Goto

Collaborating Authors

 Zha, Zheng-Jun


ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs), such as GPT4o, have shown strong capabilities in visual reasoning and explanation generation. However, despite these strengths, they face significant challenges in the increasingly critical task of Image Forgery Detection and Localization (IFDL). Moreover, existing IFDL methods are typically limited to the learning of low-level semantic-agnostic clues and merely provide a single outcome judgment. To tackle these issues, we propose ForgeryGPT, a novel framework that advances the IFDL task by capturing high-order forensics knowledge correlations of forged images from diverse linguistic feature spaces, while enabling explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture. Specifically, ForgeryGPT enhances traditional LLMs by integrating the Mask-Aware Forgery Extractor, which enables the excavating of precise forgery mask information from input images and facilitating pixel-level understanding of tampering artifacts. The Mask-Aware Forgery Extractor consists of a Forgery Localization Expert (FL-Expert) and a Mask Encoder, where the FL-Expert is augmented with an Object-agnostic Forgery Prompt and a Vocabulary-enhanced Vision Encoder, allowing for effectively capturing of multi-scale fine-grained forgery details. To enhance its performance, we implement a three-stage training strategy, supported by our designed Mask-Text Alignment and IFDL Task-Specific Instruction Tuning datasets, which align vision-language modalities and improve forgery detection and instruction-following capabilities. Extensive experiments demonstrate the effectiveness of the proposed method.


GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding

arXiv.org Artificial Intelligence

Recently, most existing methods [2, 6, 18] establish explicit mappings between semantic affordance categories Open-Vocabulary 3D object affordance grounding aims and geometric structures, restricted to predefined seen categories to anticipate "action possibilities" regions on 3D objects and fail to ground object affordance out of the training with arbitrary instructions, which is crucial for robots to categories. Thus, some studies [27, 42, 50, 56, 58] generically perceive real scenarios and respond to operational explore grounding object affordance through additional instructions, changes. Existing methods focus on combining images encompassing combining images or languages or languages that depict interactions with 3D geometries that depict interactions with 3D geometries to introduce to introduce external interaction priors. However, they external interaction priors, and mitigate the generalization are still vulnerable to a limited semantic space by failing to gap lead by affordance diversity. Despite their remarkable leverage implied invariant geometries and potential interaction progress, they are still vulnerable to a limited semantic intentions. Normally, humans address complex tasks space by failing to leverage implied invariant geometries through multi-step reasoning and respond to diverse situations among objects with the same affordance, as well as potential by leveraging associative and analogical thinking.


Grounding 3D Scene Affordance From Egocentric Interactions

arXiv.org Artificial Intelligence

Grounding 3D scene affordance aims to locate interactive regions in 3D environments, which is crucial for embodied agents to interact intelligently with their surroundings. Most existing approaches achieve this by mapping semantics to 3D instances based on static geometric structure and visual appearance. This passive strategy limits the agent's ability to actively perceive and engage with the environment, making it reliant on predefined semantic instructions. In contrast, humans develop complex interaction skills by observing and imitating how others interact with their surroundings. To empower the model with such abilities, we introduce a novel task: grounding 3D scene affordance from egocentric interactions, where the goal is to identify the corresponding affordance regions in a 3D scene based on an egocentric video of an interaction. This task faces the challenges of spatial complexity and alignment complexity across multiple sources. To address these challenges, we propose the Egocentric Interaction-driven 3D Scene Affordance Grounding (Ego-SAG) framework, which utilizes interaction intent to guide the model in focusing on interaction-relevant sub-regions and aligns affordance features from different sources through a bidirectional query decoder mechanism. Furthermore, we introduce the Egocentric Video-3D Scene Affordance Dataset (VSAD), covering a wide range of common interaction types and diverse 3D environments to support this task. Extensive experiments on VSAD validate both the feasibility of the proposed task and the effectiveness of our approach.


