Goto

Collaborating Authors

 Zhong, Sheng


Privacy-Preserving Federated Learning via Dataset Distillation

arXiv.org Artificial Intelligence

Federated Learning (FL) allows users to share knowledge instead of raw data to train a model with high accuracy. Unfortunately, during the training, users lose control over the knowledge shared, which causes serious data privacy issues. We hold that users are only willing and need to share the essential knowledge to the training task to obtain the FL model with high accuracy. However, existing efforts cannot help users minimize the shared knowledge according to the user intention in the FL training procedure. This work proposes FLiP, which aims to bring the principle of least privilege (PoLP) to FL training. The key design of FLiP is applying elaborate information reduction on the training data through a local-global dataset distillation design. We measure the privacy performance through attribute inference and membership inference attacks. Extensive experiments show that FLiP strikes a good balance between model accuracy and privacy protection.


Revisiting SLO and Goodput Metrics in LLM Serving

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable performance and are widely deployed in various applications, while the serving of LLM inference has raised concerns about user experience and serving throughput. Accordingly, service level objectives (SLOs) and goodput-the number of requests that meet SLOs per second-are introduced to evaluate the performance of LLM serving. However, existing metrics fail to capture the nature of user experience. We observe two ridiculous phenomena in existing metrics: 1) delaying token delivery can smooth the tail time between tokens (tail TBT) of a request and 2) dropping the request that fails to meet the SLOs midway can improve goodput. In this paper, we revisit SLO and goodput metrics in LLM serving and propose a unified metric framework smooth goodput including SLOs and goodput to reflect the nature of user experience in LLM serving. The framework can adapt to specific goals of different tasks by setting parameters. We re-evaluate the performance of different LLM serving systems under multiple workloads based on this unified framework and provide possible directions for future optimization of existing strategies. We hope that this framework can provide a unified standard for evaluating LLM serving and foster researches in the field of LLM serving optimization to move in a cohesive direction.


ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras

arXiv.org Artificial Intelligence

Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping sub-problems in parallel by exploiting the special working principles of neuromorphic (ie, event-based) cameras. Due to the motion-dependent nature of event data, explicit data association ie, feature matching under large-baseline view-point changes is hardly established, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we resolve these issues by building an event-based stereo visual-inertial odometry system on top of our previous direct pipeline Event-based Stereo Visual Odometry. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general six-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.


The Fire Thief Is Also the Keeper: Balancing Usability and Privacy in Prompts

arXiv.org Artificial Intelligence

The rapid adoption of online chatbots represents a significant advancement in artificial intelligence. However, this convenience brings considerable privacy concerns, as prompts can inadvertently contain sensitive information exposed to large language models (LLMs). Limited by high computational costs, reduced task usability, and excessive system modifications, previous works based on local deployment, embedding perturbation, and homomorphic encryption are inapplicable to online prompt-based LLM applications. To address these issues, this paper introduces Prompt Privacy Sanitizer (i.e., ProSan), an end-to-end prompt privacy protection framework that can produce anonymized prompts with contextual privacy removed while maintaining task usability and human readability. It can also be seamlessly integrated into the online LLM service pipeline. To achieve high usability and dynamic anonymity, ProSan flexibly adjusts its protection targets and strength based on the importance of the words and the privacy leakage risk of the prompts. Additionally, ProSan is capable of adapting to diverse computational resource conditions, ensuring privacy protection even for mobile devices with limited computing power. Our experiments demonstrate that ProSan effectively removes private information across various tasks, including question answering, text summarization, and code generation, with minimal reduction in task performance.


LabObf: A Label Protection Scheme for Vertical Federated Learning Through Label Obfuscation

arXiv.org Artificial Intelligence

Split learning, as one of the most common architectures in vertical federated learning, has gained widespread use in industry due to its privacy-preserving characteristics. In this architecture, the party holding the labels seeks cooperation from other parties to improve model performance due to insufficient feature data. Each of these participants has a self-defined bottom model to learn hidden representations from its own feature data and uploads the embedding vectors to the top model held by the label holder for final predictions. This design allows participants to conduct joint training without directly exchanging data. However, existing research points out that malicious participants may still infer label information from the uploaded embeddings, leading to privacy leakage. In this paper, we first propose an embedding extension attack that manually modifies embeddings to undermine existing defense strategies, which rely on constraining the correlation between the embeddings uploaded by participants and the labels. Subsequently, we propose a new label obfuscation defense strategy, called `LabObf', which randomly maps each original one-hot vector label to multiple numerical soft labels with values intertwined, significantly increasing the difficulty for attackers to infer the labels. We conduct experiments on four different types of datasets, and the results show that LabObf can reduce the attacker's success rate to near random guessing while maintaining an acceptable model accuracy.


