Even Faster SVD Decomposition Yet Without Agonizing Pain
–Neural Information Processing Systems
We study k-SVD that is to obtain the first k singular vectors of a matrix A. Recently, a few breakthroughs have been discovered on k-SVD: Musco and Musco [19] proved the first gap-free convergence result using the block Krylov method, Shamir [21] discovered the first variance-reduction stochastic method, and Bhojanapalli et al. [7] provided the fastest O(nnz(A) + poly(1/ε))-time algorithm using alternating minimization. In this paper, we put forward a new and simple LazySVD framework to improve the above breakthroughs. This framework leads to a faster gap-free method outperforming [19], and the first accelerated and stochastic method outperforming [21]. In the O(nnz(A) + poly(1/ε)) running-time regime, LazySVD outperforms [7] in certain parameter regimes without even using alternating minimization.
Neural Information Processing Systems
Jan-20-2025, 19:35:39 GMT
- Technology: