Goto

Collaborating Authors

 Asia


Understanding the Expressivity and Trainability of Fourier Neural Operator: A Mean-Field Perspective

Neural Information Processing Systems

In this paper, we explores the expressivity and trainability of the Fourier Neural Operator (FNO). We establish a mean-field theory for the FNO, analyzing the behavior of the random FNO from an edge of chaos perspective. Our investigation into the expressivity of a random FNO involves examining the ordered-chaos phase transition of the network based on the weight distribution. This phase transition demonstrates characteristics unique to the FNO, induced by mode truncation, while also showcasing similarities to those of densely connected networks. Furthermore, we identify a connection between expressivity and trainability: the ordered and chaotic phases correspond to regions of vanishing and exploding gradients, respectively. This finding provides a practical prerequisite for the stable training of the FNO. Our experimental results corroborate our theoretical findings.


On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions

Neural Information Processing Systems

In this paper, we study Adam in non-convex smooth scenarios with potential unbounded gradients and affine variance noise. We consider a general noise model which governs affine variance noise, bounded noise, and sub-Gaussian noise. We show that Adam with a specific hyper-parameter setup can find a stationary point with a O (1 / T) rate in high probability under this general noise model where T denotes total number iterations, matching the lower rate of stochastic first-order algorithms up to logarithm factors.


Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training

Neural Information Processing Systems

LLMs are computationally expensive to pre-train due to their large scale. Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored. This work identifies three critical Obstacles: (O1) lack of comprehensive evaluation, (O2) untested viability for scaling, and (O3) lack of empirical guidelines. To tackle O1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting.


Look Beneath the Surface: Exploiting Fundamental Symmetry for Sample-Efficient Offline RL

Neural Information Processing Systems

Offline reinforcement learning (RL) offers an appealing approach to real-world tasks by learning policies from pre-collected datasets without interacting with the environment. However, the performance of existing offline RL algorithms heavily depends on the scale and state-action space coverage of datasets. Real-world data collection is often expensive and uncontrollable, leading to small and narrowly covered datasets and posing significant challenges for practical deployments of offline RL. In this paper, we provide a new insight that leveraging the fundamental symmetry of system dynamics can substantially enhance offline RL performance under small datasets. Specifically, we propose a Time-reversal symmetry (T-symmetry) enforced Dynamics Model (TDM), which establishes consistency between a pair of forward and reverse latent dynamics. TDM provides both well-behaved representations for small datasets and a new reliability measure for OOD samples based on compliance with the T-symmetry. These can be readily used to construct a new offline RL algorithm (TSRL) with less conservative policy constraints and a reliable latent space data augmentation procedure. Based on extensive experiments, we find TSRL achieves great performance on small benchmark datasets with as few as 1% of the original samples, which significantly outperforms the recent offline RL algorithms in terms of data efficiency and generalizability. Code is available at: https://github.com/pcheng2/TSRL


CRAG - Comprehensive RAG Benchmark Xiao Yang

Neural Information Processing Systems

Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)'s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation of this benchmark highlights the gap to fully trustworthy QA.


Exploring Context Window of Large Language Models via Decomposed Positional Vectors

Neural Information Processing Systems

Transformer-based large language models (LLMs) typically have a limited context window, resulting in significant performance degradation when processing text beyond the length of the context window. Extensive studies have been proposed to extend the context window and achieve length extrapolation of LLMs, but there is still a lack of in-depth interpretation of these approaches. In this study, we explore the positional information within and beyond the context window for deciphering the underlying mechanism of LLMs. By using a mean-based decomposition method, we disentangle positional vectors from hidden states of LLMs and analyze their formation and effect on attention. Furthermore, when texts exceed the context window, we analyze the change of positional vectors in two settings, i.e., direct extrapolation and context window extension. Based on our findings, we design two training-free context window extension methods, positional vector replacement and attention window extension. Experimental results show that our methods can effectively extend the context window length.


Spiking Transformer with Experts Mixture Zhaokun Zhou

Neural Information Processing Systems

Spiking Neural Networks (SNNs) provide a sparse spike-driven mechanism which is believed to be critical for energy-efficient deep learning. Mixture-of-Experts (MoE), on the other side, aligns with the brain mechanism of distributed and sparse processing, resulting in an efficient way of enhancing model capacity and conditional computation. In this work, we consider how to incorporate SNNs' spike-driven and MoE's conditional computation into a unified framework. However, MoE uses softmax to get the dense conditional weights for each expert and TopK to hard-sparsify the network, which does not fit the properties of SNNs. To address this issue, we reformulate MoE in SNNs and introduce the Spiking Experts Mixture Mechanism (SEMM) from the perspective of sparse spiking activation. Both the experts and the router output spiking sequences, and their element-wise operation makes SEMM computation spike-driven and dynamic sparse-conditional. By developing SEMM into Spiking Transformer, the Experts Mixture Spiking Attention (EMSA) and the Experts Mixture Spiking Perceptron (EMSP) are proposed, which performs routing allocation for head-wise and channel-wise spiking experts, respectively. Experiments show that SEMM realizes sparse conditional computation and obtains a stable improvement on neuromorphic and static datasets with approximate computational overhead based on the Spiking Transformer baselines.


Resource-Aware Federated Self-Supervised Learning with Global Class Representations

Neural Information Processing Systems

Due to the heterogeneous architectures and class skew, the global representation models training in resource-adaptive federated self-supervised learning face with tricky challenges: deviated representation abilities and inconsistent representation spaces. In this work, we are the first to propose a multi-teacher knowledge distillation framework, namely FedMKD, to learn global representations with whole class knowledge from heterogeneous clients even under extreme class skew. Firstly, the adaptive knowledge integration mechanism is designed to learn better representations from all heterogeneous models with deviated representation abilities. Then the weighted combination of the self-supervised loss and the distillation loss can support the global model to encode all classes from clients into a unified space. Besides, the global knowledge anchored alignment module can make the local representation spaces close to the global spaces, which further improves the representation abilities of local ones. Finally, extensive experiments conducted on two datasets demonstrate the effectiveness of FedMKD which outperforms state-of-the-art baselines 4.78% under linear evaluation on average.


CRAYM: Neural Field Optimization via Camera RAY Matching 1

Neural Information Processing Systems

We introduce camera ray matching (CRAYM) into the joint optimization of camera poses and neural fields from multi-view images. The optimized field, referred to as a feature volume, can be "probed" by the camera rays for novel view synthesis (NVS) and 3D geometry reconstruction. One key reason for matching camera rays, instead of pixels as in prior works, is that the camera rays can be parameterized by the feature volume to carry both geometric and photometric information. Multi-view consistencies involving the camera rays and scene rendering can be naturally integrated into the joint optimization and network training, to impose physically meaningful constraints to improve the final quality of both the geometric reconstruction and photorealistic rendering. We formulate our per-ray optimization and matched ray coherence by focusing on camera rays passing through keypoints in the input images to elevate both the efficiency and accuracy of scene correspondences. Accumulated ray features along the feature volume provide a means to discount the coherence constraint amid erroneous ray matching. We demonstrate the effectiveness of CRAYM for both NVS and geometry reconstruction, over dense-or sparse-view settings, with qualitative and quantitative comparisons to state-of-the-art alternatives.


Open-Book Neural Algorithmic Reasoning

Neural Information Processing Systems

Neural algorithmic reasoning is an emerging area of machine learning that focuses on building neural networks capable of solving complex algorithmic tasks. Recent advancements predominantly follow the standard supervised learning paradigm - feeding an individual problem instance into the network each time and training it to approximate the execution steps of a classical algorithm. We challenge this mode and propose a novel open-book learning framework. In this framework, whether during training or testing, the network can access and utilize all instances in the training dataset when reasoning for a given instance. Empirical evaluation is conducted on the challenging CLRS Algorithmic Reasoning Benchmark, which consists of 30 diverse algorithmic tasks. Our open-book learning framework exhibits a significant enhancement in neural reasoning capabilities. Further, we notice that there is recent literature suggesting that multi-task training on CLRS can improve the reasoning accuracy of certain tasks, implying intrinsic connections between different algorithmic tasks.