Goto

Collaborating Authors

 NICTA


The Ostomachion Process

AAAI Conferences

Stochastic partition processes for exchangeable graphs produce axis-aligned blocks on a product space. In relational modeling, the resulting blocks uncover the underlying interactions between two sets of entities of the relational data. Although some flexible axis-aligned partition processes, such as the Mondrian process, have been able to capture complex interacting patterns in a hierarchical fashion, they are still in short of capturing dependence between dimensions. To overcome this limitation, we propose the Ostomachion process (OP), which relaxes the cutting direction by allowing for oblique cuts. The partitions generated by an OP are convex polygons that can capture inter-dimensional dependence. The OP also exhibits interesting properties: 1) Along the time line the cutting times can be characterized by a homogeneous Poisson process, and 2) on the partition space the areas of the resulting components comply with a Dirichlet distribution. We can thus control the expected number of cuts and the expected areas of components through hyper-parameters. We adapt the reversible-jump MCMC algorithm for inferring OP partition structures. The experimental results on relational modeling and decision tree classification have validated the merit of the OP.


Predicting Spatio-Temporal Propagation of Seasonal Influenza Using Variational Gaussian Process Regression

AAAI Conferences

Understanding and predicting how influenza propagates is vital to reduce its impact. In this paper we develop a nonparametric model based on Gaussian process (GP) regression to capture the complex spatial and temporal dependencies present in the data. A stochastic variational inference approach was adopted to address scalability. Rather than modeling the problem as a time-series as in many studies, we capture the space-time dependencies by combining different kernels. A kernel averaging technique which converts spatially-diffused point processes to an area process is proposed to model geographical distribution. Additionally, to accurately model the variable behavior of the time-series, the GP kernel is further modified to account for non-stationarity and seasonality. Experimental results on two datasets of state-wide US weekly flu-counts consisting of 19,698 and 89,474 data points, ranging over several years, illustrate the robustness of the model as a tool for further epidemiological investigations.


Interaction Point Processes via Infinite Branching Model

AAAI Conferences

Many natural and social phenomena can be modeled by interaction point processes (IPPs) (Diggle et al. 1994), stochastic point processes considering the interaction between points. In this paper, we propose the infinite branching model (IBM), a Bayesian statistical model that can generalize and extend some popular IPPs, e.g., Hawkes process (Hawkes 1971; Hawkes and Oakes 1974). It treats IPP as a mixture of basis point processes with the aid of a distance dependent prior over branching structure that describes the relationship between points. The IBM can estimate point event intensity, interaction mechanism and branching structure simultaneously. A generic Metropolis-within-Gibbs sampling method is also developed for model parameter inference. The experiments on synthetic and real-world data demonstrate the superiority of the IBM.


Closed-Form Gibbs Sampling for Graphical Models with Algebraic Constraints

AAAI Conferences

Probabilistic inference in many real-world problems requires graphical models with deterministic algebraic constraints between random variables (e.g., Newtonian mechanics, Pascal’s law, Ohm’s law) that are known to be problematic for many inference methods such as Monte Carlo sampling. Fortunately, when such constraintsare invertible, the model can be collapsed and the constraints eliminated through the well-known Jacobian-based change of variables. As our first contributionin this work, we show that a much broader classof algebraic constraints can be collapsed by leveraging the properties of a Dirac delta model of deterministic constraints. Unfortunately, the collapsing processcan lead to highly piecewise densities that pose challenges for existing probabilistic inference tools. Thus,our second contribution to address these challenges is to present a variation of Gibbs sampling that efficiently samples from these piecewise densities. The key insight to achieve this is to introduce a class of functions that (1) is sufficiently rich to approximate arbitrary models up to arbitrary precision, (2) is closed under dimension reduction (collapsing) for models with (non)linear algebraic constraints and (3) always permits one analytical integral sufficient to automatically derive closed-form conditionals for Gibbs sampling. Experiments demonstrate the proposed sampler converges at least an order of magnitude faster than existing Monte Carlo samplers.


The 2014 International Planning Competition: Progress and Trends

AI Magazine

We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


The Grid-Based Path Planning Competition: 2014 Entries and Results

AAAI Conferences

The Grid-Based Path Planning Competition has just completed its third iteration. The entriesused in the competition have improved significantly during this time, changing the view ofthe state of the art of grid-based pathfinding. Furthermore, the entries from the competition have beenmade publicly available, improving the ability of researchers to compare their work. Thispaper summarizes the entries to the 2014 competition, presents the 2014 competition results,and talks about what has been learned and where there is room for improvement.


Complexity Results for Compressing Optimal Paths

AAAI Conferences

In this work we give a first tractability analysis of Compressed Path Databases, space efficient oracles used to very quickly identify the first arc on a shortest path. We study the complexity of computing an optimal compressed path database for general directed and undirected graphs. We find that in both cases the problem is NP-complete. We also show that, for graphs which can be decomposed along articulalion points, the problem can be decomposed into independent parts, with a corresponding reduction in its level of difficulty. In particular, this leads to simple and tractable algorithms which yield optimal compression results for trees.


Voting with Rank Dependent Scoring Rules

AAAI Conferences

Positional scoring rules in voting compute the score of an alternative by summing the scores for the alternative induced by every vote. This summation principle ensures that all votes contribute equally to the score of an alternative. We relax this assumption and, instead, aggregate scores by taking into account the rank of a score in the ordered list of scores obtained from the votes. This defines a new family of voting rules, rank-dependent scoring rules (RDSRs), based on ordered weighted average (OWA) operators, which, include all scoring rules, and many others, most of which of new. We study some properties of these rules, and show, empirically, that certain RDSRs are less manipulable than Borda voting, across a variety of statistical cultures.