Zhou, Yipeng
Siamese Foundation Models for Crystal Structure Prediction
Wu, Liming, Huang, Wenbing, Jiao, Rui, Huang, Jianxing, Liu, Liwei, Zhou, Yipeng, Sun, Hao, Liu, Yang, Sun, Fuchun, Ren, Yuxiang, Wen, Jirong
Crystal Structure Prediction (CSP), which aims to generate stable crystal structures from compositions, represents a critical pathway for discovering novel materials. While structure prediction tasks in other domains, such as proteins, have seen remarkable progress, CSP remains a relatively underexplored area due to the more complex geometries inherent in crystal structures. In this paper, we propose Siamese foundation models specifically designed to address CSP. Our pretrain-finetune framework, named DAO, comprises two complementary foundation models: DAO-G for structure generation and DAO-P for energy prediction. Experiments on CSP benchmarks (MP-20 and MPTS-52) demonstrate that our DAO-G significantly surpasses state-of-the-art (SOTA) methods across all metrics. Extensive ablation studies further confirm that DAO-G excels in generating diverse polymorphic structures, and the dataset relaxation and energy guidance provided by DAO-P are essential for enhancing DAO-G's performance. When applied to three real-world superconductors ($\text{CsV}_3\text{Sb}_5$, $ \text{Zr}_{16}\text{Rh}_8\text{O}_4$ and $\text{Zr}_{16}\text{Pd}_8\text{O}_4$) that are known to be challenging to analyze, our foundation models achieve accurate critical temperature predictions and structure generations. For instance, on $\text{CsV}_3\text{Sb}_5$, DAO-G generates a structure close to the experimental one with an RMSE of 0.0085; DAO-P predicts the $T_c$ value with high accuracy (2.26 K vs. the ground-truth value of 2.30 K). In contrast, conventional DFT calculators like Quantum Espresso only successfully derive the structure of the first superconductor within an acceptable time, while the RMSE is nearly 8 times larger, and the computation speed is more than 1000 times slower. These compelling results collectively highlight the potential of our approach for advancing materials science research and development.
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, null, Li, Aonian, Gong, Bangwei, Yang, Bo, Shan, Boji, Liu, Chang, Zhu, Cheng, Zhang, Chunhao, Guo, Congchao, Chen, Da, Li, Dong, Jiao, Enwei, Li, Gengxin, Zhang, Guojun, Sun, Haohai, Dong, Houze, Zhu, Jiadai, Zhuang, Jiaqi, Song, Jiayuan, Zhu, Jin, Han, Jingtao, Li, Jingyang, Xie, Junbin, Xu, Junhao, Yan, Junjie, Zhang, Kaishun, Xiao, Kecheng, Kang, Kexi, Han, Le, Wang, Leyang, Yu, Lianfei, Feng, Liheng, Zheng, Lin, Chai, Linbo, Xing, Long, Ju, Meizhi, Chi, Mingyuan, Zhang, Mozhi, Huang, Peikai, Niu, Pengcheng, Li, Pengfei, Zhao, Pengyu, Yang, Qi, Xu, Qidi, Wang, Qiexiang, Wang, Qin, Li, Qiuhui, Leng, Ruitao, Shi, Shengmin, Yu, Shuqi, Li, Sichen, Zhu, Songquan, Huang, Tao, Liang, Tianrun, Sun, Weigao, Sun, Weixuan, Cheng, Weiyu, Li, Wenkai, Song, Xiangjun, Su, Xiao, Han, Xiaodong, Zhang, Xinjie, Hou, Xinzhu, Min, Xu, Zou, Xun, Shen, Xuyang, Gong, Yan, Zhu, Yingjie, Zhou, Yipeng, Zhong, Yiran, Hu, Yongyi, Fan, Yuanxiang, Yu, Yue, Yang, Yufeng, Li, Yuhao, Huang, Yunan, Li, Yunji, Huang, Yunpeng, Xu, Yunzhi, Mao, Yuxin, Li, Zehan, Li, Zekang, Tao, Zewei, Ying, Zewen, Cong, Zhaoyang, Qin, Zhen, Fan, Zhenhua, Yu, Zhihang, Jiang, Zhuo, Wu, Zijia
We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
BGTplanner: Maximizing Training Accuracy for Differentially Private Federated Recommenders via Strategic Privacy Budget Allocation
Zhang, Xianzhi, Zhou, Yipeng, Hu, Miao, Wu, Di, Liao, Pengshan, Guizani, Mohsen, Sheng, Michael
To mitigate the rising concern about privacy leakage, the federated recommender (FR) paradigm emerges, in which decentralized clients co-train the recommendation model without exposing their raw user-item rating data. The differentially private federated recommender (DPFR) further enhances FR by injecting differentially private (DP) noises into clients. Yet, current DPFRs, suffering from noise distortion, cannot achieve satisfactory accuracy. Various efforts have been dedicated to improving DPFRs by adaptively allocating the privacy budget over the learning process. However, due to the intricate relation between privacy budget allocation and model accuracy, existing works are still far from maximizing DPFR accuracy. To address this challenge, we develop BGTplanner (Budget Planner) to strategically allocate the privacy budget for each round of DPFR training, improving overall training performance. Specifically, we leverage the Gaussian process regression and historical information to predict the change in recommendation accuracy with a certain allocated privacy budget. Additionally, Contextual Multi-Armed Bandit (CMAB) is harnessed to make privacy budget allocation decisions by reconciling the current improvement and long-term privacy constraints. Our extensive experimental results on real datasets demonstrate that \emph{BGTplanner} achieves an average improvement of 6.76\% in training performance compared to state-of-the-art baselines.
