Goto

Collaborating Authors

Zhang, Weinan


AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction

arXiv.org Machine Learning

Learning effective feature interactions is crucial for click-through rate (CTR) prediction tasks in recommender systems. In most of the existing deep learning models, feature interactions are either manually designed or simply enumerated. However, enumerating all feature interactions brings large memory and computation cost. Even worse, useless interactions may introduce unnecessary noise and complicate the training process. In this work, we propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS). AutoFIS can automatically identify all the important feature interactions for factorization models with just the computational cost equivalent to training the target model to convergence. In the \emph{search stage}, instead of searching over a discrete set of candidate feature interactions, we relax the choices to be continuous by introducing the architecture parameters. By implementing a regularized optimizer over the architecture parameters, the model can automatically identify and remove the redundant feature interactions during the training process of the model. In the \emph{re-train stage}, we keep the architecture parameters serving as an attention unit to further boost the performance. Offline experiments on three large-scale datasets (two public benchmarks, one private) demonstrate that the proposed AutoFIS can significantly improve various FM based models. AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service, where a 10-day online A/B test demonstrated that AutoFIS improved the DeepFM model by 20.3\% and 20.1\% in terms of CTR and CVR respectively.


GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation

arXiv.org Machine Learning

Molecular graph generation is a fundamental problem for drug discovery and has been attracting growing attention. The problem is challenging since it requires not only generating chemically valid molecular structures but also optimizing their chemical properties in the meantime. Inspired by the recent progress in deep generative models, in this paper we propose a flow-based autoregressive model for graph generation called GraphAF. GraphAF combines the advantages of both autoregressive and flow-based approaches and enjoys: (1) high model flexibility for data density estimation; (2) efficient parallel computation for training; (3) an iterative sampling process, which allows leveraging chemical domain knowledge for valency checking. Experimental results show that GraphAF is able to generate 68% chemically valid molecules even without chemical knowledge rules and 100% valid molecules with chemical rules. The training process of GraphAF is two times faster than the existing state-of-the-art approach GCPN. After fine-tuning the model for goal-directed property optimization with reinforcement learning, GraphAF achieves state-of-the-art performance on both chemical property optimization and constrained property optimization.


Improving Unsupervised Domain Adaptation with Variational Information Bottleneck

arXiv.org Machine Learning

Domain adaptation aims to leverage the supervision signal of source domain to obtain an accurate model for target domain, where the labels are not available. To leverage and adapt the label information from source domain, most existing methods employ a feature extracting function and match the marginal distributions of source and target domains in a shared feature space. In this paper, from the perspective of information theory, we show that representation matching is actually an insufficient constraint on the feature space for obtaining a model with good generalization performance in target domain. We then propose variational bottleneck domain adaptation (VBDA), a new domain adaptation method which improves feature transferability by explicitly enforcing the feature extractor to ignore the task-irrelevant factors and focus on the information that is essential to the task of interest for both source and target domains. Extensive experimental results demonstrate that VBDA significantly outperforms state-of-the-art methods across three domain adaptation benchmark datasets.


Learning to Design Games: Strategic Environments in Reinforcement Learning

arXiv.org Artificial Intelligence

In typical reinforcement learning (RL), the environment is assumed given and the goal of the learning is to identify an optimal policy for the agent taking actions through its interactions with the environment. In this paper, we extend this setting by considering the environment is not given, but controllable and learnable through its interaction with the agent at the same time. This extension is motivated by environment design scenarios in the real-world, including game design, shopping space design and traffic signal design. Theoretically, we find a dual Markov decision process (MDP) w.r.t. the environment to that w.r.t. the agent, and derive a policy gradient solution to optimizing the parametrized environment. Furthermore, discontinuous environments are addressed by a proposed general generative framework. Our experiments on a Maze game design task show the effectiveness of the proposed algorithms in generating diverse and challenging Mazes against various agent settings.


