Goto

Collaborating Authors

 Zeng, Wei


nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity

arXiv.org Artificial Intelligence

Natural Language to Visualization (NL2VIS) enables users to create visualizations from natural language queries, making data insights more accessible. However, NL2VIS faces challenges in interpreting ambiguous queries, as users often express their visualization needs in imprecise language. To address this challenge, we introduce nvBench 2.0, a new benchmark designed to evaluate NL2VIS systems in scenarios involving ambiguous queries. nvBench 2.0 includes 7,878 natural language queries and 24,076 corresponding visualizations, derived from 780 tables across 153 domains. It is built using a controlled ambiguity-injection pipeline that generates ambiguous queries through a reverse-generation workflow. By starting with unambiguous seed visualizations and selectively injecting ambiguities, the pipeline yields multiple valid interpretations for each query, with each ambiguous query traceable to its corresponding visualization through step-wise reasoning paths. We evaluate various Large Language Models (LLMs) on their ability to perform ambiguous NL2VIS tasks using nvBench 2.0. We also propose Step-NL2VIS, an LLM-based model trained on nvBench 2.0, which enhances performance in ambiguous scenarios through step-wise preference optimization. Our results show that Step-NL2VIS outperforms all baselines, setting a new state-of-the-art for ambiguous NL2VIS tasks.


MCCoder: Streamlining Motion Control with LLM-Assisted Code Generation and Rigorous Verification

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown considerable promise in code generation. However, the automation sector, especially in motion control, continues to rely heavily on manual programming due to the complexity of tasks and critical safety considerations. In this domain, incorrect code execution can pose risks to both machinery and personnel, necessitating specialized expertise. To address these challenges, we introduce MCCoder, an LLM-powered system designed to generate code that addresses complex motion control tasks, with integrated soft-motion data verification. MCCoder enhances code generation through multitask decomposition, hybrid retrieval-augmented generation (RAG), and self-correction with a private motion library. Moreover, it supports data verification by logging detailed trajectory data and providing simulations and plots, allowing users to assess the accuracy of the generated code and bolstering confidence in LLM-based programming. To ensure robust validation, we propose MCEVAL, an evaluation dataset with metrics tailored to motion control tasks of varying difficulties. Experiments indicate that MCCoder improves performance by 11.61% overall and by 66.12% on complex tasks in MCEVAL dataset compared with base models with naive RAG. This system and dataset aim to facilitate the application of code generation in automation settings with strict safety requirements. MCCoder is publicly available at https://github.com/MCCodeAI/MCCoder.


AI-rays: Exploring Bias in the Gaze of AI Through a Multimodal Interactive Installation

arXiv.org Artificial Intelligence

Numerous cases have demonstrated that specific appearance signals can implicitly correlate with biased social sorting, causing Data surveillance has become more covert and pervasive with AI injustice. For example, AI predictive policing overestimates recidivism algorithms, which can result in biased social classifications. Appearance risk for black people [David Robinson 2016], recruitment offers intuitive identity signals, but what does it mean engines prefer male candidates for tech jobs [Reuters 2018], and to let AI observe and speculate on them? We introduce AI-rays, AI beauty contests favor white winners [Levin 2016]. Nowadays, an interactive installation where AI generates speculative identities machine scrutiny is pervasive and constant. How do machines interpret from participants' appearance which are expressed through our appearance cues? Who is putting that speculation to use? synthesized personal items placed in participants' bags. It uses Does the meaning of appearance signal change when machines, speculative X-ray visions to contrast reality with AI-generated assumptions, not humans, observe us? metaphorically highlighting AI's scrutiny and biases. AI-rays promotes discussions on modern surveillance and the future of human-machine reality through a playful, immersive experience exploring AI biases.


ModalChorus: Visual Probing and Alignment of Multi-modal Embeddings via Modal Fusion Map

arXiv.org Artificial Intelligence

Multi-modal embeddings form the foundation for vision-language models, such as CLIP embeddings, the most widely used text-image embeddings. However, these embeddings are vulnerable to subtle misalignment of cross-modal features, resulting in decreased model performance and diminished generalization. To address this problem, we design ModalChorus, an interactive system for visual probing and alignment of multi-modal embeddings. ModalChorus primarily offers a two-stage process: 1) embedding probing with Modal Fusion Map (MFM), a novel parametric dimensionality reduction method that integrates both metric and nonmetric objectives to enhance modality fusion; and 2) embedding alignment that allows users to interactively articulate intentions for both point-set and set-set alignments. Quantitative and qualitative comparisons for CLIP embeddings with existing dimensionality reduction (e.g., t-SNE and MDS) and data fusion (e.g., data context map) methods demonstrate the advantages of MFM in showcasing cross-modal features over common vision-language datasets. Case studies reveal that ModalChorus can facilitate intuitive discovery of misalignment and efficient re-alignment in scenarios ranging from zero-shot classification to cross-modal retrieval and generation.


End-to-End Real-World Polyphonic Piano Audio-to-Score Transcription with Hierarchical Decoding

arXiv.org Artificial Intelligence

Piano audio-to-score transcription (A2S) is an important yet underexplored task with extensive applications for music composition, practice, and analysis. However, existing end-to-end piano A2S systems faced difficulties in retrieving bar-level information such as key and time signatures, and have been trained and evaluated with only synthetic data. To address these limitations, we propose a sequence-to-sequence (Seq2Seq) model with a hierarchical decoder that aligns with the hierarchical structure of musical scores, enabling the transcription of score information at both the bar and note levels by multi-task learning. To bridge the gap between synthetic data and recordings of human performance, we propose a two-stage training scheme, which involves pre-training the model using an expressive performance rendering (EPR) system on synthetic audio, followed by fine-tuning the model using recordings of human performance. To preserve the voicing structure for score reconstruction, we propose a pre-processing method for **Kern scores in scenarios with an unconstrained number of voices. Experimental results support the effectiveness of our proposed approaches, in terms of both transcription performance on synthetic audio data in comparison to the current state-of-the-art, and the first experiment on human recordings.


Generative AI for Visualization: State of the Art and Future Directions

arXiv.org Artificial Intelligence

Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.


TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs) have shown impressive results on various multimodal tasks. However, most existing MLLMs are not well suited for document-oriented tasks, which require fine-grained image perception and information compression. In this paper, we present TextHawk, a MLLM that is specifically designed for document-oriented tasks, while preserving the general capabilities of MLLMs. TextHawk is aimed to explore efficient fine-grained perception by designing four dedicated components. Firstly, a ReSampling and ReArrangement (ReSA) module is proposed to reduce the redundancy in the document texts and lower the computational cost of the MLLM. We explore encoding the positions of each local feature by presenting Scalable Positional Embeddings (SPEs), which can preserve the scalability of various image sizes. A Query Proposal Network (QPN) is then adopted to initialize the queries dynamically among different sub-images. To further enhance the fine-grained visual perceptual ability of the MLLM, we design a Multi-Level Cross-Attention (MLCA) mechanism that captures the hierarchical structure and semantic relations of document images. Furthermore, we create a new instruction-tuning dataset for document-oriented tasks by enriching the multimodal document data with Gemini Pro. We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods, demonstrating its effectiveness and superiority in fine-grained document perception and general abilities.


TypeDance: Creating Semantic Typographic Logos from Image through Personalized Generation

arXiv.org Artificial Intelligence

One notable application is the semantic typographic logo, which symbolizes a unique identity in a concise yet informative manner. Due to its expressiveness and memorability [7], semantic typographic logo has been widely used as visual signatures for individuals [28], brand logos with commercial values [15, 20], and symbols for significant events and city promotions [3, 43]. However, crafting a semantic typographic logo presents a formidable challenge, requiring seamless blending of typeface and imagery while preserving readability. Experienced designers often rely on professional software like Adobe Illustrator to manually adjust the outline of the typeface to incorporate specific imagery, which is a time-consuming and error-prone process. They often experiment with different strokes or letters of typeface and various imageries to find a visually appealing and memorable representation, intensifying the lengthy process. This requires creative thinking, practical skills, and the ability to persist through continuous trial and error.


The Contemporary Art of Image Search: Iterative User Intent Expansion via Vision-Language Model

arXiv.org Artificial Intelligence

Image search is an essential and user-friendly method to explore vast galleries of digital images. However, existing image search methods heavily rely on proximity measurements like tag matching or image similarity, requiring precise user inputs for satisfactory results. To meet the growing demand for a contemporary image search engine that enables accurate comprehension of users' search intentions, we introduce an innovative user intent expansion framework. Our framework leverages visual-language models to parse and compose multi-modal user inputs to provide more accurate and satisfying results. It comprises two-stage processes: 1) a parsing stage that incorporates a language parsing module with large language models to enhance the comprehension of textual inputs, along with a visual parsing module that integrates an interactive segmentation module to swiftly identify detailed visual elements within images; and 2) a logic composition stage that combines multiple user search intents into a unified logic expression for more sophisticated operations in complex searching scenarios. Moreover, the intent expansion framework enables users to perform flexible contextualized interactions with the search results to further specify or adjust their detailed search intents iteratively. We implemented the framework into an image search system for NFT (non-fungible token) search and conducted a user study to evaluate its usability and novel properties. The results indicate that the proposed framework significantly improves users' image search experience. Particularly the parsing and contextualized interactions prove useful in allowing users to express their search intents more accurately and engage in a more enjoyable iterative search experience.


Graph Enhanced BERT for Query Understanding

arXiv.org Artificial Intelligence

Query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information. However, it is inherently challenging since it needs to capture semantic information from short and ambiguous queries and often requires massive task-specific labeled data. In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks because they can extract general semantic information from large-scale corpora. Therefore, there are unprecedented opportunities to adopt PLMs for query understanding. However, there is a gap between the goal of query understanding and existing pre-training strategies -- the goal of query understanding is to boost search performance while existing strategies rarely consider this goal. Thus, directly applying them to query understanding is sub-optimal. On the other hand, search logs contain user clicks between queries and urls that provide rich users' search behavioral information on queries beyond their content. Therefore, in this paper, we aim to fill this gap by exploring search logs. In particular, to incorporate search logs into pre-training, we first construct a query graph where nodes are queries and two queries are connected if they lead to clicks on the same urls. Then we propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph. In other words, GE-BERT can capture both the semantic information and the users' search behavioral information of queries. Extensive experiments on various query understanding tasks have demonstrated the effectiveness of the proposed framework.