Goto

Collaborating Authors

 IBM Research, Dublin


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Multi-Agent Path Finding on Strongly Biconnected Digraphs

AAAI Conferences

Much of the literature on multi-agent path finding focuses on undirected graphs, where motion is permitted in both directions along a graph edge. Despite this, travelling on directed graphs is relevant in navigation domains, such as pathfinding in games, and asymmetric communication networks. We consider multi-agent path finding on strongly biconnected directed graphs. We show that all instances with at least two unoccupied positions can be solved or proven unsolvable. We present a polynomial-time algorithm for this class of problems, and analyze its complexity. Our work may be the first formal study of multi-agent path finding on directed graphs.


Complexity Results for Compressing Optimal Paths

AAAI Conferences

In this work we give a first tractability analysis of Compressed Path Databases, space efficient oracles used to very quickly identify the first arc on a shortest path. We study the complexity of computing an optimal compressed path database for general directed and undirected graphs. We find that in both cases the problem is NP-complete. We also show that, for graphs which can be decomposed along articulalion points, the problem can be decomposed into independent parts, with a corresponding reduction in its level of difficulty. In particular, this leads to simple and tractable algorithms which yield optimal compression results for trees.


Multi-Modal Journey Planning in the Presence of Uncertainty

AAAI Conferences

Multi-modal journey planning, which allows multiple types of transport within a single trip, is becoming increasingly popular, due to a strong practical interest and an increasing availability of data. In real life, transport networks feature uncertainty. Yet, most approaches assume a deterministic environment, making plans more prone to failures such as major delays in the arrival. We model the scenario as a non-deterministic planning problem with continuous time and time-dependent probabilities of non-deterministic effects. We present new hardness results. We introduce a heuristic search planner, based on Weighted AO* (WAO*). The planner includes search enhancements such as sound pruning, based on state dominance, and an admissible heuristic. Focusing on plans that are robust to uncertainty, we demonstrate our ideas on data compiled from real historical data from Dublin, Ireland. Repeated calls to WAO*, with decreasing weights, have a good any-time performance. Our search enhancements play an important role in the planner's performance.


Iterative Resource Allocation for Memory Intensive Parallel Search Algorithms on Clouds, Grids, and Shared Clusters

AAAI Conferences

The increasing availability of “utility computing” resources such as clouds, grids, and massively parallel shared clusters can provide practically unlimited processing and memory capacity on demand, at some cost per unit of resource usage. This requires a new perspective in the design and evaluation of parallel search algorithms. Previous work in parallel search implicitly assumed ownership of a cluster with a static amount of CPU cores and RAM, and emphasized wallclock runtime. With utility computing resources, trade-offs between performance and monetary costs must be considered. This paper considers dynamically increasing the usage of utility computing resources until a problem is solved. Efficient resource allocation policies are analyzed in comparison with an optimal allocation strategy. We evaluate our iterative allocation strategy by applying it to the HDA* parallel search algorithm. The experimental results validate our theoretical predictions. They show that, in practice, the costs incurred by iterative allocation are reasonably close to an optimal (but a priori unknown) policy, and are significantly better than the worst-case analytical bounds.