Signal Instructed Coordination in Team Competition

arXiv.org Artificial Intelligence

Most existing models of multi-agent reinforcement learning (MARL) adopt centralized training with decentralized execution framework. We demonstrate that the decentralized execution scheme restricts agents' capacity to find a better joint policy in team competition games, where each team of agents share the common rewards and cooperate to compete against other teams. To resolve this problem, we propose Signal Instructed Coordination (SIC), a novel coordination module that can be integrated with most existing models. SIC casts a common signal sampled from a pre-defined distribution to team members, and adopts an information-theoretic regularization to encourage agents to exploit in learning the instruction of centralized signals. Our experiments show that SIC can consistently improve team performance over well-recognized MARL models on matrix games and predator-prey games.


Learning to Advertise for Organic Traffic Maximization in E-Commerce Product Feeds

arXiv.org Machine Learning

Most e-commerce product feeds provide blended results of advertised products and recommended products to consumers. The underlying advertising and recommendation platforms share similar if not exactly the same set of candidate products. Consumers' behaviors on the advertised results constitute part of the recommendation model's training data and therefore can influence the recommended results. We refer to this process as Leverage. Considering this mechanism, we propose a novel perspective that advertisers can strategically bid through the advertising platform to optimize their recommended organic traffic. By analyzing the real-world data, we first explain the principles of Leverage mechanism, i.e., the dynamic models of Leverage. Then we introduce a novel Leverage optimization problem and formulate it with a Markov Decision Process. To deal with the sample complexity challenge in model-free reinforcement learning, we propose a novel Hybrid Training Leverage Bidding (HTLB) algorithm which combines the real-world samples and the emulator-generated samples to boost the learning speed and stability. Our offline experiments as well as the results from the online deployment demonstrate the superior performance of our approach.


Triple-to-Text: Converting RDF Triples into High-Quality Natural Languages via Optimizing an Inverse KL Divergence

arXiv.org Artificial Intelligence

Knowledge base is one of the main forms to represent information in a structured way. A knowledge base typically consists of Resource Description Frameworks (RDF) triples which describe the entities and their relations. Generating natural language description of the knowledge base is an important task in NLP, which has been formulated as a conditional language generation task and tackled using the sequence-to-sequence framework. Current works mostly train the language models by maximum likelihood estimation, which tends to generate lousy sentences. In this paper, we argue that such a problem of maximum likelihood estimation is intrinsic, which is generally irrevocable via changing network structures. Accordingly, we propose a novel Triple-to-Text (T2T) framework, which approximately optimizes the inverse Kullback-Leibler (KL) divergence between the distributions of the real and generated sentences. Due to the nature that inverse KL imposes large penalty on fake-looking samples, the proposed method can significantly reduce the probability of generating low-quality sentences. Our experiments on three real-world datasets demonstrate that T2T can generate higher-quality sentences and outperform baseline models in several evaluation metrics.


Towards Efficient and Unbiased Implementation of Lipschitz Continuity in GANs

arXiv.org Machine Learning

Lipschitz continuity recently becomes popular in generative adversarial networks (GANs). It was observed that the Lipschitz regularized discriminator leads to improved training stability and sample quality. The mainstream implementations of Lipschitz continuity include gradient penalty and spectral normalization. In this paper, we demonstrate that gradient penalty introduces undesired bias, while spectral normalization might be over restrictive. We accordingly propose a new method which is efficient and unbiased. Our experiments verify our analysis and show that the proposed method is able to achieve successful training in various situations where gradient penalty and spectral normalization fail.


Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space

arXiv.org Artificial Intelligence

In this paper we propose a hybrid architecture of actor-critic algorithms for reinforcement learning in parameterized action space, which consists of multiple parallel sub-actor networks to decompose the structured action space into simpler action spaces along with a critic network to guide the training of all sub-actor networks. While this paper is mainly focused on parameterized action space, the proposed architecture, which we call hybrid actor-critic, can be extended for more general action spaces which has a hierarchical structure. We present an instance of the hybrid actor-critic architecture based on proximal policy optimization (PPO), which we refer to as hybrid proximal policy optimization (H-PPO). Our experiments test H-PPO on a collection of tasks with parameterized action space, where H-PPO demonstrates superior performance over previous methods of parameterized action reinforcement learning.


Lipschitz Generative Adversarial Nets

arXiv.org Machine Learning

In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.