IMU-Aided Event-based Stereo Visual Odometry

arXiv.org Artificial Intelligence

Direct methods for event-based visual odometry solve the mapping and camera pose tracking sub-problems by establishing implicit data association in a way that the generative model of events is exploited. The main bottlenecks faced by state-of-the-art work in this field include the high computational complexity of mapping and the limited accuracy of tracking. In this paper, we improve our previous direct pipeline \textit{Event-based Stereo Visual Odometry} in terms of accuracy and efficiency. To speed up the mapping operation, we propose an efficient strategy of edge-pixel sampling according to the local dynamics of events. The mapping performance in terms of completeness and local smoothness is also improved by combining the temporal stereo results and the static stereo results. To circumvent the degeneracy issue of camera pose tracking in recovering the yaw component of general 6-DoF motion, we introduce as a prior the gyroscope measurements via pre-integration. Experiments on publicly available datasets justify our improvement. We release our pipeline as an open-source software for future research in this field.


Subtoxic Questions: Dive Into Attitude Change of LLM's Response in Jailbreak Attempts

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) of Prompt Jailbreaking are getting more and more attention, it is of great significance to raise a generalized research paradigm to evaluate attack strengths and a basic model to conduct subtler experiments. In this paper, we propose a novel approach by focusing on a set of target questions that are inherently more sensitive to jailbreak prompts, aiming to circumvent the limitations posed by enhanced LLM security. Through designing and analyzing these sensitive questions, this paper reveals a more effective method of identifying vulnerabilities in LLMs, thereby contributing to the advancement of LLM security. This research not only challenges existing jailbreaking methodologies but also fortifies LLMs against potential exploits.


Dual-Space Optimization: Improved Molecule Sequence Design by Latent Prompt Transformer

arXiv.org Artificial Intelligence

Designing molecules with desirable properties, such as drug-likeliness and high binding affinities towards protein targets, is a challenging problem. In this paper, we propose the Dual-Space Optimization (DSO) method that integrates latent space sampling and data space selection to solve this problem. DSO iteratively updates a latent space generative model and a synthetic dataset in an optimization process that gradually shifts the generative model and the synthetic data towards regions of desired property values. Our generative model takes the form of a Latent Prompt Transformer (LPT) where the latent vector serves as the prompt of a causal transformer. Our extensive experiments demonstrate effectiveness of the proposed method, which sets new performance benchmarks across single-objective, multi-objective and constrained molecule design tasks.


Robust and Efficient Trajectory Planning for Formation Flight in Dense Environments

arXiv.org Artificial Intelligence

Formation flight has a vast potential for aerial robot swarms in various applications. However, existing methods lack the capability to achieve fully autonomous large-scale formation flight in dense environments. To bridge the gap, we present a complete formation flight system that effectively integrates real-world constraints into aerial formation navigation. This paper proposes a differentiable graph-based metric to quantify the overall similarity error between formations. This metric is invariant to rotation, translation, and scaling, providing more freedom for formation coordination. We design a distributed trajectory optimization framework that considers formation similarity, obstacle avoidance, and dynamic feasibility. The optimization is decoupled to make large-scale formation flights computationally feasible. To improve the elasticity of formation navigation in highly constrained scenes, we present a swarm reorganization method that adaptively adjusts the formation parameters and task assignments by generating local navigation goals. A novel swarm agreement strategy called global-remap-local-replan and a formation-level path planner is proposed in this work to coordinate the global planning and local trajectory optimizations. To validate the proposed method, we design comprehensive benchmarks and simulations with other cutting-edge works in terms of adaptability, predictability, elasticity, resilience, and efficiency. Finally, integrated with palm-sized swarm platforms with onboard computers and sensors, the proposed method demonstrates its efficiency and robustness by achieving the largest scale formation flight in dense outdoor environments.


CHSEL: Producing Diverse Plausible Pose Estimates from Contact and Free Space Data

arXiv.org Artificial Intelligence

This paper proposes a novel method for estimating the set of plausible poses of a rigid object from a set of points with volumetric information, such as whether each point is in free space or on the surface of the object. In particular, we study how pose can be estimated from force and tactile data arising from contact. Using data derived from contact is challenging because it is inherently less information-dense than visual data, and thus the pose estimation problem is severely under-constrained when there are few contacts. Rather than attempting to estimate the true pose of the object, which is not tractable without a large number of contacts, we seek to estimate a plausible set of poses which obey the constraints imposed by the sensor data. Existing methods struggle to estimate this set because they are either designed for single pose estimates or require informative priors to be effective. Our approach to this problem, Constrained pose Hypothesis Set Elimination (CHSEL), has three key attributes: 1) It considers volumetric information, which allows us to account for known free space; 2) It uses a novel differentiable volumetric cost function to take advantage of powerful gradient-based optimization tools; and 3) It uses methods from the Quality Diversity (QD) optimization literature to produce a diverse set of high-quality poses. To our knowledge, QD methods have not been used previously for pose registration. We also show how to update our plausible pose estimates online as more data is gathered by the robot. Our experiments suggest that CHSEL shows large performance improvements over several baseline methods for both simulated and real-world data.