A Communication and Computation Efficient Fully First-order Method for Decentralized Bilevel Optimization
Wen, Min, Liu, Chengchang, Abdelmoniem, Ahmed, Zhou, Yipeng, Xu, Yuedong
Bilevel optimization, crucial for hyperparameter tuning, meta-learning and reinforcement learning, remains less explored in the decentralized learning paradigm, such as decentralized federated learning (DFL). Typically, decentralized bilevel methods rely on both gradients and Hessian matrices to approximate hypergradients of upper-level models. However, acquiring and sharing the second-order oracle is compute and communication intensive. % and sharing this information incurs heavy communication overhead. To overcome these challenges, this paper introduces a fully first-order decentralized method for decentralized Bilevel optimization, $\text{C}^2$DFB which is both compute- and communicate-efficient. In $\text{C}^2$DFB, each learning node optimizes a min-min-max problem to approximate hypergradient by exclusively using gradients information. To reduce the traffic load at the inner-loop of solving the lower-level problem, $\text{C}^2$DFB incorporates a lightweight communication protocol for efficiently transmitting compressed residuals of local parameters. % during the inner loops. Rigorous theoretical analysis ensures its convergence % of the algorithm, indicating a first-order oracle calls of $\tilde{\mathcal{O}}(\epsilon^{-4})$. Experiments on hyperparameter tuning and hyper-representation tasks validate the superiority of $\text{C}^2$DFB across various typologies and heterogeneous data distributions.
Expediting In-Network Federated Learning by Voting-Based Consensus Model Compression
Su, Xiaoxin, Zhou, Yipeng, Cui, Laizhong, Guo, Song
Recently, federated learning (FL) has gained momentum because of its capability in preserving data privacy. To conduct model training by FL, multiple clients exchange model updates with a parameter server via Internet. To accelerate the communication speed, it has been explored to deploy a programmable switch (PS) in lieu of the parameter server to coordinate clients. The challenge to deploy the PS in FL lies in its scarce memory space, prohibiting running memory consuming aggregation algorithms on the PS. To overcome this challenge, we propose Federated Learning in-network Aggregation with Compression (FediAC) algorithm, consisting of two phases: client voting and model aggregating. In the former phase, clients report their significant model update indices to the PS to estimate global significant model updates. In the latter phase, clients upload global significant model updates to the PS for aggregation. FediAC consumes much less memory space and communication traffic than existing works because the first phase can guarantee consensus compression across clients. The PS easily aligns model update indices to swiftly complete aggregation in the second phase. Finally, we conduct extensive experiments by using public datasets to demonstrate that FediAC remarkably surpasses the state-of-the-art baselines in terms of model accuracy and communication traffic.
Fed-CVLC: Compressing Federated Learning Communications with Variable-Length Codes
Su, Xiaoxin, Zhou, Yipeng, Cui, Laizhong, Lui, John C. S., Liu, Jiangchuan
In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds, without touching private data owned by individual clients. FL is appealing in preserving data privacy; yet the communication between the PS and scattered clients can be a severe bottleneck. Model compression algorithms, such as quantization and sparsification, have been suggested but they generally assume a fixed code length, which does not reflect the heterogeneity and variability of model updates. In this paper, through both analysis and experiments, we show strong evidences that variable-length is beneficial for compression in FL. We accordingly present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response of the dynamics of model updates. We develop optimal tuning strategy that minimizes the loss function (equivalent to maximizing the model utility) subject to the budget for communication. We further demonstrate that Fed-CVLC is indeed a general compression design that bridges quantization and sparsification, with greater flexibility. Extensive experiments have been conducted with public datasets to demonstrate that Fed-CVLC remarkably outperforms state-of-the-art baselines, improving model utility by 1.50%-5.44%, or shrinking communication traffic by 16.67%-41.61%.
