Goto

Collaborating Authors

 Zhao, Ruochen


Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents

arXiv.org Artificial Intelligence

Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.


Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks

arXiv.org Artificial Intelligence

State-of-the-art large language models (LLMs) exhibit impressive problemsolving capabilities but may struggle with complex reasoning and factual correctness. Existing methods harness the strengths of chain-of-thought (CoT) and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness. These methods work well on straightforward reasoning tasks but often falter on challenging tasks such as competitive programming and mathematics, due to frequent reasoning errors and irrelevant knowledge retrieval. To address this, we introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning. CR-Planner solves a problem by iteratively selecting and executing sub-goals. Initially, it identifies the most promising sub-goal from reasoning, query generation, and retrieval, guided by rewards given by a critic model named sub-goal critic. It then executes this sub-goal through sampling and selecting the optimal output based on evaluations from another critic model named execution critic. This iterative process, informed by retrieved information and critic models, enables CR-Planner to effectively navigate the solution space towards the final answer. We employ Monte Carlo Tree Search (MCTS) to collect the data for training the critic models, allowing for a systematic exploration of action sequences and their long-term impacts. Our experiments demonstrate that CR-Planner significantly outperforms baselines, highlighting its effectiveness in addressing challenging problems by improving both reasoning and retrieval. Existing approaches (Yao et al., 2023b; Zhao et al., 2023b; Li et al., 2024) seek to harness the strengths of both chain-ofthought (CoT) reasoning (Wei et al., 2022) and retrieval-augmented generation (RAG) (Lewis et al., 2020) on knowledge-intensive complex reasoning problems.


Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions

arXiv.org Artificial Intelligence

As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.


Lifelong Event Detection with Embedding Space Separation and Compaction

arXiv.org Artificial Intelligence

To mitigate forgetting, existing lifelong event detection methods typically maintain a memory module and replay the stored memory data during the learning of a new task. However, the simple combination of memory data and new-task samples can still result in substantial forgetting of previously acquired knowledge, which may occur due to the potential overlap between the feature distribution of new data and the previously learned embedding space. Moreover, the model suffers from overfitting on the few memory samples rather than effectively remembering learned patterns. To address the challenges of forgetting and overfitting, we propose a novel method based on embedding space separation and compaction. Our method alleviates forgetting of previously learned tasks by forcing the feature distribution of new data away from the previous embedding space. It also mitigates overfitting by a memory calibration mechanism that encourages memory data to be close to its prototype to enhance intra-class compactness. In addition, the learnable parameters of the new task are initialized by drawing upon acquired knowledge from the previously learned task to facilitate forward knowledge transfer. With extensive experiments, we demonstrate that our method can significantly outperform previous state-of-the-art approaches.


How Much are LLMs Contaminated? A Comprehensive Survey and the LLMSanitize Library

arXiv.org Artificial Intelligence

With the rise of Large Language Models (LLMs) in recent years, new opportunities are emerging, but also new challenges, and contamination is quickly becoming critical. Business applications and fundraising in AI have reached a scale at which a few percentage points gained on popular question-answering benchmarks could translate into dozens of millions of dollars, placing high pressure on model integrity. At the same time, it is becoming harder and harder to keep track of the data that LLMs have seen; if not impossible with closed-source models like GPT-4 and Claude-3 not divulging any information on the training set. As a result, contamination becomes a critical issue: LLMs' performance may not be reliable anymore, as the high performance may be at least partly due to their previous exposure to the data. This limitation jeopardizes the entire progress in the field of NLP, yet, there remains a lack of methods on how to efficiently address contamination, or a clear consensus on prevention, mitigation and classification of contamination.


ChatGPT's One-year Anniversary: Are Open-Source Large Language Models Catching up?

arXiv.org Artificial Intelligence

Upon its release in late 2022, ChatGPT has brought a seismic shift in the entire landscape of AI, both in research and commerce. Through instruction-tuning a large language model (LLM) with supervised fine-tuning and reinforcement learning from human feedback, it showed that a model could answer human questions and follow instructions on a broad panel of tasks. Following this success, interests in LLMs have intensified, with new LLMs flourishing at frequent interval across academia and industry, including many start-ups focused on LLMs. While closed-source LLMs (e.g., OpenAI's GPT, Anthropic's Claude) generally outperform their open-source counterparts, the progress on the latter has been rapid with claims of achieving parity or even better on certain tasks. This has crucial implications not only on research but also on business. In this work, on the first anniversary of ChatGPT, we provide an exhaustive overview of this success, surveying all tasks where an open-source LLM has claimed to be on par or better than ChatGPT.


