Not enough data to create a plot.
Try a different view from the menu above.
Middle East
EvoFed: Leveraging Evolutionary Strategies for Communication-Efficient Federated Learning
Federated Learning (FL) is a decentralized machine learning paradigm that enables collaborative model training across dispersed nodes without having to force individual nodes to share data. However, its broad adoption is hindered by the high communication costs of transmitting a large number of model parameters. This paper presents EvoFed, a novel approach that integrates Evolutionary Strategies (ES) with FL to address these challenges. EvoFed employs a concept of'fitness-based information sharing', deviating significantly from the conventional model-based FL. Rather than exchanging the actual updated model parameters, each node transmits a distance-based similarity measure between the locally updated model and each member of the noise-perturbed model population.
EU, UK leaders speak with Trump before his Putin call as Ukraine hit
British Prime Minister Keir Starmer has discussed the war in Ukraine with leaders of the United States, Italy, France and Germany, a 10 Downing Street spokesperson has said, in advance of US President Donald Trump's planned call with his Russian counterpart, Vladimir Putin, on Monday. The flurry of diplomacy comes shortly after inconclusive direct Russia-Ukraine talks in Istanbul, Turkiye on Friday. The leaders discussed the need for an unconditional ceasefire and for Putin to take peace talks seriously, the spokesperson said late on Sunday, adding that they also raised the use of sanctions if Russia failed to engage seriously in a ceasefire and concerted peace talks. In remarks to reporters earlier on Sunday, German Chancellor Friedrich Merz said he discussed the issue with US Secretary of State Marco Rubio while the two men were attending the inaugural mass of Pope Leo XIV at the Vatican. Merz said he also spoke at length at the Vatican with Ukraine's President Volodymyr Zelenskyy.
In Turkey, new technologies reinforce repression
With anti-government protests sweeping across Turkey, the authorities have used all technological means to try to curb them, from restricting internet access to using facial recognition to identify protesters, who have been forced to adapt. Amid a ban on protests, nearly 2,000 people have been arrested in connection with the demonstrations that erupted on March 19 following the detention of Istanbul's mayor Ekrem Imamoglu on graft charges. As well as those apprehended in the streets, many others have been arrested in predawn raids at their homes after being identified from footage or photos taken by the police during the demonstrations.
In pictures: Prayers and reflection mark Eid celebrations around the world
Muslims around the world have begun celebrating Eid al-Fitr, one of the biggest celebrations in the Islamic calendar. Eid al-Fitr - which means "festival of the breaking of the fast" - is celebrated at the end of Ramadan, a month of fasting for many adults, as well as spiritual reflection and prayer.ReutersHere in Moscow, worshippers are seen preparing for prayer.ReutersHundreds took part in prayers at Tononoka grounds, in Mombasa, KenyaGetty ImagesPrayers were also observed at a stadium in Port Sudan in the east of the countryGetty ImagesLittle children joined adults at the Moskee Essalam in Rotterdam, NetherlandsGetty ImagesGifts are handed out to Muslim children in Lviv, Ukraine, as Russia's war on the country continuesReuters Palestinians in Jabaliya in the northern Gaza Strip pray amidst the rubble of a mosque destroyed in the current war between Israel and HamasGetty ImagesFamilies gather at al-Aqsa mosque in Jerusalem - the third holiest site in IslamReutersA boy yawns during prayers at a stadium in QatarEPAMuslims greet each-other at Martim Moniz Square in Lisbon, PortugalGetty ImagesWomen worshippers gather in Burgess Park, London, for an outdoor prayerEPAThere were also worshippers gathered outside Plebiscito Square in Naples, ItalyReutersSome women took pictures after attending prayers at the Hagia Sophia Grand Mosque in Istanbul, TurkeyGetty ImagesAfghan refugees pray at a mosque on the outskirts of Peshawar, PakistanMiddle EastEuropeEid al-FitrReligionIslamRelated'I was afraid for my life': At the scene of the attack on Palestinian Oscar winner 5 days agoMiddle EastMore8 hrs ago'In Bradford, families spend thousands on new clothes for Eid' Muslims spend large amounts in Bradford's supermarkets, clothes shops and other services before Eid.8 hrs agoEngland1 day ago The tourist has received an award from the city's mayor after restraining a man during a stabbing.1 day agoEurope1 day ago Another 21 people are injured, as a restaurant and several buildings are set ablaze in the city, local officials say.1 day agoWorld1 day ago Town's successful Ramadan lights project expanded A Scunthorpe community group says it has seen an "amazing" response to its lights display.1 day agoLincolnshire1 day ago Bishop says school that changed Easter events'valued' The BBC is not responsible for the content of external sites.
Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration
Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Existing MIAs designed for large language models (LLMs) can be bifurcated into two types: reference-free and reference-based attacks. Although reference-based attacks appear promising performance by calibrating the probability measured on the target model with reference models, this illusion of privacy risk heavily depends on a reference dataset that closely resembles the training set. Both two types of attacks are predicated on the hypothesis that training records consistently maintain a higher probability of being sampled. However, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs.
Learning Optimal Tax Design in Nonatomic Congestion Games Maryam Fazel Paul G. Allen School of Computer Science Department of Electrical Engineering
In multiplayer games, self-interested behavior among the players can harm the social welfare. Tax mechanisms are a common method to alleviate this issue and induce socially optimal behavior. In this work, we take the initial step of learning the optimal tax that can maximize social welfare with limited feedback in congestion games. We propose a new type of feedback named equilibrium feedback, where the tax designer can only observe the Nash equilibrium after deploying a tax plan. Existing algorithms are not applicable due to the exponentially large tax function space, nonexistence of the gradient, and nonconvexity of the objective. To tackle these challenges, we design a computationally efficient algorithm that leverages several novel components: (1) a piece-wise linear tax to approximate the optimal tax; (2) extra linear terms to guarantee a strongly convex potential function; (3) an efficient subroutine to find the exploratory tax that can provide critical information about the game.
Provably Efficient Interaction-Grounded Learning with Personalized Reward
Interaction-Grounded Learning (IGL) [Xie et al., 2021] is a powerful framework in which a learner aims at maximizing unobservable rewards through interacting with an environment and observing reward-dependent feedback on the taken actions. To deal with personalized rewards that are ubiquitous in applications such as recommendation systems, Maghakian et al. [2022] study a version of IGL with context-dependent feedback, but their algorithm does not come with theoretical guarantees. In this work, we consider the same problem and provide the first provably efficient algorithms with sublinear regret under realizability. Our analysis reveals that the step-function estimator of prior work can deviate uncontrollably due to finite-sample effects. Our solution is a novel Lipschitz reward estimator which underestimates the true reward and enjoys favorable generalization performances. Building on this estimator, we propose two algorithms, one based on explore-thenexploit and the other based on inverse-gap weighting. We apply IGL to learning from image feedback and learning from text feedback, which are reward-free settings that arise in practice.
MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs Yingjia Wan 2 Jingyao Li1
Large language models (LLMs) have shown increasing capability in problemsolving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, evaluating these reasoning abilities has become increasingly challenging. Existing outcome-based benchmarks are beginning to saturate, becoming less effective in tracking meaningful progress. To address this, we present a process-based benchmark MR-Ben that demands a meta-reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. Our meta-reasoning paradigm is especially suited for system-2 slow thinking, mirroring the human cognitive process of carefully examining assumptions, conditions, calculations, and logic to identify mistakes. MR-Ben comprises 5,975 questions curated by human experts across a wide range of subjects, including physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models).
Robust Conformal Prediction Using Privileged Information
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data, such as missing or noisy variables. Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption. Importantly, naively applying conformal prediction does not provide reliable predictions in this setting, due to the distribution shift induced by the corruptions. To account for the distribution shift, we assume access to privileged information (PI). The PI is formulated as additional features that explain the distribution shift, however, they are only available during training and absent at test time. We approach this problem by introducing a novel generalization of weighted conformal prediction and support our method with theoretical coverage guarantees. Empirical experiments on both real and synthetic datasets indicate that our approach achieves a valid coverage rate and constructs more informative predictions compared to existing methods, which are not supported by theoretical guarantees.