Goto

Collaborating Authors

 Zheng, Nanning


ForestLPR: LiDAR Place Recognition in Forests Attentioning Multiple BEV Density Images

arXiv.org Artificial Intelligence

Place recognition is essential to maintain global consistency in large-scale localization systems. While research in urban environments has progressed significantly using LiDARs or cameras, applications in natural forest-like environments remain largely under-explored. Furthermore, forests present particular challenges due to high self-similarity and substantial variations in vegetation growth over time. In this work, we propose a robust LiDAR-based place recognition method for natural forests, ForestLPR. We hypothesize that a set of cross-sectional images of the forest's geometry at different heights contains the information needed to recognize revisiting a place. The cross-sectional images are represented by \ac{bev} density images of horizontal slices of the point cloud at different heights. Our approach utilizes a visual transformer as the shared backbone to produce sets of local descriptors and introduces a multi-BEV interaction module to attend to information at different heights adaptively. It is followed by an aggregation layer that produces a rotation-invariant place descriptor. We evaluated the efficacy of our method extensively on real-world data from public benchmarks as well as robotic datasets and compared it against the state-of-the-art (SOTA) methods. The results indicate that ForestLPR has consistently good performance on all evaluations and achieves an average increase of 7.38\% and 9.11\% on Recall@1 over the closest competitor on intra-sequence loop closure detection and inter-sequence re-localization, respectively, validating our hypothesis


Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs

arXiv.org Artificial Intelligence

Geometric graph neural networks (GNNs) have emerged as powerful tools for modeling molecular geometry. However, they encounter limitations in effectively capturing long-range interactions in large molecular systems. To address this challenge, we introduce Neural P$^3$M, a versatile enhancer of geometric GNNs to expand the scope of their capabilities by incorporating mesh points alongside atoms and reimaging traditional mathematical operations in a trainable manner. Neural P$^3$M exhibits flexibility across a wide range of molecular systems and demonstrates remarkable accuracy in predicting energies and forces, outperforming on benchmarks such as the MD22 dataset. It also achieves an average improvement of 22% on the OE62 dataset while integrating with various architectures.


Improving AlphaFlow for Efficient Protein Ensembles Generation

arXiv.org Artificial Intelligence

Investigating conformational landscapes of proteins is a crucial way to understand their biological functions and properties. AlphaFlow stands out as a sequence-conditioned generative model that introduces flexibility into structure prediction models by fine-tuning AlphaFold under the flow-matching framework. Despite the advantages of efficient sampling afforded by flow-matching, AlphaFlow still requires multiple runs of AlphaFold to finally generate one single conformation. Due to the heavy consumption of AlphaFold, its applicability is limited in sampling larger set of protein ensembles or the longer chains within a constrained timeframe. In this work, we propose a feature-conditioned generative model called AlphaFlow-Lit to realize efficient protein ensembles generation. In contrast to the full fine-tuning on the entire structure, we focus solely on the light-weight structure module to reconstruct the conformation. AlphaFlow-Lit performs on-par with AlphaFlow and surpasses its distilled version without pretraining, all while achieving a significant sampling acceleration of around 47 times. The advancement in efficiency showcases the potential of AlphaFlow-Lit in enabling faster and more scalable generation of protein ensembles.


Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction

arXiv.org Artificial Intelligence

Predicting the mean-field Hamiltonian matrix in density functional theory is a fundamental formulation to leverage machine learning for solving molecular science problems. Yet, its applicability is limited by insufficient labeled data for training. In this work, we highlight that Hamiltonian prediction possesses a self-consistency principle, based on which we propose self-consistency training, an exact training method that does not require labeled data. It distinguishes the task from predicting other molecular properties by the following benefits: (1) it enables the model to be trained on a large amount of unlabeled data, hence addresses the data scarcity challenge and enhances generalization; (2) it is more efficient than running DFT to generate labels for supervised training, since it amortizes DFT calculation over a set of queries. We empirically demonstrate the better generalization in data-scarce and out-of-distribution scenarios, and the better efficiency over DFT labeling. These benefits push forward the applicability of Hamiltonian prediction to an ever-larger scale.


A General Theory for Compositional Generalization

arXiv.org Artificial Intelligence

Compositional Generalization (CG) embodies the ability to comprehend novel combinations of familiar concepts, representing a significant cognitive leap in human intellectual advancement. Despite its critical importance, the deep neural network (DNN) faces challenges in addressing the compositional generalization problem, prompting considerable research interest. However, existing theories often rely on task-specific assumptions, constraining the comprehensive understanding of CG. This study aims to explore compositional generalization from a task-agnostic perspective, offering a complementary viewpoint to task-specific analyses. The primary challenge is to define CG without overly restricting its scope, a feat achieved by identifying its fundamental characteristics and basing the definition on them. Using this definition, we seek to answer the question "what does the ultimate solution to CG look like?" through the following theoretical findings: 1) the first No Free Lunch theorem in CG, indicating the absence of general solutions; 2) a novel generalization bound applicable to any CG problem, specifying the conditions for an effective CG solution; and 3) the introduction of the generative effect to enhance understanding of CG problems and their solutions. This paper's significance lies in providing a general theory for CG problems, which, when combined with prior theorems under task-specific scenarios, can lead to a comprehensive understanding of CG.