FedDWA: Personalized Federated Learning with Dynamic Weight Adjustment
Liu, Jiahao, Wu, Jiang, Chen, Jinyu, Hu, Miao, Zhou, Yipeng, Wu, Di
Different from conventional federated learning, personalized federated learning (PFL) is able to train a customized model for each individual client according to its unique requirement. The mainstream approach is to adopt a kind of weighted aggregation method to generate personalized models, in which weights are determined by the loss value or model parameters among different clients. However, such kinds of methods require clients to download others' models. It not only sheer increases communication traffic but also potentially infringes data privacy. In this paper, we propose a new PFL algorithm called \emph{FedDWA (Federated Learning with Dynamic Weight Adjustment)} to address the above problem, which leverages the parameter server (PS) to compute personalized aggregation weights based on collected models from clients. In this way, FedDWA can capture similarities between clients with much less communication overhead. More specifically, we formulate the PFL problem as an optimization problem by minimizing the distance between personalized models and guidance models, so as to customize aggregation weights for each client. Guidance models are obtained by the local one-step ahead adaptation on individual clients. Finally, we conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.
pFedSim: Similarity-Aware Model Aggregation Towards Personalized Federated Learning
Tan, Jiahao, Zhou, Yipeng, Liu, Gang, Wang, Jessie Hui, Yu, Shui
The federated learning (FL) paradigm emerges to preserve data privacy during model training by only exposing clients' model parameters rather than original data. One of the biggest challenges in FL lies in the non-IID (not identical and independently distributed) data (a.k.a., data heterogeneity) distributed on clients. To address this challenge, various personalized FL (pFL) methods are proposed such as similarity-based aggregation and model decoupling. The former one aggregates models from clients of a similar data distribution. The later one decouples a neural network (NN) model into a feature extractor and a classifier. Personalization is captured by classifiers which are obtained by local training. To advance pFL, we propose a novel pFedSim (pFL based on model similarity) algorithm in this work by combining these two kinds of methods. More specifically, we decouple a NN model into a personalized feature extractor, obtained by aggregating models from similar clients, and a classifier, which is obtained by local training and used to estimate client similarity. Compared with the state-of-the-art baselines, the advantages of pFedSim include: 1) significantly improved model accuracy; 2) low communication and computation overhead; 3) a low risk of privacy leakage; 4) no requirement for any external public information. To demonstrate the superiority of pFedSim, extensive experiments are conducted on real datasets. The results validate the superb performance of our algorithm which can significantly outperform baselines under various heterogeneous data settings.
A Survey of Federated Evaluation in Federated Learning
Soltani, Behnaz, Zhou, Yipeng, Haghighi, Venus, Lui, John C. S.
In traditional machine learning, it is trivial to conduct model evaluation since all data samples are managed centrally by a server. However, model evaluation becomes a challenging problem in federated learning (FL), which is called federated evaluation in this work. This is because clients do not expose their original data to preserve data privacy. Federated evaluation plays a vital role in client selection, incentive mechanism design, malicious attack detection, etc. In this paper, we provide the first comprehensive survey of existing federated evaluation methods. Moreover, we explore various applications of federated evaluation for enhancing FL performance and finally present future research directions by envisioning some challenges.
BARA: Efficient Incentive Mechanism with Online Reward Budget Allocation in Cross-Silo Federated Learning
Yang, Yunchao, Zhou, Yipeng, Hu, Miao, Wu, Di, Sheng, Quan Z.
Federated learning (FL) is a prospective distributed machine learning framework that can preserve data privacy. In particular, cross-silo FL can complete model training by making isolated data islands of different organizations collaborate with a parameter server (PS) via exchanging model parameters for multiple communication rounds. In cross-silo FL, an incentive mechanism is indispensable for motivating data owners to contribute their models to FL training. However, how to allocate the reward budget among different rounds is an essential but complicated problem largely overlooked by existing works. The challenge of this problem lies in the opaque feedback between reward budget allocation and model utility improvement of FL, making the optimal reward budget allocation complicated. To address this problem, we design an online reward budget allocation algorithm using Bayesian optimization named BARA (\underline{B}udget \underline{A}llocation for \underline{R}everse \underline{A}uction). Specifically, BARA can model the complicated relationship between reward budget allocation and final model accuracy in FL based on historical training records so that the reward budget allocated to each communication round is dynamically optimized so as to maximize the final model utility. We further incorporate the BARA algorithm into reverse auction-based incentive mechanisms to illustrate its effectiveness. Extensive experiments are conducted on real datasets to demonstrate that BARA significantly outperforms competitive baselines by improving model utility with the same amount of reward budget.