Goto

Collaborating Authors

 Yuanzhi Li


Can SGD Learn Recurrent Neural Networks with Provable Generalization?

Neural Information Processing Systems

Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions from different input tokens to different output tokens, without affecting each other?


Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers

Neural Information Processing Systems

The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized? In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network. On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network, and connect it to the SGD theory of escaping saddle points.


What Can ResNet Learn Efficiently, Going Beyond Kernels?

Neural Information Processing Systems

How can neural networks such as ResNet efficiently learn CIFAR-10 with test accuracy more than 96%, while other methods, especially kernel methods, fall relatively behind? Can we more provide theoretical justifications for this gap? Recently, there is an influential line of work relating neural networks to kernels in the over-parameterized regime, proving they can learn certain concept class that is also learnable by kernels with similar test error. Yet, can neural networks provably learn some concept class better than kernels? We answer this positively in the distribution-free setting.


Even Faster SVD Decomposition Yet Without Agonizing Pain

Neural Information Processing Systems

We study k-SVD that is to obtain the first k singular vectors of a matrix A. Recently, a few breakthroughs have been discovered on k-SVD: Musco and Musco [19] proved the first gap-free convergence result using the block Krylov method, Shamir [21] discovered the first variance-reduction stochastic method, and Bhojanapalli et al. [7] provided the fastest O(nnz(A) + poly(1/ฮต))-time algorithm using alternating minimization. In this paper, we put forward a new and simple LazySVD framework to improve the above breakthroughs. This framework leads to a faster gap-free method outperforming [19], and the first accelerated and stochastic method outperforming [21]. In the O(nnz(A) + poly(1/ฮต)) running-time regime, LazySVD outperforms [7] in certain parameter regimes without even using alternating minimization.


Recovery Guarantee of Non-negative Matrix Factorization via Alternating Updates

Neural Information Processing Systems

Non-negative matrix factorization is a popular tool for decomposing data into feature and weight matrices under non-negativity constraints. It enjoys practical success but is poorly understood theoretically. This paper proposes an algorithm that alternates between decoding the weights and updating the features, and shows that assuming a generative model of the data, it provably recovers the groundtruth under fairly mild conditions. In particular, its only essential requirement on features is linear independence. Furthermore, the algorithm uses ReLU to exploit the non-negativity for decoding the weights, and thus can tolerate adversarial noise that can potentially be as large as the signal, and can tolerate unbiased noise much larger than the signal. The analysis relies on a carefully designed coupling between two potential functions, which we believe is of independent interest.


Algorithms and matching lower bounds for approximately-convex optimization

Neural Information Processing Systems

In recent years, a rapidly increasing number of applications in practice requires optimizing non-convex objectives, like training neural networks, learning graphical models, maximum likelihood estimation. Though simple heuristics such as gradient descent with very few modifications tend to work well, theoretical understanding is very weak. We consider possibly the most natural class of non-convex functions where one could hope to obtain provable guarantees: functions that are "approximately convex", i.e. functions f: R


Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data

Neural Information Processing Systems

Neural networks have many successful applications, while much less theoretical understanding has been gained. Towards bridging this gap, we study the problem of learning a two-layer overparameterized ReLU neural network for multi-class classification via stochastic gradient descent (SGD) from random initialization. In the overparameterized setting, when the data comes from mixtures of well-separated distributions, we prove that SGD learns a network with a small generalization error, albeit the network has enough capacity to fit arbitrary labels. Furthermore, the analysis provides interesting insights into several aspects of learning neural networks and can be verified based on empirical studies on synthetic data and on the MNIST dataset.


Approximate maximum entropy principles via Goemans-Williamson with applications to provable variational methods

Neural Information Processing Systems

The well known maximum-entropy principle due to Jaynes, which states that given mean parameters, the maximum entropy distribution matching them is in an exponential family has been very popular in machine learning due to its "Occam's razor" interpretation. Unfortunately, calculating the potentials in the maximumentropy distribution is intractable [BGS14]. We provide computationally efficient versions of this principle when the mean parameters are pairwise moments: we design distributions that approximately match given pairwise moments, while having entropy which is comparable to the maximum entropy distribution matching those moments. We additionally provide surprising applications of the approximate maximum entropy principle to designing provable variational methods for partition function calculations for Ising models without any assumptions on the potentials of the model. More precisely, we show that we can get approximation guarantees for the log-partition function comparable to those in the low-temperature limit, which is the setting of optimization of quadratic forms over the hypercube.


NEON2: Finding Local Minima via First-Order Oracles

Neural Information Processing Systems

We propose a reduction for non-convex optimization that can (1) turn an stationary-point finding algorithm into an local-minimum finding one, and (2) replace the Hessian-vector product computations with only gradient computations. It works both in the stochastic and the deterministic settings, without hurting the algorithm's performance. As applications, our reduction turns Natasha2 into a first-order method without hurting its theoretical performance. It also converts SGD, GD, SCSG, and SVRG into algorithms finding approximate local minima, outperforming some best known results.


Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls

Neural Information Processing Systems

We propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation (k-SVD), which can be done by repeatedly applying 1-SVD k times. Alternatively, our algorithm can be viewed as a rank-k restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most k. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.