Goto

Collaborating Authors

 Yue, Man-Chung


A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set

arXiv.org Machine Learning

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically - without compelling theoretical justification - or optimally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to construct covariance estimators without imposing restrictive assumptions. That is, we study distributionally robust covariance estimation problems that minimize the worst-case Frobenius error with respect to all data distributions close to a nominal distribution, where the proximity of distributions is measured via a divergence on the space of covariance matrices. We identify mild conditions on this divergence under which the resulting minimizers represent shrinkage estimators. We show that the corresponding shrinkage transformations are intimately related to the geometrical properties of the underlying divergence. We also prove that our robust estimators are efficiently computable and asymptotically consistent and that they enjoy finite-sample performance guarantees. We exemplify our general methodology by synthesizing explicit estimators induced by the Kullback-Leibler, Fisher-Rao, and Wasserstein divergences. Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.


Coverage-Validity-Aware Algorithmic Recourse

arXiv.org Artificial Intelligence

Algorithmic recourse emerges as a prominent technique to promote the explainability, transparency and hence ethics of machine learning models. Existing algorithmic recourse approaches often assume an invariant predictive model; however, the predictive model is usually updated upon the arrival of new data. Thus, a recourse that is valid respective to the present model may become invalid for the future model. To resolve this issue, we propose a novel framework to generate a model-agnostic recourse that exhibits robustness to model shifts. Our framework first builds a coverage-validity-aware linear surrogate of the nonlinear (black-box) model; then, the recourse is generated with respect to the linear surrogate. We establish a theoretical connection between our coverage-validity-aware linear surrogate and the minimax probability machines (MPM). We then prove that by prescribing different covariance robustness, the proposed framework recovers popular regularizations for MPM, including the $\ell_2$-regularization and class-reweighting. Furthermore, we show that our surrogate pushes the approximate hyperplane intuitively, facilitating not only robust but also interpretable recourses. The numerical results demonstrate the usefulness and robustness of our framework.


A Unified Approach to Synchronization Problems over Subgroups of the Orthogonal Group

arXiv.org Artificial Intelligence

The problem of synchronization over a group $\mathcal{G}$ aims to estimate a collection of group elements $G^*_1, \dots, G^*_n \in \mathcal{G}$ based on noisy observations of a subset of all pairwise ratios of the form $G^*_i {G^*_j}^{-1}$. Such a problem has gained much attention recently and finds many applications across a wide range of scientific and engineering areas. In this paper, we consider the class of synchronization problems in which the group is a closed subgroup of the orthogonal group. This class covers many group synchronization problems that arise in practice. Our contribution is fivefold. First, we propose a unified approach for solving this class of group synchronization problems, which consists of a suitable initialization step and an iterative refinement step based on the generalized power method, and show that it enjoys a strong theoretical guarantee on the estimation error under certain assumptions on the group, measurement graph, noise, and initialization. Second, we formulate two geometric conditions that are required by our approach and show that they hold for various practically relevant subgroups of the orthogonal group. The conditions are closely related to the error-bound geometry of the subgroup -- an important notion in optimization. Third, we verify the assumptions on the measurement graph and noise for standard random graph and random matrix models. Fourth, based on the classic notion of metric entropy, we develop and analyze a novel spectral-type estimator. Finally, we show via extensive numerical experiments that our proposed non-convex approach outperforms existing approaches in terms of computational speed, scalability, and/or estimation error.


Distributionally Robust Fair Principal Components via Geodesic Descents

arXiv.org Machine Learning

Principal component analysis is a simple yet useful dimensionality reduction technique in modern machine learning pipelines. In consequential domains such as college admission, healthcare and credit approval, it is imperative to take into account emerging criteria such as the fairness and the robustness of the learned projection. In this paper, we propose a distributionally robust optimization problem for principal component analysis which internalizes a fairness criterion in the objective function. The learned projection thus balances the trade-off between the total reconstruction error and the reconstruction error gap between subgroups, taken in the min-max sense over all distributions in a moment-based ambiguity set. The resulting optimization problem over the Stiefel manifold can be efficiently solved by a Riemannian subgradient descent algorithm with a sub-linear convergence rate. Our experimental results on real-world datasets show the merits of our proposed method over state-of-the-art baselines. Machine learning models are ubiquitous in our daily lives and supporting the decision-making process in diverse domains.


Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

arXiv.org Machine Learning

Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator experts that are robust with regard to moment conditions. When these moment conditions are specified using Kullback-Leibler or Wasserstein-type divergences, we can find the robust estimators efficiently using convex optimization. We use the Bernstein online aggregation algorithm on the proposed family of robust experts to generate predictions for the sequential stream of target test samples. Numerical experiments on real data show that the robust strategies may outperform non-robust interpolations of the empirical least squares estimators.


Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation

Neural Information Processing Systems

The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood that identifies a probability measure which lies in the neighborhood of the nominal measure and that maximizes the probability of observing the given sample point. We show that when the neighborhood is constructed by the Kullback-Leibler divergence, by moment conditions or by the Wasserstein distance, then our optimistic likelihood can be determined through the solution of a convex optimization problem, and it admits an analytical expression in particular cases. We also show that the posterior inference problem with our optimistic likelihood approximation enjoys strong theoretical performance guarantees, and it performs competitively in a probabilistic classification task.


Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation

arXiv.org Machine Learning

The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood that identifies a probability measure which lies in the neighborhood of the nominal measure and that maximizes the probability of observing the given sample point. We show that when the neighborhood is constructed by the Kullback-Leibler divergence, by moment conditions or by the Wasserstein distance, then our \textit{optimistic likelihood} can be determined through the solution of a convex optimization problem, and it admits an analytical expression in particular cases. We also show that the posterior inference problem with our optimistic likelihood approximation enjoys strong theoretical performance guarantees, and it performs competitively in a probabilistic classification task.


Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization

arXiv.org Machine Learning

A fundamental problem arising in many areas of machine learning is the evaluation of the likelihood of a given observation under different nominal distributions. Frequently, these nominal distributions are themselves estimated from data, which makes them susceptible to estimation errors. We thus propose to replace each nominal distribution with an ambiguity set containing all distributions in its vicinity and to evaluate an \emph{optimistic likelihood}, that is, the maximum of the likelihood over all distributions in the ambiguity set. When the proximity of distributions is quantified by the Fisher-Rao distance or the Kullback-Leibler divergence, the emerging optimistic likelihoods can be computed efficiently using either geodesic or standard convex optimization techniques. We showcase the advantages of working with optimistic likelihoods on a classification problem using synthetic as well as empirical data.