Goto

Collaborating Authors

 Semantic Web: Overviews


Semantic Web: Past, Present, and Future

arXiv.org Artificial Intelligence

Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called ``Semantic Web Layer Cake'' with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web.


Leveraging Ontologies to Document Bias in Data

arXiv.org Artificial Intelligence

The breakthroughs and benefits attributed to big data and, consequently, to machine learning (ML) - or AIsystems [1, 2], have also resulted in making prevalent how these systems are capable of producing unexpected, biased, and in some cases, undesirable output [3, 4, 5]. Seminal work on bias (i.e., prejudice for, or against one person, or group, especially in a way considered to be unfair) in the context of ML systems demonstrates how facial recognition tools and popular search engines can exacerbate demographic disparities, worsening the marginalization of minorities at the individual and group level [6, 7]. Further, biases in news recommenders and social media feeds actively play a role in conditioning and manipulating people's behavior and amplifying individual and public opinion polarization [8, 9]. In this context, the last few years have seen the consolidation of the Trustworthy AI framework, led in large part by regulatory bodies [10], with the objective of guiding commercial AI development to proactively account for ethical, legal, and technical dimensions [11]. Furthermore, this framework is also accompanied by the call to establish standards across the field in order to ensure AI systems are safe, secure and fair upon deployment [11]. In terms of AI bias, many efforts have been concentrated in devising methods that can improve its identification, understanding, measurement, and mitigation [12]. For example, the special publication prepared by the National Institute of Standards and Technology (NIST) proposes a thorough, however not exhaustive, categorization of different types of bias in AI beyond common computational definitions (see Figure 1 for core hierarchy) [13]. In this same direction, some scholars advocate for practices that account for the characteristics of ML pipelines (i.e., datasets, ML algorithms, and user interaction loop) [14] to enable actors concerned with its research, development, regulation, and use, to inspect all the actions performed across the engineering process, with the objective to increase trust placed not only on the development processes, but on the systems themselves [15, 16, 17, 18].


A Survey on Semantic Modeling for Building Energy Management

arXiv.org Artificial Intelligence

Buildings account for a substantial portion of global energy consumption. Reducing buildings' energy usage primarily involves obtaining data from building systems and environment, which are instrumental in assessing and optimizing the building's performance. However, as devices from various manufacturers represent their data in unique ways, this disparity introduces challenges for semantic interoperability and creates obstacles in developing scalable building applications. This survey explores the leading semantic modeling techniques deployed for energy management in buildings. Furthermore, it aims to offer tangible use cases for applying semantic models, shedding light on the pivotal concepts and limitations intrinsic to each model. Our findings will assist researchers in discerning the appropriate circumstances and methodologies for employing these models in various use cases.


Digital Twins and Civil Engineering Phases: Reorienting Adoption Strategies

arXiv.org Artificial Intelligence

Digital twin (DT) technology has received immense attention over the years due to the promises it presents to various stakeholders in science and engineering. As a result, different thematic areas of DT have been explored. This is no different in specific fields such as manufacturing, automation, oil and gas, and civil engineering, leading to fragmented approaches for field-specific applications. The civil engineering industry is further disadvantaged in this regard as it relies on external techniques by other engineering fields for its DT adoption. A rising consequence of these extensions is a concentrated application of DT to the operations and maintenance phase. On another spectrum, Building Information Modeling (BIM) are pervasively utilized in the planning/design phase, and the transient nature of the construction phase remains a challenge for its DT adoption. In this paper, we present a phase-based development of DT in the Architecture, Engineering, and Construction industry. We commence by presenting succinct expositions on DT as a concept and as a service and establish a five-level scale system. Furthermore, we present separately a systematic literature review of the conventional techniques employed at each civil engineering phase. In this regard, we identified enabling technologies such as computer vision for extended sensing and the Internet of Things for reliable integration. Ultimately, we attempt to reveal DT as an important tool across the entire life cycle of civil engineering projects and nudge researchers to think more holistically in their quest for the integration of DT for civil engineering applications.


Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

arXiv.org Artificial Intelligence

Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.


Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities

arXiv.org Artificial Intelligence

The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.


Document Automation Architectures: Updated Survey in Light of Large Language Models

arXiv.org Artificial Intelligence

This paper surveys the current state of the art in document automation (DA). The objective of DA is to reduce the manual effort during the generation of documents by automatically creating and integrating input from different sources and assembling documents conforming to defined templates. There have been reviews of commercial solutions of DA, particularly in the legal domain, but to date there has been no comprehensive review of the academic research on DA architectures and technologies. The current survey of DA reviews the academic literature and provides a clearer definition and characterization of DA and its features, identifies state-of-the-art DA architectures and technologies in academic research, and provides ideas that can lead to new research opportunities within the DA field in light of recent advances in generative AI and large language models.


Named Entity Resolution in Personal Knowledge Graphs

arXiv.org Artificial Intelligence

Entity Resolution (ER) is the problem of determining when two entities refer to the same underlying entity. The problem has been studied for over 50 years, and most recently, has taken on new importance in an era of large, heterogeneous 'knowledge graphs' published on the Web and used widely in domains as wide ranging as social media, e-commerce and search. This chapter will discuss the specific problem of named ER in the context of personal knowledge graphs (PKGs). We begin with a formal definition of the problem, and the components necessary for doing high-quality and efficient ER. We also discuss some challenges that are expected to arise for Web-scale data. Next, we provide a brief literature review, with a special focus on how existing techniques can potentially apply to PKGs. We conclude the chapter by covering some applications, as well as promising directions for future research.


Re-imagining health and well-being in low resource African settings using an augmented AI system and a 3D digital twin

arXiv.org Artificial Intelligence

This paper discusses and explores the potential and relevance of recent developments in artificial intelligence (AI) and digital twins for health and well-being in low-resource African countries. We use the case of public health emergency response to disease outbreaks and epidemic control. There is potential to take advantage of the increasing availability of data and digitization to develop advanced AI methods for analysis and prediction. Using an AI systems perspective, we review emerging trends in AI systems and digital twins and propose an initial augmented AI system architecture to illustrate how an AI system can work with a 3D digital twin to address public health goals. We highlight scientific knowledge discovery, continual learning, pragmatic interoperability, and interactive explanation and decision-making as essential research challenges for AI systems and digital twins.


A Knowledge Engineering Primer

arXiv.org Artificial Intelligence

Knowledge can take different forms. We distinguish between declarative knowledge (knowing something) or procedural knowledge (knowing how, know-how), sensorimotor knowledge (riding a bicycle), and affective knowledge (deep understanding). The classic definition of knowledge derived from philosophy defines knowledge as a justified true belief. It can be said to occur in situations where we consider something to be objectively "true" or "stated". Another definition refers to what is "explicit knowledge" that is something that is known and can be written down [30].