Goto

Collaborating Authors

 Royal Holloway, University of London


Tractable Classes of Binary CSPs Defined by Excluded Topological Minors

AAAI Conferences

The binary Constraint Satisfaction Problem (CSP) is to decide whether there exists an assignment to a set of variables which satisfies specified constraints between pairs of variables. A CSP instance can be presented as a labelled graph (called the microstructure) encoding both the forms of the constraints and where they are imposed. We consider subproblems defined by restricting the allowed form of the microstructure. One form of restriction that has previously been considered is to forbid certain specified substructures (patterns). This captures some tractable classes of the CSP, but does not capture the well-known property of acyclicity. In this paper we introduce the notion of a topological minor of a binary CSP instance. By forbidding certain patterns as topological minors we obtain a compact mechanism for expressing several novel tractable classes, including new generalisations of the class of acyclic instances.


Binarisation via Dualisation for Valued Constraints

AAAI Conferences

Constraint programming is a natural paradigm for many combinatorial optimisation problems. The complexity of constraint satisfaction for various forms of constraints has been widely-studied, both to inform the choice of appropriate algorithms, and to understand better the boundary between polynomial-time complexity and NP-hardness. In constraint programming it is well-known that any constraint satisfaction problem can be converted to an equivalent binary problem using the so-called dual encoding. Using this standard approach any fixed collection of constraints, of arbitrary arity, can be converted to an equivalent set of constraints of arity at most two. Here we show that this transformation, although it changes the domain of the constraints, preserves all the relevant algebraic properties that determine the complexity. Moreover, we show that the dual encoding preserves many of the key algorithmic properties of the original instance. We also show that this remains true for more general valued constraint languages, where constraints may assign different cost values to different assignments. Hence, we obtain a simple proof of the fact that to classify the computational complexity of all valued constraint languages it suffices to classify only binary valued constraint languages.


Variable Elimination in Binary CSP via Forbidden Patterns

AAAI Conferences

A variable elimination rule allows the polynomial-time identification of certain variables whose elimination does not affect the satisfiability of an instance. Variable elimination in the constraint satisfaction problem (CSP) can be used in preprocessing or during search to reduce search space size. We show that there are essentially just four variable elimination rules defined by forbidding generic sub-instances, known as irreducible patterns, in arc-consistent CSP instances. One of these rules is the Broken Triangle Property, whereas the other three are novel.


Multi-Dimensional Causal Discovery

AAAI Conferences

We propose a method for learning causal relations within high-dimensional tensor data as they are typically recorded in non-experimental databases. The method allows the simultaneous inclusion of numerous dimensions within the data analysis such as samples, time and domain variables construed as tensors. In such tensor data we exploit and integrate non-Gaussian models and tensor analytic algorithms in a novel way. We prove that we can determine simple causal relations independently of how complex the dimensionality of the data is. We rely on a statistical decomposition that flattens higher-dimensional data tensors into matrices. This decomposition preserves the causal information and is therefore suitable for structure learning of causal graphical models, where a causal relation can be generalised beyond dimension, for example, over all time points. Related methods either focus on a set of samples for instantaneous effects or look at one sample for effects at certain time points. We evaluate the resulting algorithm and discuss its performance both with synthetic and real-world data.