F$^3$low: Frame-to-Frame Coarse-grained Molecular Dynamics with SE(3) Guided Flow Matching

arXiv.org Artificial Intelligence

Molecular dynamics (MD) is a crucial technique for simulating biological systems, enabling the exploration of their dynamic nature and fostering an understanding of their functions and properties. To address exploration inefficiency, emerging enhanced sampling approaches like coarse-graining (CG) and generative models have been employed. In this work, we propose a \underline{Frame-to-Frame} generative model with guided \underline{Flow}-matching (F$3$low) for enhanced sampling, which (a) extends the domain of CG modeling to the SE(3) Riemannian manifold; (b) retreating CGMD simulations as autoregressively sampling guided by the former frame via flow-matching models; (c) targets the protein backbone, offering improved insights into secondary structure formation and intricate folding pathways. Compared to previous methods, F$3$low allows for broader exploration of conformational space. The ability to rapidly generate diverse conformations via force-free generative paradigm on SE(3) paves the way toward efficient enhanced sampling methods.


Make Your LLM Fully Utilize the Context

arXiv.org Artificial Intelligence

While many contemporary large language models (LLMs) can process lengthy input, they still struggle to fully utilize information within the long context, known as the lost-in-the-middle challenge. We hypothesize that it stems from insufficient explicit supervision during the long-context training, which fails to emphasize that any position in a long context can hold crucial information. Based on this intuition, our study presents information-intensive (IN2) training, a purely data-driven solution to overcome lost-in-the-middle. Specifically, IN2 training leverages a synthesized long-context question-answer dataset, where the answer requires (1) fine-grained information awareness on a short segment (~128 tokens) within a synthesized long context (4K-32K tokens), and (2) the integration and reasoning of information from two or more short segments. Through applying this information-intensive training on Mistral-7B, we present FILM-7B (FILl-in-the-Middle). To thoroughly assess the ability of FILM-7B for utilizing long contexts, we design three probing tasks that encompass various context styles (document, code, and structured-data context) and information retrieval patterns (forward, backward, and bi-directional retrieval). The probing results demonstrate that FILM-7B can robustly retrieve information from different positions in its 32K context window. Beyond these probing tasks, FILM-7B significantly improves the performance on real-world long-context tasks (e.g., 23.5->26.9 F1 score on NarrativeQA), while maintaining a comparable performance on short-context tasks (e.g., 59.3->59.2 accuracy on MMLU). Github Link: https://github.com/microsoft/FILM.


Robust Noisy Label Learning via Two-Stream Sample Distillation

arXiv.org Artificial Intelligence

Noisy label learning aims to learn robust networks under the supervision of noisy labels, which plays a critical role in deep learning. Existing work either conducts sample selection or label correction to deal with noisy labels during the model training process. In this paper, we design a simple yet effective sample selection framework, termed Two-Stream Sample Distillation (TSSD), for noisy label learning, which can extract more high-quality samples with clean labels to improve the robustness of network training. Firstly, a novel Parallel Sample Division (PSD) module is designed to generate a certain training set with sufficient reliable positive and negative samples by jointly considering the sample structure in feature space and the human prior in loss space. Secondly, a novel Meta Sample Purification (MSP) module is further designed to mine adequate semi-hard samples from the remaining uncertain training set by learning a strong meta classifier with extra golden data. As a result, more and more high-quality samples will be distilled from the noisy training set to train networks robustly in every iteration. Extensive experiments on four benchmark datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and Clothing-1M, show that our method has achieved state-of-the-art results over its competitors.


Common 7B Language Models Already Possess Strong Math Capabilities

arXiv.org Artificial Intelligence

Mathematical capabilities were previously believed to emerge in common language models only at a very large scale or require extensive math-related pre-training. This paper shows that the LLaMA-2 7B model with common pre-training already exhibits strong mathematical abilities, as evidenced by its impressive accuracy of 97.7% and 72.0% on the GSM8K and MATH benchmarks, respectively, when selecting the best response from 256 random generations. The primary issue with the current base model is the difficulty in consistently eliciting its inherent mathematical capabilities. Notably, the accuracy for the first answer drops to 49.5% and 7.9% on the GSM8K and MATH benchmarks, respectively. We find that simply scaling up the SFT data can significantly enhance the reliability of generating correct answers. However, the potential for extensive scaling is constrained by the scarcity of publicly available math questions. To overcome this limitation, we employ synthetic data, which proves to be nearly as effective as real data and shows no clear saturation when scaled up to approximately one million samples. This straightforward approach achieves an accuracy of 82.6% on GSM8K and 40.6% on MATH using LLaMA-2 7B models, surpassing previous models by 14.2% and 20.8%, respectively. We also provide insights into scaling behaviors across different reasoning complexities and error types.


From Summary to Action: Enhancing Large Language Models for Complex Tasks with Open World APIs

arXiv.org Artificial Intelligence

The distinction between humans and animals lies in the unique ability of humans to use and create tools. Tools empower humans to overcome physiological limitations, fostering the creation of magnificent civilizations. Similarly, enabling foundational models like Large Language Models (LLMs) with the capacity to learn external tool usage may serve as a pivotal step toward realizing artificial general intelligence. Previous studies in this field have predominantly pursued two distinct approaches to augment the tool invocation capabilities of LLMs. The first approach emphasizes the construction of relevant datasets for model fine-tuning. The second approach, in contrast, aims to fully exploit the inherent reasoning abilities of LLMs through in-context learning strategies. In this work, we introduce a novel tool invocation pipeline designed to control massive real-world APIs. This pipeline mirrors the human task-solving process, addressing complicated real-life user queries. At each step, we guide LLMs to summarize the achieved results and determine the next course of action. We term this pipeline `from Summary to action', Sum2Act for short. Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements, outperforming established methods like ReAct and DFSDT. This highlights Sum2Act's effectiveness in enhancing LLMs for complex real-world tasks.