Goto

Collaborating Authors

 Zimmermann, Hans-Georg


Active Portfolio-Management based on Error Correction Neural Networks

Neural Information Processing Systems

This paper deals with a neural network architecture which establishes a portfolio management system similar to the Black / Litterman approach. This allocation scheme distributes funds across various securities or financial markets while simultaneously complying with specific allocation constraints which meet the requirements of an investor. The portfolio optimization algorithm is modeled by a feedforward neural network. The underlying expected return forecasts are based on error correction neural networks (ECNN), which utilize the last model error as an auxiliary input to evaluate their own misspecification. The portfolio optimization is implemented such that (i.) the allocations comply with investor's constraints and that (ii.) the risk of the portfolio can be controlled.


Active Portfolio-Management based on Error Correction Neural Networks

Neural Information Processing Systems

This paper deals with a neural network architecture which establishes a portfolio management system similar to the Black / Litterman approach. This allocation scheme distributes funds across various securities or financial marketswhile simultaneously complying with specific allocation constraints which meet the requirements of an investor. The portfolio optimization algorithm is modeled by a feedforward neural network. The underlying expected return forecasts are based on error correction neural networks (ECNN), which utilize the last model error as an auxiliary input to evaluate their own misspecification. The portfolio optimization is implemented such that (i.) the allocations comply with investor's constraints and that (ii.) the risk of the portfolio canbe controlled.


The Observer-Observation Dilemma in Neuro-Forecasting

Neural Information Processing Systems

We explain how the training data can be separated into clean information and unexplainable noise. Analogous to the data, the neural network is separated into a time invariant structure used for forecasting, and a noisy part. We propose a unified theory connecting the optimization algorithms for cleaning and learning together with algorithms that control the data noise and the parameter noise. The combined algorithm allows a data-driven local control of the liability of the network parameters and therefore an improvement in generalization. The approach is proven to be very useful at the task of forecasting the German bond market.


The Observer-Observation Dilemma in Neuro-Forecasting

Neural Information Processing Systems

We explain how the training data can be separated into clean information andunexplainable noise. Analogous to the data, the neural network is separated into a time invariant structure used for forecasting, and a noisy part. We propose a unified theory connecting the optimization algorithms forcleaning and learning together with algorithms that control the data noise and the parameter noise. The combined algorithm allows a data-driven local control of the liability of the network parameters and therefore an improvement in generalization. The approach is proven to be very useful at the task of forecasting the German bond market.


Early Brain Damage

Neural Information Processing Systems

Optimal Brain Damage (OBD) is a method for reducing the number of weights in a neural network. OBD estimates the increase in cost function if weights are pruned and is a valid approximation if the learning algorithm has converged into a local minimum. On the other hand it is often desirable to terminate the learning process before a local minimum is reached (early stopping). In this paper we show that OBD estimates the increase in cost function incorrectly if the network is not in a local minimum. We also show how OBD can be extended such that it can be used in connection with early stopping. We call this new approach Early Brain Damage, EBD. EBD also allows to revive already pruned weights. We demonstrate the improvements achieved by EBD using three publicly available data sets.


Early Brain Damage

Neural Information Processing Systems

Optimal Brain Damage (OBD) is a method for reducing the number of weights in a neural network. OBD estimates the increase in cost function if weights are pruned and is a valid approximation if the learning algorithm has converged into a local minimum. On the other hand it is often desirable to terminate the learning process before a local minimum is reached (early stopping). In this paper we show that OBD estimates the increase in cost function incorrectly if the network is not in a local minimum. We also show how OBD can be extended such that it can be used in connection with early stopping. We call this new approach Early Brain Damage, EBD. EBD also allows to revive already pruned weights. We demonstrate the improvements achieved by EBD using three publicly available data sets.


Early Brain Damage

Neural Information Processing Systems

Optimal Brain Damage (OBD) is a method for reducing the number ofweights in a neural network. OBD estimates the increase in cost function if weights are pruned and is a valid approximation if the learning algorithm has converged into a local minimum. On the other hand it is often desirable to terminate the learning process beforea local minimum is reached (early stopping). In this paper we show that OBD estimates the increase in cost function incorrectly if the network is not in a local minimum. We also show how OBD can be extended such that it can be used in connection withearly stopping.