DreamWaltz-G: Expressive 3D Gaussian Avatars from Skeleton-Guided 2D Diffusion

arXiv.org Artificial Intelligence

Leveraging pretrained 2D diffusion models and score distillation sampling (SDS), recent methods have shown promising results for text-to-3D avatar generation. However, generating high-quality 3D avatars capable of expressive animation remains challenging. In this work, we present DreamWaltz-G, a novel learning framework for animatable 3D avatar generation from text. The core of this framework lies in Skeleton-guided Score Distillation and Hybrid 3D Gaussian Avatar representation. Specifically, the proposed skeleton-guided score distillation integrates skeleton controls from 3D human templates into 2D diffusion models, enhancing the consistency of SDS supervision in terms of view and human pose. This facilitates the generation of high-quality avatars, mitigating issues such as multiple faces, extra limbs, and blurring. The proposed hybrid 3D Gaussian avatar representation builds on the efficient 3D Gaussians, combining neural implicit fields and parameterized 3D meshes to enable real-time rendering, stable SDS optimization, and expressive animation. Extensive experiments demonstrate that DreamWaltz-G is highly effective in generating and animating 3D avatars, outperforming existing methods in both visual quality and animation expressiveness. Our framework further supports diverse applications, including human video reenactment and multi-subject scene composition.


Multi-perspective Memory Enhanced Network for Identifying Key Nodes in Social Networks

arXiv.org Artificial Intelligence

Identifying key nodes in social networks plays a crucial role in timely blocking false information. Existing key node identification methods usually consider node influence only from the propagation structure perspective and have insufficient generalization ability to unknown scenarios. In this paper, we propose a novel Multi-perspective Memory Enhanced Network (MMEN) for identifying key nodes in social networks, which mines key nodes from multiple perspectives and utilizes memory networks to store historical information. Specifically, MMEN first constructs two propagation networks from the perspectives of user attributes and propagation structure and updates node feature representations using graph attention networks. Meanwhile, the memory network is employed to store information of similar subgraphs, enhancing the model's generalization performance in unknown scenarios. Finally, MMEN applies adaptive weights to combine the node influence of the two propagation networks to select the ultimate key nodes. Extensive experiments demonstrate that our method significantly outperforms previous methods.


Hierarchical Information Enhancement Network for Cascade Prediction in Social Networks

arXiv.org Artificial Intelligence

Understanding information cascades in networks is a fundamental issue in numerous applications. Current researches often sample cascade information into several independent paths or subgraphs to learn a simple cascade representation. However, these approaches fail to exploit the hierarchical semantic associations between different modalities, limiting their predictive performance. In this work, we propose a novel Hierarchical Information Enhancement Network (HIENet) for cascade prediction. Our approach integrates fundamental cascade sequence, user social graphs, and sub-cascade graph into a unified framework. Specifically, HIENet utilizes DeepWalk to sample cascades information into a series of sequences. It then gathers path information between users to extract the social relationships of propagators. Additionally, we employ a time-stamped graph convolutional network to aggregate sub-cascade graph information effectively. Ultimately, we introduce a Multi-modal Cascade Transformer to powerfully fuse these clues, providing a comprehensive understanding of cascading process. Extensive experiments have demonstrated the effectiveness of the proposed method.


BEVTrack: A Simple and Strong Baseline for 3D Single Object Tracking in Bird's-Eye View

