What Can ResNet Learn Efficiently, Going Beyond Kernels?

Zeyuan Allen-Zhu, Yuanzhi Li

Neural Information Processing Systems 

How can neural networks such as ResNet efficiently learn CIFAR-10 with test accuracy more than 96%, while other methods, especially kernel methods, fall relatively behind? Can we more provide theoretical justifications for this gap? Recently, there is an influential line of work relating neural networks to kernels in the over-parameterized regime, proving they can learn certain concept class that is also learnable by kernels with similar test error. Yet, can neural networks provably learn some concept class better than kernels? We answer this positively in the distribution-free setting.