Chain-of-Knowledge: Grounding Large Language Models via Dynamic Knowledge Adapting over Heterogeneous Sources

arXiv.org Artificial Intelligence

It results in more factual rationales and reduced hallucination in generation. Specifically, CoK consists of three stages: reasoning preparation, dynamic knowledge adapting, and answer consolidation. Given a knowledge-intensive question, CoK first prepares several preliminary rationales and answers while identifying the relevant knowledge domains. If there is no majority consensus among the answers from samples, CoK corrects the rationales step by step by adapting knowledge from the identified domains. These corrected rationales can plausibly serve as a better foundation for the final answer consolidation. Unlike prior studies that primarily use unstructured data, CoK also leverages structured knowledge sources such as Wikidata and tables that provide more reliable factual information. To access both unstructured and structured knowledge sources in the dynamic knowledge adapting stage, we propose an adaptive query generator that allows the generation of queries for various types of query languages, including SPARQL, SQL, and natural sentences. Moreover, to minimize error propagation between rationales, CoK corrects the rationales progressively using preceding corrected rationales to generate and correct subsequent rationales. Extensive experiments show that CoK consistently improves the performance of LLMs on knowledge-intensive tasks across different domains. In recent years, large language models (LLMs) such as ChatGPT (OpenAI, 2023) have demonstrated impressive language generation capabilities (Cheng et al., 2023; Ding et al., 2023). However, one major challenge of LLMs lies in hallucination, which is their tendency to confidently generate plausible but factually incorrect texts (Ji et al., 2023). As shown in Figure 1, given a question, "What year was the Argentine actor who directed El Tio Disparate born?" which requires factual knowledge to answer, the most advanced LLMs often provide an incorrect answer. While LLMs have the remarkable capability to recall information from their training data, effectively updating or controlling the factual knowledge within these models remains challenging (Luo et al., 2023). A promising direction to address hallucination in generation is to augment the LLMs with external knowledge (Mialon et al., 2023). These methods involve incorporating LLMs with a retrieval system, which seeks to utilize external factual knowledge to guide the generation process. Instead of relying solely on the internal training knowledge of LLMs, these methods can fetch relevant infor-Equal contribution. Xingxuan Li, Yew Ken Chia, and Bosheng Ding are under the Joint Ph.D. Program between Alibaba and their corresponding universities. We will make our code and data publicly available.


Retrieving Multimodal Information for Augmented Generation: A Survey

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) become popular, there emerged an important trend of using multimodality to augment the LLMs' generation ability, which enables LLMs to better interact with the world. However, there lacks a unified perception of at which stage and how to incorporate different modalities. In this survey, we review methods that assist and augment generative models by retrieving multimodal knowledge, whose formats range from images, codes, tables, graphs, to audio. Such methods offer a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. By providing an in-depth review, this survey is expected to provide scholars with a deeper understanding of the methods' applications and encourage them to adapt existing techniques to the fast-growing field of LLMs.


Learning to Initialize: Can Meta Learning Improve Cross-task Generalization in Prompt Tuning?

arXiv.org Artificial Intelligence

Prompt tuning (PT) which only tunes the embeddings of an additional sequence of tokens per task, keeping the pre-trained language model (PLM) frozen, has shown remarkable performance in few-shot learning. Despite this, PT has been shown to rely heavily on good initialization of the prompt embeddings. In this work, we study meta prompt tuning (MPT) to systematically explore how meta-learning can help improve (if it can) cross-task generalization in PT through learning to initialize the prompt embeddings from other relevant tasks. We empirically analyze a representative set of meta learning algorithms in a wide range of adaptation settings with different source/target task configurations on a large set of few-shot tasks. With extensive experiments and analysis, we demonstrate the effectiveness of MPT. We find the improvement to be significant particularly on classification tasks. For other kinds of tasks such as question answering, we observe that while MPT can outperform PT in most cases, it does not always outperform multi-task learning. We further provide an in-depth analysis from the perspective of task similarity.


PromptSum: Parameter-Efficient Controllable Abstractive Summarization

arXiv.org Artificial Intelligence

Prompt tuning (PT), a parameter-efficient technique that only tunes the additional prompt embeddings while keeping the backbone pre-trained language model (PLM) frozen, has shown promising results in language understanding tasks, especially in low-resource scenarios. However, effective prompt design methods suitable for generation tasks such as summarization are still lacking. At the same time, summarization guided through instructions (discrete prompts) can achieve a desirable double objective of high quality and controllability in summary generation. Towards a goal of strong summarization performance under the triple conditions of parameter-efficiency, data-efficiency, and controllability, we introduce PromptSum, a method combining PT with a multi-task objective and discrete entity prompts for abstractive summarization. Our model achieves competitive ROUGE results on popular abstractive summarization benchmarks coupled with a strong level of controllability through entities, all while only tuning several orders of magnitude less parameters.