Zeng, Dun
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Zeng, Dun, Wu, Zheshun, Liu, Shiyu, Pan, Yu, Tang, Xiaoying, Xu, Zenglin
Federated Learning (FL) is a distributed learning approach that trains neural networks across multiple devices while keeping their local data private. However, FL often faces challenges due to data heterogeneity, leading to inconsistent local optima among clients. These inconsistencies can cause unfavorable convergence behavior and generalization performance degradation. Existing studies mainly describe this issue through \textit{convergence analysis}, focusing on how well a model fits training data, or through \textit{algorithmic stability}, which examines the generalization gap. However, neither approach precisely captures the generalization performance of FL algorithms, especially for neural networks. In this paper, we introduce the first generalization dynamics analysis framework in federated optimization, highlighting the trade-offs between model stability and optimization. Through this framework, we show how the generalization of FL algorithms is affected by the interplay of algorithmic stability and optimization. This framework applies to standard federated optimization and its advanced versions, like server momentum. We find that fast convergence from large local steps or accelerated momentum enlarges stability but obtains better generalization performance. Our insights into these trade-offs can guide the practice of future algorithms for better generalization.
FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data
Zhang, Yukun, Chen, Guanzhong, Xu, Zenglin, Wang, Jianyong, Zeng, Dun, Li, Junfan, Wang, Jinghua, Qi, Yuan, King, Irwin
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment. Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality. However, the sensitive nature of healthcare data often restricts individual clinical institutions from sharing data to train sufficiently generalized and unbiased ML models. Federated Learning (FL) is an emerging approach, which offers a promising solution by enabling collaborative model training across multiple participants without compromising the privacy of the individual data owners. However, to the best of our knowledge, there has been limited prior research applying FL to the cardiovascular disease domain. Moreover, existing FL benchmarks and datasets are typically simulated and may fall short of replicating the complexity of natural heterogeneity found in realistic datasets that challenges current FL algorithms. To address these gaps, this paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD. This benchmark comprises two major tasks: electrocardiogram (ECG) classification and echocardiogram (ECHO) segmentation, based on naturally scattered datasets constructed from the CVD data of seven institutions. Our extensive experiments on these datasets reveal that FL faces new challenges with real-world non-IID and long-tail data. The code and datasets of FedCVD are available https://github.com/SMILELab-FL/FedCVD.
Enhanced Federated Optimization: Adaptive Unbiased Sampling with Reduced Variance
Zeng, Dun, Xu, Zenglin, Pan, Yu, Luo, Xu, Wang, Qifan, Tang, Xiaoying
Federated Learning (FL) is a distributed learning paradigm to train a global model across multiple devices without collecting local data. In FL, a server typically selects a subset of clients for each training round to optimize resource usage. Central to this process is the technique of unbiased client sampling, which ensures a representative selection of clients. Current methods primarily utilize a random sampling procedure which, despite its effectiveness, achieves suboptimal efficiency owing to the loose upper bound caused by the sampling variance. In this work, by adopting an independent sampling procedure, we propose a federated optimization framework focused on adaptive unbiased client sampling, improving the convergence rate via an online variance reduction strategy. In particular, we present the first adaptive client sampler, K-Vib, employing an independent sampling procedure. K-Vib achieves a linear speed-up on the regret bound $\tilde{\mathcal{O}}\big(N^{\frac{1}{3}}T^{\frac{2}{3}}/K^{\frac{4}{3}}\big)$ within a set communication budget $K$. Empirical studies indicate that K-Vib doubles the speed compared to baseline algorithms, demonstrating significant potential in federated optimization.
Tackling Hybrid Heterogeneity on Federated Optimization via Gradient Diversity Maximization
Zeng, Dun, Xu, Zenglin, Pan, Yu, Wang, Qifan, Tang, Xiaoying
Federated learning refers to a distributed machine learning paradigm in which data samples are decentralized and distributed among multiple clients. These samples may exhibit statistical heterogeneity, which refers to data distributions are not independent and identical across clients. Additionally, system heterogeneity, or variations in the computational power of the clients, introduces biases into federated learning. The combined effects of statistical and system heterogeneity can significantly reduce the efficiency of federated optimization. However, the impact of hybrid heterogeneity is not rigorously discussed. This paper explores how hybrid heterogeneity affects federated optimization by investigating server-side optimization. The theoretical results indicate that adaptively maximizing gradient diversity in server update direction can help mitigate the potential negative consequences of hybrid heterogeneity. To this end, we introduce a novel server-side gradient-based optimizer \textsc{FedAWARE} with theoretical guarantees provided. Intensive experiments in heterogeneous federated settings demonstrate that our proposed optimizer can significantly enhance the performance of federated learning across varying degrees of hybrid heterogeneity.
On Diversified Preferences of Large Language Model Alignment
Zeng, Dun, Dai, Yong, Cheng, Pengyu, Hu, Tianhao, Chen, Wanshun, Du, Nan, Xu, Zenglin
Aligning large language models (LLMs) with human preferences has been recognized as the key to improving LLMs' interaction quality. However, in this pluralistic world, human preferences can be diversified by people's different tastes, which hinders the effectiveness of LLM alignment methods. In this paper, we provide the first quantitative analysis to verify the existence of diversified preferences in commonly used human feedback datasets. To mitigate the alignment ineffectiveness caused by diversified preferences, we propose a novel \textbf{M}ulti-\textbf{O}bjective \textbf{Re}ward learning method (MORE), which can automatically adjust the learning gradients across different preference data sources. In experiments, we evaluate MORE with the Pythia-1.4B model on five mixed human preference datasets, on which our method achieves superior performance compared with other baselines in terms of preference accuracy and prediction calibration.
