Goto

Collaborating Authors

 Communications: Overviews


Datasets for Depression Modeling in Social Media: An Overview

arXiv.org Artificial Intelligence

Depression is the most common mental health disorder, and its prevalence increased during the COVID-19 pandemic. As one of the most extensively researched psychological conditions, recent research has increasingly focused on leveraging social media data to enhance traditional methods of depression screening. This paper addresses the growing interest in interdisciplinary research on depression, and aims to support early-career researchers by providing a comprehensive and up-to-date list of datasets for analyzing and predicting depression through social media data. We present an overview of datasets published between 2019 and 2024. We also make the comprehensive list of datasets available online as a continuously updated resource, with the hope that it will facilitate further interdisciplinary research into the linguistic expressions of depression on social media.



Generating Synthetic Data with Formal Privacy Guarantees: State of the Art and the Road Ahead

arXiv.org Artificial Intelligence

Privacy-preserving synthetic data offers a promising solution to harness segregated data in high-stakes domains where information is compartmentalized for regulatory, privacy, or institutional reasons. This survey provides a comprehensive framework for understanding the landscape of privacy-preserving synthetic data, presenting the theoretical foundations of generative models and differential privacy followed by a review of state-of-the-art methods across tabular data, images, and text. Our synthesis of evaluation approaches highlights the fundamental trade-off between utility for down-stream tasks and privacy guarantees, while identifying critical research gaps: the lack of realistic benchmarks representing specialized domains and insufficient empirical evaluations required to contextualise formal guarantees. Through empirical analysis of four leading methods on five real-world datasets from specialized domains, we demonstrate significant performance degradation under realistic privacy constraints ($\epsilon \leq 4$), revealing a substantial gap between results reported on general domain benchmarks and performance on domain-specific data. %Our findings highlight key challenges including unaccounted privacy leakage, insufficient empirical verification of formal guarantees, and a critical deficit of realistic benchmarks. These challenges underscore the need for robust evaluation frameworks, standardized benchmarks for specialized domains, and improved techniques to address the unique requirements of privacy-sensitive fields such that this technology can deliver on its considerable potential.


Croissant: A Metadata Format for ML-Ready Datasets

Neural Information Processing Systems

Data is a critical resource for machine learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that creates a shared representation across ML tools, frameworks, and platforms. Croissant makes datasets more discoverable, portable, and interoperable, thereby addressing significant challenges in ML data management. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, enabling easy loading into the most commonly-used ML frameworks, regardless of where the data is stored. Our initial evaluation by human raters shows that Croissant metadata is readable, understandable, complete, yet concise.



An Identity and Interaction Based Network Forensic Analysis

arXiv.org Artificial Intelligence

In todays landscape of increasing electronic crime, network forensics plays a pivotal role in digital investigations. It aids in understanding which systems to analyse and as a supplement to support evidence found through more traditional computer based investigations. However, the nature and functionality of the existing Network Forensic Analysis Tools (NFATs) fall short compared to File System Forensic Analysis Tools (FS FATs) in providing usable data. The analysis tends to focus upon IP addresses, which are not synonymous with user identities, a point of significant interest to investigators. This paper presents several experiments designed to create a novel NFAT approach that can identify users and understand how they are using network based applications whilst the traffic remains encrypted. The experiments build upon the prior art and investigate how effective this approach is in classifying users and their actions. Utilising an in-house dataset composed of 50 million packers, the experiments are formed of three incremental developments that assist in improving performance. Building upon the successful experiments, a proposed NFAT interface is presented to illustrate the ease at which investigators would be able to ask relevant questions of user interactions. The experiments profiled across 27 users, has yielded an average 93.3% True Positive Identification Rate (TPIR), with 41% of users experiencing 100% TPIR. Skype, Wikipedia and Hotmail services achieved a notably high level of recognition performance. The study has developed and evaluated an approach to analyse encrypted network traffic more effectively through the modelling of network traffic and to subsequently visualise these interactions through a novel network forensic analysis tool.


Appendix 1 2 Related Work 3 3 The D

Neural Information Processing Systems

Additionally, we provide a checklist, which encourages participants to specify design decisions, which allows for more granular comparison between submissions. A.1 Filtering track rules Participants can enter submissions for one or many different scales: small, medium, large or xlarge, which represent the raw number of image-text pairs in CommonPool that should be filtered.


Towards Heterogeneous Long-tailed Learning: Benchmarking, Metrics, and Toolbox

Neural Information Processing Systems

Long-tailed data distributions pose challenges for a variety of domains like e-commerce, finance, biomedical science, and cyber security, where the performance of machine learning models is often dominated by head categories while tail categories are inadequately learned. This work aims to provide a systematic view of long-tailed learning with regard to three pivotal angles: (A1) the characterization of data long-tailedness, (A2) the data complexity of various domains, and (A3) the heterogeneity of emerging tasks.



TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs

Neural Information Processing Systems

Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models (PLMs), graph neural networks (GNNs), proposed novel entangled GNNs and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks.