Goto

Collaborating Authors

 Zhang, Wenxuan


Babel: Open Multilingual Large Language Models Serving Over 90% of Global Speakers

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized natural language processing (NLP), yet open-source multilingual LLMs remain scarce, with existing models often limited in language coverage. Such models typically prioritize well-resourced languages, while widely spoken but under-resourced languages are often overlooked. To address this disparity, we introduce $\texttt{Babel}$, an open multilingual LLM that covers the top 25 languages by number of speakers, supports over 90% of the global population, and includes many languages neglected by other open multilingual LLMs. Unlike traditional continue pretraining approaches, Babel expands its parameter count through a layer extension technique that elevates Babel's performance ceiling. We introduce two variants: $\texttt{Babel-9B}$, designed for efficient inference and fine-tuning, and $\texttt{Babel-83B}$, which sets a new standard for open multilingual LLMs. Extensive evaluations on multilingual tasks demonstrate its superior performance compared to open LLMs of comparable size. In addition, using open-source supervised fine-tuning datasets, Babel achieves remarkable performance, with Babel-9B-Chat leading among 10B-sized LLMs and Babel-83B-Chat setting a new standard for multilingual tasks, reaching the same level of commercial models.


FACT-AUDIT: An Adaptive Multi-Agent Framework for Dynamic Fact-Checking Evaluation of Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly advanced the fact-checking studies. However, existing automated fact-checking evaluation methods rely on static datasets and classification metrics, which fail to automatically evaluate the justification production and uncover the nuanced limitations of LLMs in fact-checking. In this work, we introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities. Leveraging importance sampling principles and multi-agent collaboration, FACT-AUDIT generates adaptive and scalable datasets, performs iterative model-centric evaluations, and updates assessments based on model-specific responses. By incorporating justification production alongside verdict prediction, this framework provides a comprehensive and evolving audit of LLMs' factual reasoning capabilities, to investigate their trustworthiness. Extensive experiments demonstrate that FACT-AUDIT effectively differentiates among state-of-the-art LLMs, providing valuable insights into model strengths and limitations in model-centric fact-checking analysis.


SeaExam and SeaBench: Benchmarking LLMs with Local Multilingual Questions in Southeast Asia

arXiv.org Artificial Intelligence

This study introduces two novel benchmarks, SeaExam and SeaBench, designed to evaluate the capabilities of Large Language Models (LLMs) in Southeast Asian (SEA) application scenarios. Unlike existing multilingual datasets primarily derived from English translations, these benchmarks are constructed based on real-world scenarios from SEA regions. SeaExam draws from regional educational exams to form a comprehensive dataset that encompasses subjects such as local history and literature. In contrast, SeaBench is crafted around multi-turn, open-ended tasks that reflect daily interactions within SEA communities. Our evaluations demonstrate that SeaExam and SeaBench more effectively discern LLM performance on SEA language tasks compared to their translated benchmarks. This highlights the importance of using real-world queries to assess the multilingual capabilities of LLMs.


UV-Attack: Physical-World Adversarial Attacks for Person Detection via Dynamic-NeRF-based UV Mapping

arXiv.org Artificial Intelligence

In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.


ClarityEthic: Explainable Moral Judgment Utilizing Contrastive Ethical Insights from Large Language Models

arXiv.org Artificial Intelligence

With the rise and widespread use of Large Language Models (LLMs), ensuring their safety is crucial to prevent harm to humans and promote ethical behaviors. However, directly assessing value valence (i.e., support or oppose) by leveraging large-scale data training is untrustworthy and inexplainable. We assume that emulating humans to rely on social norms to make moral decisions can help LLMs understand and predict moral judgment. However, capturing human values remains a challenge, as multiple related norms might conflict in specific contexts. Consider norms that are upheld by the majority and promote the well-being of society are more likely to be accepted and widely adopted (e.g., "don't cheat,"). Therefore, it is essential for LLM to identify the appropriate norms for a given scenario before making moral decisions. To this end, we introduce a novel moral judgment approach called \textit{ClarityEthic} that leverages LLMs' reasoning ability and contrastive learning to uncover relevant social norms for human actions from different perspectives and select the most reliable one to enhance judgment accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in moral judgment tasks. Moreover, human evaluations confirm that the generated social norms provide plausible explanations that support the judgments. This suggests that modeling human moral judgment with the emulating humans moral strategy is promising for improving the ethical behaviors of LLMs.


Knowledge Boundary of Large Language Models: A Survey

arXiv.org Artificial Intelligence

Although large language models (LLMs) store vast amount of knowledge in their parameters, they still have limitations in the memorization and utilization of certain knowledge, leading to undesired behaviors such as generating untruthful and inaccurate responses. This highlights the critical need to understand the knowledge boundary of LLMs, a concept that remains inadequately defined in existing research. In this survey, we propose a comprehensive definition of the LLM knowledge boundary and introduce a formalized taxonomy categorizing knowledge into four distinct types. Using this foundation, we systematically review the field through three key lenses: the motivation for studying LLM knowledge boundaries, methods for identifying these boundaries, and strategies for mitigating the challenges they present. Finally, we discuss open challenges and potential research directions in this area. We aim for this survey to offer the community a comprehensive overview, facilitate access to key issues, and inspire further advancements in LLM knowledge research.


Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated multilingual capabilities; yet, they are mostly English-centric due to the imbalanced training corpora. Existing works leverage this phenomenon to improve their multilingual performances through translation, primarily on natural language processing (NLP) tasks. This work extends the evaluation from NLP tasks to real user queries and from English-centric LLMs to non-English-centric LLMs. While translation into English can help improve the performance of multilingual NLP tasks for English-centric LLMs, it may not be optimal for all scenarios. For culture-related tasks that need deep language understanding, prompting in the native language tends to be more promising as it better captures the nuances of culture and language. Our experiments reveal varied behaviors among different LLMs and tasks in the multilingual context. Therefore, we advocate for more comprehensive multilingual evaluation and more efforts toward developing multilingual LLMs beyond English-centric ones.


Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions

arXiv.org Artificial Intelligence

As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.


Continual Learning on a Diet: Learning from Sparsely Labeled Streams Under Constrained Computation

arXiv.org Artificial Intelligence

We propose and study a realistic Continual Learning (CL) setting where learning algorithms are granted a restricted computational budget per time step while training. We apply this setting to large-scale semi-supervised Continual Learning scenarios with sparse label rate. Previous proficient CL methods perform very poorly in this challenging setting. Overfitting to the sparse labeled data and insufficient computational budget are the two main culprits for such a poor performance. Our new setting encourages learning methods to effectively and efficiently utilize the unlabeled data during training. To that end, we propose a simple but highly effective baseline, DietCL, which utilizes both unlabeled and labeled data jointly. DietCL outperforms, by a large margin, all existing supervised CL algorithms as well as more recent continual semi-supervised methods. Our extensive analysis and ablations demonstrate that DietCL is stable under a full spectrum of label sparsity, computational budget and various other ablations. In the era of abundant information, data is not revealed in its entirety but rather sequentially from a non-stationary environment. For example, social media platforms, such as YouTube, Snapchat, and Facebook, receive huge amounts of data every day. The content of the data and its distribution depend greatly on social trends and focuses on the corresponding platforms, thus shift over time. For instance, Snapchat, in 2017, reported the influx of over 3.5 billion short videos daily from users across the globe (Snap, 2017). These videos had to be instantly processed for various tasks, from image rating and recommendation to hate speech and misinformation detection. Continual learning attempts to address such challenges, focusing on designing training algorithms that accommodate new data streams while preserving previously acquired knowledge. Diverse solutions have emerged, spanning from regularization-based (Kirkpatrick et al., 2017), architecturebased (Ebrahimi et al., 2020), to memory-based methods (Chaudhry et al., 2019b).


AdaMergeX: Cross-Lingual Transfer with Large Language Models via Adaptive Adapter Merging

arXiv.org Artificial Intelligence

As an effective alternative to the direct fine-tuning on target tasks in specific languages, cross-lingual transfer addresses the challenges of limited training data by decoupling ''task ability'' and ''language ability'' by fine-tuning on the target task in the source language and another selected task in the target language, respectively. However, they fail to fully separate the task ability from the source language or the language ability from the chosen task. In this paper, we acknowledge the mutual reliance between task ability and language ability and direct our attention toward the gap between the target language and the source language on tasks. As the gap removes the impact of tasks, we assume that it remains consistent across tasks. Based on this assumption, we propose a new cross-lingual transfer method called $\texttt{AdaMergeX}$ that utilizes adaptive adapter merging. By introducing a reference task, we can determine that the divergence of adapters fine-tuned on the reference task in both languages follows the same distribution as the divergence of adapters fine-tuned on the target task in both languages. Hence, we can obtain target adapters by combining the other three adapters. Furthermore, we propose a structure-adaptive adapter merging method. Our empirical results demonstrate that our approach yields new and effective cross-lingual transfer, outperforming existing methods across all settings.