Zha, Sheng
Sequence-level Large Language Model Training with Contrastive Preference Optimization
Feng, Zhili, Ram, Dhananjay, Hawkins, Cole, Rawal, Aditya, Zhao, Jinman, Zha, Sheng
The next token prediction loss is the dominant self-supervised training objective for large language models and has achieved promising results in a variety of downstream tasks. However, upon closer investigation of this objective, we find that it lacks an understanding of sequence-level signals, leading to a mismatch between training and inference processes. To bridge this gap, we introduce a contrastive preference optimization (CPO) procedure that can inject sequence-level information into the language model at any training stage without expensive human labeled data. Our experiments show that the proposed objective surpasses the next token prediction in terms of win rate in the instruction-following and text generation tasks.
Extreme Miscalibration and the Illusion of Adversarial Robustness
Raina, Vyas, Tan, Samson, Cevher, Volkan, Rawal, Aditya, Zha, Sheng, Karypis, George
Deep learning-based Natural Language Processing (NLP) models are vulnerable to adversarial attacks, where small perturbations can cause a model to misclassify. Adversarial Training (AT) is often used to increase model robustness. However, we have discovered an intriguing phenomenon: deliberately or accidentally miscalibrating models masks gradients in a way that interferes with adversarial attack search methods, giving rise to an apparent increase in robustness. We show that this observed gain in robustness is an illusion of robustness (IOR), and demonstrate how an adversary can perform various forms of test-time temperature calibration to nullify the aforementioned interference and allow the adversarial attack to find adversarial examples. Hence, we urge the NLP community to incorporate test-time temperature scaling into their robustness evaluations to ensure that any observed gains are genuine. Finally, we show how the temperature can be scaled during \textit{training} to improve genuine robustness.
Pre-training Differentially Private Models with Limited Public Data
Bu, Zhiqi, Zhang, Xinwei, Hong, Mingyi, Zha, Sheng, Karypis, George
The superior performance of large foundation models relies on the use of massive amounts of high-quality data, which often contain sensitive, private and copyrighted material that requires formal protection. While differential privacy (DP) is a prominent method to gauge the degree of security provided to the models, its application is commonly limited to the model fine-tuning stage, due to the performance degradation when applying DP during the pre-training stage. Consequently, DP is yet not capable of protecting a substantial portion of the data used during the initial pre-training process. In this work, we first provide a theoretical understanding of the efficacy of DP training by analyzing the per-iteration loss improvement. We make a key observation that DP optimizers' performance degradation can be significantly mitigated by the use of limited public data, which leads to a novel DP continual pre-training strategy. Empirically, using only 10\% of public data, our strategy can achieve DP accuracy of 41.5\% on ImageNet-21k (with $\epsilon=8$), as well as non-DP accuracy of 55.7\% and and 60.0\% on downstream tasks Places365 and iNaturalist-2021, respectively, on par with state-of-the-art standard pre-training and substantially outperforming existing DP pre-trained models.
Large Language Models of Code Fail at Completing Code with Potential Bugs
Dinh, Tuan, Zhao, Jinman, Tan, Samson, Negrinho, Renato, Lausen, Leonard, Zha, Sheng, Karypis, George
Large language models of code (Code-LLMs) have recently brought tremendous advances to code completion, a fundamental feature of programming assistance and code intelligence. However, most existing works ignore the possible presence of bugs in the code context for generation, which are inevitable in software development. Therefore, we introduce and study the buggy-code completion problem, inspired by the realistic scenario of real-time code suggestion where the code context contains potential bugs -- anti-patterns that can become bugs in the completed program. To systematically study the task, we introduce two datasets: one with synthetic bugs derived from semantics-altering operator changes (buggy-HumanEval) and one with realistic bugs derived from user submissions to coding problems (buggy-FixEval). We find that the presence of potential bugs significantly degrades the generation performance of the high-performing Code-LLMs. For instance, the passing rates of CODEGEN-2B-MONO on test cases of buggy-HumanEval drop more than 50% given a single potential bug in the context. Finally, we investigate several post-hoc methods for mitigating the adverse effect of potential bugs and find that there remains a significant gap in post-mitigation performance.
Zero redundancy distributed learning with differential privacy
Bu, Zhiqi, Chiu, Justin, Liu, Ruixuan, Zha, Sheng, Karypis, George
Deep learning using large models have achieved great success in a wide range of domains. However, training these models on billions of parameters is very challenging in terms of the training speed, memory cost, and communication efficiency, especially under the privacy-preserving regime with differential privacy (DP). On the one hand, DP optimization has comparable efficiency to the standard non-private optimization on a single GPU, but on multiple GPUs, existing DP distributed learning (such as pipeline parallel) has suffered from significantly worse efficiency. On the other hand, the Zero Redundancy Optimizer (ZeRO) is a state-of-the-art solution to the standard distributed learning, exhibiting excellent training efficiency on large models, but to work compatibly with DP is technically complicated. In this work, we develop a new systematic solution, DP-ZeRO, (I) to scale up the trainable DP model size, e.g. to GPT-100B, (II) to obtain the same computation and communication efficiency as the standard ZeRO, and (III) to enable mixed-precision DP training. Our DP-ZeRO, like the standard ZeRO, has the potential to train models with arbitrary size and is evaluated on the world's largest DP models in terms of the number of trainable parameters. Recent advances in differentially private (DP) deep learning have witnessed the power of large pre-trained models, achieving comparable accuracy to state-of-the-art (SOTA) non-private models across computer vision De et al. (2022); Bu et al. (2022a); Mehta et al. (2022); Xie et al. (2018), natural language processing Yu et al. (2021); Li et al. (2021); Bu et al. (2023a), and many other tasks. Similar to their non-DP counter-parts, it has been observed that larger DP models tend to have better performance.
