Zilberstein, Shlomo
Distributed Multi-Agent Coordination Using Multi-Modal Foundation Models
Mahmud, Saaduddin, Goldfajn, Dorian Benhamou, Zilberstein, Shlomo
Distributed Constraint Optimization Problems (DCOPs) offer a powerful framework for multi-agent coordination but often rely on labor-intensive, manual problem construction. To address this, we introduce VL-DCOPs, a framework that takes advantage of large multimodal foundation models (LFMs) to automatically generate constraints from both visual and linguistic instructions. We then introduce a spectrum of agent archetypes for solving VL-DCOPs: from a neuro-symbolic agent that delegates some of the algorithmic decisions to an LFM, to a fully neural agent that depends entirely on an LFM for coordination. We evaluate these agent archetypes using state-of-the-art LLMs (large language models) and VLMs (vision language models) on three novel VL-DCOP tasks and compare their respective advantages and drawbacks. Lastly, we discuss how this work extends to broader frontier challenges in the DCOP literature.
MAPLE: A Framework for Active Preference Learning Guided by Large Language Models
Mahmud, Saaduddin, Nakamura, Mason, Zilberstein, Shlomo
The advent of large language models (LLMs) has sparked significant interest in using natural language for preference learning. However, existing methods often suffer from high computational burdens, taxing human supervision, and lack of interpretability. To address these issues, we introduce MAPLE, a framework for large language model-guided Bayesian active preference learning. MAPLE leverages LLMs to model the distribution over preference functions, conditioning it on both natural language feedback and conventional preference learning feedback, such as pairwise trajectory rankings. MAPLE also employs active learning to systematically reduce uncertainty in this distribution and incorporates a language-conditioned active query selection mechanism to identify informative and easy-to-answer queries, thus reducing human burden. We evaluate MAPLE's sample efficiency and preference inference quality across two benchmarks, including a real-world vehicle route planning benchmark using OpenStreetMap data. Our results demonstrate that MAPLE accelerates the learning process and effectively improves humans' ability to answer queries.
RL$^3$: Boosting Meta Reinforcement Learning via RL inside RL$^2$
Bhatia, Abhinav, Nashed, Samer B., Zilberstein, Shlomo
Meta reinforcement learning (meta-RL) methods such as RL$^2$ have emerged as promising approaches for learning data-efficient RL algorithms tailored to a given task distribution. However, these RL algorithms struggle with long-horizon tasks and out-of-distribution tasks since they rely on recurrent neural networks to process the sequence of experiences instead of summarizing them into general RL components such as value functions. Moreover, even transformers have a practical limit to the length of histories they can efficiently reason about before training and inference costs become prohibitive. In contrast, traditional RL algorithms are data-inefficient since they do not leverage domain knowledge, but they do converge to an optimal policy as more data becomes available. In this paper, we propose RL$^3$, a principled hybrid approach that combines traditional RL and meta-RL by incorporating task-specific action-values learned through traditional RL as an input to the meta-RL neural network. We show that RL$^3$ earns greater cumulative reward on long-horizon and out-of-distribution tasks compared to RL$^2$, while maintaining the efficiency of the latter in the short term. Experiments are conducted on both custom and benchmark discrete domains from the meta-RL literature that exhibit a range of short-term, long-term, and complex dependencies.
Causal Explanations for Sequential Decision Making Under Uncertainty
Nashed, Samer B., Mahmud, Saaduddin, Goldman, Claudia V., Zilberstein, Shlomo
We introduce a novel framework for causal explanations of stochastic, sequential decision-making systems built on the well-studied structural causal model paradigm for causal reasoning. This single framework can identify multiple, semantically distinct explanations for agent actions -- something not previously possible. In this paper, we establish exact methods and several approximation techniques for causal inference on Markov decision processes using this framework, followed by results on the applicability of the exact methods and some run time bounds. We discuss several scenarios that illustrate the framework's flexibility and the results of experiments with human subjects that confirm the benefits of this approach.
Avoiding Negative Side Effects of Autonomous Systems in the Open World
Saisubramanian, Sandhya (Oregon State University) | Kamar, Ece (Microsoft Research) | Zilberstein, Shlomo (University of Massachusetts Amherst)
Autonomous systems that operate in the open world often use incomplete models of their environment. Model incompleteness is inevitable due to the practical limitations in precise model specification and data collection about open-world environments. Due to the limited fidelity of the model, agent actions may produce negative side effects (NSEs) when deployed. Negative side effects are undesirable, unmodeled effects of agent actions on the environment. NSEs are inherently challenging to identify at design time and may affect the reliability, usability and safety of the system. We present two complementary approaches to mitigate the NSE via: (1) learning from feedback, and (2) environment shaping. The solution approaches target settings with different assumptions and agent responsibilities. In learning from feedback, the agent learns a penalty function associated with a NSE. We investigate the efficiency of different feedback mechanisms, including human feedback and autonomous exploration. The problem is formulated as a multi-objective Markov decision process such that optimizing the agentโs assigned task is prioritized over mitigating NSE. A slack parameter denotes the maximum allowed deviation from the optimal expected reward for the agentโs task in order to mitigate NSE. In environment shaping, we examine how a human can assist an agent, beyond providing feedback, and utilize their broader scope of knowledge to mitigate the impacts of NSE. We formulate the problem as a human-agent collaboration with decoupled objectives. The agent optimizes its assigned task and may produce NSE during its operation. The human assists the agent by performing modest reconfigurations of the environment so as to mitigate the impacts of NSE, without affecting the agentโs ability to complete its assigned task. We present an algorithm for shaping and analyze its properties. Empirical evaluations demonstrate the trade-offs in the performance of different approaches in mitigating NSE in different settings.