arXiv.org Artificial Intelligence

3D Single Object Tracking (SOT) is a fundamental task of computer vision, proving essential for applications like autonomous driving. It remains challenging to localize the target from surroundings due to appearance variations, distractors, and the high sparsity of point clouds. The spatial information indicating objects' spatial adjacency across consecutive frames is crucial for effective object tracking. However, existing trackers typically employ point-wise representation with irregular formats, leading to insufficient use of this important spatial knowledge. As a result, these trackers usually require elaborate designs and solving multiple subtasks. In this paper, we propose BEVTrack, a simple yet effective baseline that performs tracking in Bird's-Eye View (BEV). This representation greatly retains spatial information owing to its ordered structure and inherently encodes the implicit motion relations of the target as well as distractors. To achieve accurate regression for targets with diverse attributes (\textit{e.g.}, sizes and motion patterns), BEVTrack constructs the likelihood function with the learned underlying distributions adapted to different targets, rather than making a fixed Laplace or Gaussian assumption as in previous works. This provides valuable priors for tracking and thus further boosts performance. While only using a single regression loss with a plain convolutional architecture, BEVTrack achieves state-of-the-art performance on three large-scale datasets, KITTI, NuScenes, and Waymo Open Dataset while maintaining a high inference speed of about 200 FPS. The code will be released at https://github.com/xmm-prio/BEVTrack.


DreamWaltz: Make a Scene with Complex 3D Animatable Avatars

arXiv.org Artificial Intelligence

We present DreamWaltz, a novel framework for generating and animating complex 3D avatars given text guidance and parametric human body prior. While recent methods have shown encouraging results for text-to-3D generation of common objects, creating high-quality and animatable 3D avatars remains challenging. To create high-quality 3D avatars, DreamWaltz proposes 3D-consistent occlusion-aware Score Distillation Sampling (SDS) to optimize implicit neural representations with canonical poses. It provides view-aligned supervision via 3D-aware skeleton conditioning which enables complex avatar generation without artifacts and multiple faces. For animation, our method learns an animatable 3D avatar representation from abundant image priors of diffusion model conditioned on various poses, which could animate complex non-rigged avatars given arbitrary poses without retraining. Extensive evaluations demonstrate that DreamWaltz is an effective and robust approach for creating 3D avatars that can take on complex shapes and appearances as well as novel poses for animation. The proposed framework further enables the creation of complex scenes with diverse compositions, including avatar-avatar, avatar-object and avatar-scene interactions. See https://dreamwaltz3d.github.io/ for more vivid 3D avatar and animation results.


Self-supervised Cross-view Representation Reconstruction for Change Captioning

arXiv.org Artificial Intelligence

Change captioning aims to describe the difference between a pair of similar images. Its key challenge is how to learn a stable difference representation under pseudo changes caused by viewpoint change. In this paper, we address this by proposing a self-supervised cross-view representation reconstruction (SCORER) network. Concretely, we first design a multi-head token-wise matching to model relationships between cross-view features from similar/dissimilar images. Then, by maximizing cross-view contrastive alignment of two similar images, SCORER learns two view-invariant image representations in a self-supervised way. Based on these, we reconstruct the representations of unchanged objects by cross-attention, thus learning a stable difference representation for caption generation. Further, we devise a cross-modal backward reasoning to improve the quality of caption. This module reversely models a ``hallucination'' representation with the caption and ``before'' representation. By pushing it closer to the ``after'' representation, we enforce the caption to be informative about the difference in a self-supervised manner. Extensive experiments show our method achieves the state-of-the-art results on four datasets. The code is available at https://github.com/tuyunbin/SCORER.


DreamTime: An Improved Optimization Strategy for Text-to-3D Content Creation

arXiv.org Artificial Intelligence

Text-to-image diffusion models pre-trained on billions of image-text pairs have recently enabled text-to-3D content creation by optimizing a randomly initialized Neural Radiance Fields (NeRF) with score distillation. However, the resultant 3D models exhibit two limitations: (a) quality concerns such as saturated color and the Janus problem; (b) extremely low diversity comparing to text-guided image synthesis. In this paper, we show that the conflict between NeRF optimization process and uniform timestep sampling in score distillation is the main reason for these limitations. To resolve this conflict, we propose to prioritize timestep sampling with monotonically non-increasing functions, which aligns NeRF optimization with the sampling process of diffusion model. Extensive experiments show that our simple redesign significantly improves text-to-3D content creation with higher quality and diversity.