On the accuracy and efficiency of group-wise clipping in differentially private optimization
Bu, Zhiqi, Liu, Ruixuan, Wang, Yu-Xiang, Zha, Sheng, Karypis, George
Recent advances have substantially improved the accuracy, memory cost, and training speed of differentially private (DP) deep learning, especially on large vision and language models with millions to billions of parameters. In this work, we thoroughly study the per-sample gradient clipping style, a key component in DP optimization. We show that different clipping styles have the same time complexity but instantiate an accuracy-memory trade-off: while the all-layer clipping (of coarse granularity) is the most prevalent and usually gives the best accuracy, it incurs heavier memory cost compared to other group-wise clipping, such as the layer-wise clipping (of finer granularity). We formalize this trade-off through our convergence theory and complexity analysis. Importantly, we demonstrate that the accuracy gap between group-wise clipping and all-layer clipping becomes smaller for larger models, while the memory advantage of the group-wise clipping remains. Consequently, the group-wise clipping allows DP optimization of large models to achieve high accuracy and low peak memory simultaneously.
HYTREL: Hypergraph-enhanced Tabular Data Representation Learning
Chen, Pei, Sarkar, Soumajyoti, Lausen, Leonard, Srinivasan, Balasubramaniam, Zha, Sheng, Huang, Ruihong, Karypis, George
Language models pretrained on large collections of tabular data have demonstrated their effectiveness in several downstream tasks. However, many of these models do not take into account the row/column permutation invariances, hierarchical structure, etc. that exist in tabular data. To alleviate these limitations, we propose HYTREL, a tabular language model, that captures the permutation invariances and three more structural properties of tabular data by using hypergraphs - where the table cells make up the nodes and the cells occurring jointly together in each row, column, and the entire table are used to form three different types of hyperedges. We show that HYTREL is maximally invariant under certain conditions for tabular data, i.e., two tables obtain the same representations via HYTREL iff the two tables are identical up to permutations. Our empirical results demonstrate that HYTREL consistently outperforms other competitive baselines on four downstream tasks with minimal pretraining, illustrating the advantages of incorporating the inductive biases associated with tabular data into the representations. Finally, our qualitative analyses showcase that HYTREL can assimilate the table structures to generate robust representations for the cells, rows, columns, and the entire table.
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer
Zhang, Qingru, Ram, Dhananjay, Hawkins, Cole, Zha, Sheng, Zhao, Tuo
Pretrained transformer models have demonstrated remarkable performance across various natural language processing tasks. These models leverage the attention mechanism to capture long- and short-range dependencies in the sequence. However, the (full) attention mechanism incurs high computational cost - quadratic in the sequence length, which is not affordable in tasks with long sequences, e.g., inputs with 8k tokens. Although sparse attention can be used to improve computational efficiency, as suggested in existing work, it has limited modeling capacity and often fails to capture complicated dependencies in long sequences. To tackle this challenge, we propose MASFormer, an easy-to-implement transformer variant with Mixed Attention Spans. Specifically, MASFormer is equipped with full attention to capture long-range dependencies, but only at a small number of layers. For the remaining layers, MASformer only employs sparse attention to capture short-range dependencies. Our experiments on natural language modeling and generation tasks show that a decoder-only MASFormer model of 1.3B parameters can achieve competitive performance to vanilla transformers with full attention while significantly reducing computational cost (up to 75%). Additionally, we investigate the effectiveness of continual training with long sequence data and how sequence length impacts downstream generation performance, which may be of independent interest.
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Bu, Zhiqi, Wang, Yu-Xiang, Zha, Sheng, Karypis, George
Per-example gradient clipping is a key algorithmic step that enables practical differential private (DP) training for deep learning models. The choice of clipping threshold R, however, is vital for achieving high accuracy under DP. We propose an easy-to-use replacement, called automatic clipping, that eliminates the need to tune R for any DP optimizers, including DP-SGD, DP-Adam, DP-LAMB and many others. The automatic variants are as private and computationally efficient as existing DP optimizers, but require no DP-specific hyperparameters and thus make DP training as amenable as the standard non-private training. We give a rigorous convergence analysis of automatic DP-SGD in the non-convex setting, showing that it can enjoy an asymptotic convergence rate that matches the standard SGD, under a symmetric gradient noise assumption of the per-sample gradients (commonly used in the non-DP literature). We demonstrate on various language and vision tasks that automatic clipping outperforms or matches the state-of-the-art, and can be easily employed with minimal changes to existing codebases.
Coupling public and private gradient provably helps optimization
Liu, Ruixuan, Bu, Zhiqi, Wang, Yu-xiang, Zha, Sheng, Karypis, George
The success of large neural networks is crucially determined by the availability of data. It has been observed that training only on a small amount of public data, or privately on the abundant private data can lead to undesirable degradation of accuracy. In this work, we leverage both private and public data to improve the optimization, by coupling their gradients via a weighted linear combination. We formulate an optimal solution for the optimal weight in the convex setting to indicate that the weighting coefficient should be hyperparameter-dependent. Then, we prove the acceleration in the convergence of non-convex loss and the effects of hyper-parameters such as privacy budget, number of iterations, batch size, and model size on the choice of the weighting coefficient. We support our analysis with empirical experiments across language and vision benchmarks, and provide a guideline for choosing the optimal weight of the gradient coupling.