Agent-aware State Estimation in Autonomous Vehicles
Parr, Shane, Khatri, Ishan, Svegliato, Justin, Zilberstein, Shlomo
Autonomous systems often operate in environments where the behavior of multiple agents is coordinated by a shared global state. Reliable estimation of the global state is thus critical for successfully operating in a multi-agent setting. We introduce agent-aware state estimation -- a framework for calculating indirect estimations of state given observations of the behavior of other agents in the environment. We also introduce transition-independent agent-aware state estimation -- a tractable class of agent-aware state estimation -- and show that it allows the speed of inference to scale linearly with the number of agents in the environment. As an example, we model traffic light classification in instances of complete loss of direct observation. By taking into account observations of vehicular behavior from multiple directions of traffic, our approach exhibits accuracy higher than that of existing traffic light-only HMM methods on a real-world autonomous vehicle data set under a variety of simulated occlusion scenarios.
Mitigating Negative Side Effects via Environment Shaping
Saisubramanian, Sandhya, Zilberstein, Shlomo
Agents operating in unstructured environments often produce negative side effects (NSE), which are difficult to identify at design time. While the agent can learn to mitigate the side effects from human feedback, such feedback is often expensive and the rate of learning is sensitive to the agent's state representation. We examine how humans can assist an agent, beyond providing feedback, and exploit their broader scope of knowledge to mitigate the impacts of NSE. We formulate this problem as a human-agent team with decoupled objectives. The agent optimizes its assigned task, during which its actions may produce NSE. The human shapes the environment through minor reconfiguration actions so as to mitigate the impacts of the agent's side effects, without affecting the agent's ability to complete its assigned task. We present an algorithm to solve this problem and analyze its theoretical properties. Through experiments with human subjects, we assess the willingness of users to perform minor environment modifications to mitigate the impacts of NSE. Empirical evaluation of our approach shows that the proposed framework can successfully mitigate NSE, without affecting the agent's ability to complete its assigned task.
Learning to Generate Fair Clusters from Demonstrations
Galhotra, Sainyam, Saisubramanian, Sandhya, Zilberstein, Shlomo
Fair clustering is the process of grouping similar entities together, while satisfying a mathematically well-defined fairness metric as a constraint. Due to the practical challenges in precise model specification, the prescribed fairness constraints are often incomplete and act as proxies to the intended fairness requirement, leading to biased outcomes when the system is deployed. We examine how to identify the intended fairness constraint for a problem based on limited demonstrations from an expert. Each demonstration is a clustering over a subset of the data. We present an algorithm to identify the fairness metric from demonstrations and generate clusters using existing off-the-shelf clustering techniques, and analyze its theoretical properties. To extend our approach to novel fairness metrics for which clustering algorithms do not currently exist, we present a greedy method for clustering. Additionally, we investigate how to generate interpretable solutions using our approach. Empirical evaluation on three real-world datasets demonstrates the effectiveness of our approach in quickly identifying the underlying fairness and interpretability constraints, which are then used to generate fair and interpretable clusters.
Helpfulness as a Key Metric of Human-Robot Collaboration
Freedman, Richard G., Levine, Steven J., Williams, Brian C., Zilberstein, Shlomo
As robotic teammates become more common in society, people will assess the robots' roles in their interactions along many dimensions. One such dimension is effectiveness: people will ask whether their robotic partners are trustworthy and effective collaborators. This begs a crucial question: how can we quantitatively measure the helpfulness of a robotic partner for a given task at hand? This paper seeks to answer this question with regards to the interactive robot's decision making. We describe a clear, concise, and task-oriented metric applicable to many different planning and execution paradigms. The proposed helpfulness metric is fundamental to assessing the benefit that a partner has on a team for a given task. In this paper, we define helpfulness, illustrate it on concrete examples from a variety of domains, discuss its properties and ramifications for planning interactions with humans, and present preliminary results.
Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems
Saisubramanian, Sandhya, Zilberstein, Shlomo, Kamar, Ece
Autonomous agents acting in the real-world often operate based on models that ignore certain aspects of the environment. The incompleteness of any given model---handcrafted or machine acquired---is inevitable due to practical limitations of any modeling technique for complex real-world settings. Due to the limited fidelity of its model, an agent's actions may have unexpected, undesirable consequences during execution. Learning to recognize and avoid such negative side effects of the agent's actions is critical to improving the safety and reliability of autonomous systems. This emerging research topic is attracting increased attention due to the increased deployment of AI systems and their broad societal impacts. This article provides a comprehensive overview of different forms of negative side effects and the recent research efforts to address them. We identify key characteristics of negative side effects, highlight the challenges in avoiding negative side effects, and discuss recently developed approaches, contrasting their benefits and limitations. We conclude with a discussion of open questions and suggestions for future research directions.