Goto

Collaborating Authors

 Zong, Chengqing


TROVE: A Challenge for Fine-Grained Text Provenance via Source Sentence Tracing and Relationship Classification

arXiv.org Artificial Intelligence

LLMs have achieved remarkable fluency and coherence in text generation, yet their widespread adoption has raised concerns about content reliability and accountability. In high-stakes domains such as healthcare, law, and news, it is crucial to understand where and how the content is created. To address this, we introduce the Text pROVEnance (TROVE) challenge, designed to trace each sentence of a target text back to specific source sentences within potentially lengthy or multi-document inputs. Beyond identifying sources, TROVE annotates the fine-grained relationships (quotation, compression, inference, and others), providing a deep understanding of how each target sentence is formed. To benchmark TROVE, we construct our dataset by leveraging three public datasets covering 11 diverse scenarios (e.g., QA and summarization) in English and Chinese, spanning source texts of varying lengths (0-5k, 5-10k, 10k+), emphasizing the multi-document and long-document settings essential for provenance. To ensure high-quality data, we employ a three-stage annotation process: sentence retrieval, GPT provenance, and human provenance. We evaluate 11 LLMs under direct prompting and retrieval-augmented paradigms, revealing that retrieval is essential for robust performance, larger models perform better in complex relationship classification, and closed-source models often lead, yet open-source models show significant promise, particularly with retrieval augmentation.


Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment

arXiv.org Artificial Intelligence

Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that $\textit{captures}$ learned preferences from well-aligned English models by implicit rewards and $\textit{transfers}$ them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data. The code is available at https://github.com/ZNLP/Implicit-Cross-Lingual-Rewarding


SimulPL: Aligning Human Preferences in Simultaneous Machine Translation

arXiv.org Artificial Intelligence

Simultaneous Machine Translation (SiMT) generates translations while receiving streaming source inputs. This requires the SiMT model to learn a read/write policy, deciding when to translate and when to wait for more source input. Numerous linguistic studies indicate that audiences in SiMT scenarios have distinct preferences, such as accurate translations, simpler syntax, and no unnecessary latency. Aligning SiMT models with these human preferences is crucial to improve their performances. However, this issue still remains unexplored. Additionally, preference optimization for SiMT task is also challenging. Existing methods focus solely on optimizing the generated responses, ignoring human preferences related to latency and the optimization of read/write policy during the preference optimization phase. To address these challenges, we propose Simultaneous Preference Learning (SimulPL), a preference learning framework tailored for the SiMT task. By leveraging the first four preferences, we construct human preference prompts to efficiently guide GPT-4/4o in generating preference data for the SiMT task. In the preference optimization phase, SimulPL integrates latency preference into the optimization objective and enables SiMT models to improve the read/write policy, thereby aligning with human preferences more effectively. Experimental results indicate that SimulPL exhibits better alignment with human preferences across all latency levels in Zh En, De En and En Zh SiMT tasks.


SweetieChat: A Strategy-Enhanced Role-playing Framework for Diverse Scenarios Handling Emotional Support Agent

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the \textbf{ServeForEmo} dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present \textbf{SweetieChat}, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.


ChineseWebText 2.0: Large-Scale High-quality Chinese Web Text with Multi-dimensional and fine-grained information

arXiv.org Artificial Intelligence

During the development of large language models (LLMs), pre-training data play a critical role in shaping LLMs' capabilities. In recent years several large-scale and high-quality pre-training datasets have been released to accelerate the research of LLMs, including ChineseWebText1.0, C4, Pile, WanJuan, MAPCC and others. However, as LLMs continue to evolve, focus has increasingly shifted to domain-specific capabilities and safety concerns, making those previous coarse-grained texts insufficient for meeting training requirements. Furthermore, fine-grained information, such as quality, domain and toxicity, is becoming increasingly important in building powerful and reliable LLMs for various scenarios. To address these challenges, in this paper we propose a new tool-chain called MDFG-tool for constructing large-scale and high-quality Chinese datasets with multi-dimensional and fine-grained information. First, we employ manually crafted rules to discard explicit noisy texts from raw contents. Second, the quality evaluation model, domain classifier, and toxicity evaluation model are well-designed to assess the remaining cleaned data respectively. Finally, we integrate these three types of fine-grained information for each text. With this approach, we release the largest, high-quality and fine-grained Chinese text ChineseWebText2.0, which consists of 3.8TB and each text is associated with a quality score, domain labels, a toxicity label and a toxicity score, facilitating the LLM researchers to select data based on various types of fine-grained information. The data, codes and the tool-chain are available on this website https://github.com/CASIA-LM/ChineseWebText-2.0


