for Graph Unlearning
Fan, Bowen, Ai, Yuming, Li, Xunkai, Guo, Zhilin, Li, Rong-Hua, Wang, Guoren
Graph Machine Learning is essential for understanding and analyzing relational data. However, privacy-sensitive applications demand the ability to efficiently remove sensitive information from trained graph neural networks (GNNs), avoiding the unnecessary time and space overhead caused by retraining models from scratch. To address this issue, Graph Unlearning (GU) has emerged as a critical solution, with the potential to support dynamic graph updates in data management systems and enable scalable unlearning in distributed data systems while ensuring privacy compliance. Unlike machine unlearning in computer vision or other fields, GU faces unique difficulties due to the non-Euclidean nature of graph data and the recursive message-passing mechanism of GNNs. Additionally, the diversity of downstream tasks and the complexity of unlearning requests further amplify these challenges. Despite the proliferation of diverse GU strategies, the absence of a benchmark providing fair comparisons for GU, and the limited flexibility in combining downstream tasks and unlearning requests, have yielded inconsistencies in evaluations, hindering the development of this domain. To fill this gap, we present OpenGU, the first GU benchmark, where 16 SOTA GU algorithms and 37 multi-domain datasets are integrated, enabling various downstream tasks with 13 GNN backbones when responding to flexible unlearning requests. Based on this unified benchmark framework, we are able to provide a comprehensive and fair evaluation for GU. Through extensive experimentation, we have drawn $8$ crucial conclusions about existing GU methods, while also gaining valuable insights into their limitations, shedding light on potential avenues for future research.
Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies
The emergence of 5G and edge computing hardware has brought about a significant shift in artificial intelligence, with edge AI becoming a crucial technology for enabling intelligent applications. With the growing amount of data generated and stored on edge devices, deploying AI models for local processing and inference has become increasingly necessary. However, deploying state-of-the-art AI models on resource-constrained edge devices faces significant challenges that must be addressed. This paper presents an optimization triad for efficient and reliable edge AI deployment, including data, model, and system optimization. First, we discuss optimizing data through data cleaning, compression, and augmentation to make it more suitable for edge deployment. Second, we explore model design and compression methods at the model level, such as pruning, quantization, and knowledge distillation. Finally, we introduce system optimization techniques like framework support and hardware acceleration to accelerate edge AI workflows. Based on an in-depth analysis of various application scenarios and deployment challenges of edge AI, this paper proposes an optimization paradigm based on the data-model-system triad to enable a whole set of solutions to effectively transfer ML models, which are initially trained in the cloud, to various edge devices for supporting multiple scenarios.
BERT4MIMO: A Foundation Model using BERT Architecture for Massive MIMO Channel State Information Prediction
Catak, Ferhat Ozgur, Kuzlu, Murat, Cali, Umit
Massive MIMO (Multiple-Input Multiple-Output) is an advanced wireless communication technology, using a large number of antennas to improve the overall performance of the communication system in terms of capacity, spectral, and energy efficiency. The performance of MIMO systems is highly dependent on the quality of channel state information (CSI). Predicting CSI is, therefore, essential for improving communication system performance, particularly in MIMO systems, since it represents key characteristics of a wireless channel, including propagation, fading, scattering, and path loss. This study proposes a foundation model inspired by BERT, called BERT4MIMO, which is specifically designed to process high-dimensional CSI data from massive MIMO systems. BERT4MIMO offers superior performance in reconstructing CSI under varying mobility scenarios and channel conditions through deep learning and attention mechanisms. The experimental results demonstrate the effectiveness of BERT4MIMO in a variety of wireless environments.
Past, Present, and Future of Sensor-Based Human Activity Recognition Using Wearables: A Surveying Tutorial on a Still Challenging Task
Haresamudram, Harish, Tang, Chi Ian, Suh, Sungho, Lukowicz, Paul, Ploetz, Thomas
In the many years since the inception of wearable sensor-based Human Activity Recognition (HAR), a wide variety of methods have been introduced and evaluated for their ability to recognize activities. Substantial gains have been made since the days of hand-crafting heuristics as features, yet, progress has seemingly stalled on many popular benchmarks, with performance falling short of what may be considered 'sufficient'-- despite the increase in computational power and scale of sensor data, as well as rising complexity in techniques being employed. The HAR community approaches a new paradigm shift, this time incorporating world knowledge from foundational models. In this paper, we take stock of sensor-based HAR -- surveying it from its beginnings to the current state of the field, and charting its future. This is accompanied by a hands-on tutorial, through which we guide practitioners in developing HAR systems for real-world application scenarios. We provide a compendium for novices and experts alike, of methods that aim at finally solving the activity recognition problem.