Goto

Collaborating Authors

 Yuanzhi Li


NEON2: Finding Local Minima via First-Order Oracles

Neural Information Processing Systems

We propose a reduction for non-convex optimization that can (1) turn an stationary-point finding algorithm into an local-minimum finding one, and (2) replace the Hessian-vector product computations with only gradient computations. It works both in the stochastic and the deterministic settings, without hurting the algorithm's performance. As applications, our reduction turns Natasha2 into a first-order method without hurting its theoretical performance. It also converts SGD, GD, SCSG, and SVRG into algorithms finding approximate local minima, outperforming some best known results.


Online Improper Learning with an Approximation Oracle

Neural Information Processing Systems

We study the following question: given an efficient approximation algorithm for an optimization problem, can we learn efficiently in the same setting? We give a formal affirmative answer to this question in the form of a reduction from online learning to offline approximate optimization using an efficient algorithm that guarantees near optimal regret. The algorithm is efficient in terms of the number of oracle calls to a given approximation oracle - it makes only logarithmically many such calls per iteration.


Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks

Neural Information Processing Systems

Stochastic gradient descent with a large initial learning rate is widely used for training modern neural net architectures. Although a small initial learning rate allows for faster training and better test performance initially, the large learning rate achieves better generalization soon after the learning rate is annealed. Towards explaining this phenomenon, we devise a setting in which we can prove that a two layer network trained with large initial learning rate and annealing provably generalizes better than the same network trained with a small learning rate from the start. The key insight in our analysis is that the order of learning different types of patterns is crucial: because the small learning rate model first memorizes easy-to-generalize, hard-to-fit patterns, it generalizes worse on hard-to-generalize, easier-to-fit patterns than its large learning rate counterpart. This concept translates to a larger-scale setting: we demonstrate that one can add a small patch to CIFAR-10 images that is immediately memorizable by a model with small initial learning rate, but ignored by the model with large learning rate until after annealing. Our experiments show that this causes the small learning rate model's accuracy on unmodified images to suffer, as it relies too much on the patch early on.



Can SGD Learn Recurrent Neural Networks with Provable Generalization?

Neural Information Processing Systems

Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions from different input tokens to different output tokens, without affecting each other?


Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers

Neural Information Processing Systems

The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized? In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network. On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network, and connect it to the SGD theory of escaping saddle points.


What Can ResNet Learn Efficiently, Going Beyond Kernels?

Neural Information Processing Systems

How can neural networks such as ResNet efficiently learn CIFAR-10 with test accuracy more than 96%, while other methods, especially kernel methods, fall relatively behind? Can we more provide theoretical justifications for this gap? Recently, there is an influential line of work relating neural networks to kernels in the over-parameterized regime, proving they can learn certain concept class that is also learnable by kernels with similar test error. Yet, can neural networks provably learn some concept class better than kernels? We answer this positively in the distribution-free setting.


On the Convergence Rate of Training Recurrent Neural Networks

Neural Information Processing Systems

How can local-search methods such as stochastic gradient descent (SGD) avoid bad local minima in training multi-layer neural networks? Why can they fit random labels even given non-convex and non-smooth architectures? Most existing theory only covers networks with one hidden layer, so can we go deeper? In this paper, we focus on recurrent neural networks (RNNs) which are multi-layer networks widely used in natural language processing. They are harder to analyze than feedforward neural networks, because the same recurrent unit is repeatedly applied across the entire time horizon of length L, which is analogous to feedforward networks of depth L. We show when the number of neurons is sufficiently large, meaning polynomial in the training data size and in L, then SGD is capable of minimizing the regression loss in the linear convergence rate. This gives theoretical evidence of how RNNs can memorize data. More importantly, in this paper we build general toolkits to analyze multi-layer networks with ReLU activations. For instance, we prove why ReLU activations can prevent exponential gradient explosion or vanishing, and build a perturbation theory to analyze first-order approximation of multi-layer networks.


On the Convergence Rate of Training Recurrent Neural Networks

Neural Information Processing Systems

How can local-search methods such as stochastic gradient descent (SGD) avoid bad local minima in training multi-layer neural networks? Why can they fit random labels even given non-convex and non-smooth architectures? Most existing theory only covers networks with one hidden layer, so can we go deeper? In this paper, we focus on recurrent neural networks (RNNs) which are multi-layer networks widely used in natural language processing. They are harder to analyze than feedforward neural networks, because the same recurrent unit is repeatedly applied across the entire time horizon of length L, which is analogous to feedforward networks of depth L. We show when the number of neurons is sufficiently large, meaning polynomial in the training data size and in L, then SGD is capable of minimizing the regression loss in the linear convergence rate. This gives theoretical evidence of how RNNs can memorize data. More importantly, in this paper we build general toolkits to analyze multi-layer networks with ReLU activations. For instance, we prove why ReLU activations can prevent exponential gradient explosion or vanishing, and build a perturbation theory to analyze first-order approximation of multi-layer networks.


Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks

Neural Information Processing Systems

Stochastic gradient descent with a large initial learning rate is widely used for training modern neural net architectures. Although a small initial learning rate allows for faster training and better test performance initially, the large learning rate achieves better generalization soon after the learning rate is annealed. Towards explaining this phenomenon, we devise a setting in which we can prove that a two layer network trained with large initial learning rate and annealing provably generalizes better than the same network trained with a small learning rate from the start. The key insight in our analysis is that the order of learning different types of patterns is crucial: because the small learning rate model first memorizes easy-to-generalize, hard-to-fit patterns, it generalizes worse on hard-to-generalize, easier-to-fit patterns than its large learning rate counterpart. This concept translates to a larger-scale setting: we demonstrate that one can add a small patch to CIFAR-10 images that is immediately memorizable by a model with small initial learning rate, but ignored by the model with large learning rate until after annealing. Our experiments show that this causes the small learning rate model's accuracy on unmodified images to suffer, as it relies too much on the patch early on.