Topology Learning for Heterogeneous Decentralized Federated Learning over Unreliable D2D Networks
Wu, Zheshun, Xu, Zenglin, Zeng, Dun, Li, Junfan, Liu, Jie
With the proliferation of intelligent mobile devices in wireless device-to-device (D2D) networks, decentralized federated learning (DFL) has attracted significant interest. Compared to centralized federated learning (CFL), DFL mitigates the risk of central server failures due to communication bottlenecks. However, DFL faces several challenges, such as the severe heterogeneity of data distributions in diverse environments, and the transmission outages and package errors caused by the adoption of the User Datagram Protocol (UDP) in D2D networks. These challenges often degrade the convergence of training DFL models. To address these challenges, we conduct a thorough theoretical convergence analysis for DFL and derive a convergence bound. By defining a novel quantity named unreliable links-aware neighborhood discrepancy in this convergence bound, we formulate a tractable optimization objective, and develop a novel Topology Learning method considering the Representation Discrepancy and Unreliable Links in DFL, named ToLRDUL. Intensive experiments under both feature skew and label skew settings have validated the effectiveness of our proposed method, demonstrating improved convergence speed and test accuracy, consistent with our theoretical findings.
Federated Knowledge Graph Completion via Latent Embedding Sharing and Tensor Factorization
Wang, Maolin, Zeng, Dun, Xu, Zenglin, Guo, Ruocheng, Zhao, Xiangyu
Knowledge graphs (KGs), which consist of triples, are inherently incomplete and always require completion procedure to predict missing triples. In real-world scenarios, KGs are distributed across clients, complicating completion tasks due to privacy restrictions. Many frameworks have been proposed to address the issue of federated knowledge graph completion. However, the existing frameworks, including FedE, FedR, and FEKG, have certain limitations. = FedE poses a risk of information leakage, FedR's optimization efficacy diminishes when there is minimal overlap among relations, and FKGE suffers from computational costs and mode collapse issues. To address these issues, we propose a novel method, i.e., Federated Latent Embedding Sharing Tensor factorization (FLEST), which is a novel approach using federated tensor factorization for KG completion. FLEST decompose the embedding matrix and enables sharing of latent dictionary embeddings to lower privacy risks. Empirical results demonstrate FLEST's effectiveness and efficiency, offering a balanced solution between performance and privacy. FLEST expands the application of federated tensor factorization in KG completion tasks.
Federated Generalization via Information-Theoretic Distribution Diversification
Wu, Zheshun, Xu, Zenglin, Zeng, Dun, Wang, Qifan
Federated Learning (FL) has surged in prominence due to its capability of collaborative model training without direct data sharing. However, the vast disparity in local data distributions among clients, often termed the non-Independent Identically Distributed (non-IID) challenge, poses a significant hurdle to FL's generalization efficacy. The scenario becomes even more complex when not all clients participate in the training process, a common occurrence due to unstable network connections or limited computational capacities. This can greatly complicate the assessment of the trained models' generalization abilities. While a plethora of recent studies has centered on the generalization gap pertaining to unseen data from participating clients with diverse distributions, the divergence between the training distributions of participating clients and the testing distributions of non-participating ones has been largely overlooked. In response, our paper unveils an information-theoretic generalization framework for FL. Specifically, it quantifies generalization errors by evaluating the information entropy of local distributions and discerning discrepancies across these distributions. Inspired by our deduced generalization bounds, we introduce a weighted aggregation approach and a duo of client selection strategies. These innovations aim to bolster FL's generalization prowess by encompassing a more varied set of client data distributions. Our extensive empirical evaluations reaffirm the potency of our proposed methods, aligning seamlessly with our theoretical construct.
FedNoisy: Federated Noisy Label Learning Benchmark
Liang, Siqi, Huang, Jintao, Hong, Junyuan, Zeng, Dun, Zhou, Jiayu, Xu, Zenglin
Federated learning has gained popularity for distributed learning without aggregating sensitive data from clients. But meanwhile, the distributed and isolated nature of data isolation may be complicated by data quality, making it more vulnerable to noisy labels. Many efforts exist to defend against the negative impacts of noisy labels in centralized or federated settings. However, there is a lack of a benchmark that comprehensively considers the impact of noisy labels in a wide variety of typical FL settings. In this work, we serve the first standardized benchmark that can help researchers fully explore potential federated noisy settings. Also, we conduct comprehensive experiments to explore the characteristics of these data settings and unravel challenging scenarios on the federated noisy label learning, which may guide method development in the future. We highlight the 20 basic settings for more than 5 datasets proposed in our benchmark and standardized simulation pipeline for federated noisy label learning. We hope this benchmark can facilitate idea verification in federated learning with noisy labels. \texttt{FedNoisy} is available at \codeword{https://github.com/SMILELab-FL/FedNoisy}.
Personalized Federated Learning via Amortized Bayesian Meta-Learning
Liu, Shiyu, Lv, Shaogao, Zeng, Dun, Xu, Zenglin, Wang, Hui, Yu, Yue
Federated learning is a decentralized and privacy-preserving technique that enables multiple clients to collaborate with a server to learn a global model without exposing their private data. However, the presence of statistical heterogeneity among clients poses a challenge, as the global model may struggle to perform well on each client's specific task. To address this issue, we introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning. Specifically, we propose a novel algorithm called \emph{FedABML}, which employs hierarchical variational inference across clients. The global prior aims to capture representations of common intrinsic structures from heterogeneous clients, which can then be transferred to their respective tasks and aid in the generation of accurate client-specific approximate posteriors through a few local updates. Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data. Finally, several empirical results are implemented to demonstrate that \emph{FedABML} outperforms several competitive baselines.