Language Imbalance Driven Rewarding for Multilingual Self-improving

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks. However, these advancements have predominantly benefited "first-class" languages such as English and Chinese, leaving many other languages underrepresented. This imbalance, while limiting broader applications, generates a natural preference ranking between languages, offering an opportunity to bootstrap the multilingual capabilities of LLM in a self-improving manner. Thus, we propose Language Imbalance Driven Rewarding, where the inherent imbalance between dominant and non-dominant languages within LLMs is leveraged as a reward signal. Iterative DPO training demonstrates that this approach not only enhances LLM performance in non-dominant languages but also improves the dominant language's capacity, thereby yielding an iterative reward signal. Fine-tuning Meta-Llama-3-8B-Instruct over two iterations of this approach results in continuous improvements in multilingual performance across instruction-following and arithmetic reasoning tasks, evidenced by an average improvement of 7.46% win rate on the X-AlpacaEval leaderboard and 13.9% accuracy on the MGSM benchmark. This work serves as an initial exploration, paving the way for multilingual self-improvement of LLMs. Large Language Models (LLMs) have revolutionized the field of Natural Language Processing (NLP) with superior performance across numerous tasks. However, existing studies show that due to the imbalance of pre-training and fine-tuning data across languages, existing LLMs have predominately benefited a few "first-class" languages, particularly English and Chinese, thereby overlooking a wide range of other languages (Qin et al., 2024). Given that LLMs are used worldwide, such language imbalance presents significant risks for users who operate in less dominant languages (Deshpande et al., 2023). To this end, enhancing the multilingual performance of LLMs has gained increasing attention. Previous research predominantly frames this imbalance as an issue to be resolved, often addressing it through multilingual training and cross-lingual alignment.


Boosting LLM Translation Skills without General Ability Loss via Rationale Distillation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved impressive results across numerous NLP tasks but still encounter difficulties in machine translation. Traditional methods to improve translation have typically involved fine-tuning LLMs using parallel corpora. However, vanilla fine-tuning often leads to catastrophic forgetting of the instruction-following capabilities and alignment with human preferences, compromising their broad general abilities and introducing potential security risks. These abilities, which are developed using proprietary and unavailable training data, make existing continual instruction tuning methods ineffective. To overcome this issue, we propose a novel approach called RaDis (Rationale Distillation). RaDis harnesses the strong generative capabilities of LLMs to create rationales for training data, which are then "replayed" to prevent forgetting. These rationales encapsulate general knowledge and safety principles, acting as self-distillation targets to regulate the training process. By jointly training on both reference translations and self-generated rationales, the model can learn new translation skills while preserving its overall general abilities. Extensive experiments demonstrate that our method enhances machine translation performance while maintaining the broader capabilities of LLMs across other tasks. This work presents a pathway for creating more versatile LLMs that excel in specialized tasks without compromising generality and safety.


Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment

arXiv.org Artificial Intelligence

Multilingual generative models obtain remarkable cross-lingual in-context learning capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages and learn isolated distributions of multilingual sentence representations, which may hinder knowledge transfer across languages. To bridge this gap, we propose a simple yet effective cross-lingual alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns outputs by following cross-lingual instructions in the target language. Experimental results show that even with less than 0.1 {\textperthousand} of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative language models and mitigates the performance gap. Further analyses reveal that it results in a better internal multilingual representation distribution of multilingual models.


BLSP-Emo: Towards Empathetic Large Speech-Language Models

arXiv.org Artificial Intelligence

The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations.


Self-Modifying State Modeling for Simultaneous Machine Translation

arXiv.org Artificial Intelligence

Simultaneous Machine Translation (SiMT) generates target outputs while receiving stream source inputs and requires a read/write policy to decide whether to wait for the next source token or generate a new target token, whose decisions form a \textit{decision path}. Existing SiMT methods, which learn the policy by exploring various decision paths in training, face inherent limitations. These methods not only fail to precisely optimize the policy due to the inability to accurately assess the individual impact of each decision on SiMT performance, but also cannot sufficiently explore all potential paths because of their vast number. Besides, building decision paths requires unidirectional encoders to simulate streaming source inputs, which impairs the translation quality of SiMT models. To solve these issues, we propose \textbf{S}elf-\textbf{M}odifying \textbf{S}tate \textbf{M}odeling (SM$^2$), a novel training paradigm for SiMT task. Without building decision paths, SM$^2$ individually optimizes decisions at each state during training. To precisely optimize the policy, SM$^2$ introduces Self-Modifying process to independently assess and adjust decisions at each state. For sufficient exploration, SM$^2$ proposes Prefix Sampling to efficiently traverse all potential states. Moreover, SM$^2$ ensures compatibility with bidirectional encoders, thus achieving higher translation quality. Experiments show that SM$^2$ outperforms strong baselines. Furthermore, SM$^2$ allows offline machine translation models to acquire SiMT ability with fine-tuning.