Yu, Huan
T3: Multi-modal Tailless Triple-Flapping-Wing Robot for Efficient Aerial and Terrestrial Locomotion
Xu, Xiangyu, Zheng, Zhi, Wang, Jin, Chen, Yikai, Huang, Jingyang, Wu, Ruixin, Yu, Huan, Lu, Guodong
-- Flapping-wing robots offer great versatility; however, achieving efficient multi-modal locomotion remains challenging. This paper presents the design, modeling, and experimentation of T3, a novel tailless flapping-wing robot with three pairs of independently actuated wings. Inspired by juvenile water striders, T3 incorporates bio-inspired elastic passive legs that effectively transmit vibrations generated during wing flapping, enabling ground movement without additional motors. An SE(3)-based controller ensures precise trajectory tracking and seamless mode transition. T o validate T3's effectiveness, we developed a fully functional prototype and conducted targeted modeling, real-world experiments, and benchmark comparisons. The results demonstrate the robot's and controller's outstanding performance, underscoring the potential of multi-modal flapping-wing technologies for future aerial-ground robotic applications.
A Distributionally Robust Optimisation Approach to Fair Credit Scoring
Casas, Pablo, Mues, Christophe, Yu, Huan
Credit scoring has been catalogued by the European Commission and the Executive Office of the US President as a high-risk classification task, a key concern being the potential harms of making loan approval decisions based on models that would be biased against certain groups. To address this concern, recent credit scoring research has considered a range of fairness-enhancing techniques put forward by the machine learning community to reduce bias and unfair treatment in classification systems. While the definition of fairness or the approach they follow to impose it may vary, most of these techniques, however, disregard the robustness of the results. This can create situations where unfair treatment is effectively corrected in the training set, but when producing out-of-sample classifications, unfair treatment is incurred again. Instead, in this paper, we will investigate how to apply Distributionally Robust Optimisation (DRO) methods to credit scoring, thereby empirically evaluating how they perform in terms of fairness, ability to classify correctly, and the robustness of the solution against changes in the marginal proportions. In so doing, we find DRO methods to provide a substantial improvement in terms of fairness, with almost no loss in performance. These results thus indicate that DRO can improve fairness in credit scoring, provided that further advances are made in efficiently implementing these systems. In addition, our analysis suggests that many of the commonly used fairness metrics are unsuitable for a credit scoring setting, as they depend on the choice of classification threshold.
Neural Operators for Boundary Stabilization of Stop-and-go Traffic
Zhang, Yihuai, Zhong, Ruiguo, Yu, Huan
This paper introduces a novel approach to PDE boundary control design using neural operators to alleviate stop-and-go instabilities in congested traffic flow. Our framework leverages neural operators to design control strategies for traffic flow systems. The traffic dynamics are described by the Aw-Rascle-Zhang (ARZ) model, which comprises a set of second-order coupled hyperbolic partial differential equations (PDEs). Backstepping method is widely used for boundary control of such PDE systems. The PDE model-based control design can be time-consuming and require intensive depth of expertise since it involves constructing and solving backstepping control kernels. To overcome these challenges, we present two distinct neural operator (NO) learning schemes aimed at stabilizing the traffic PDE system. The first scheme embeds NO-approximated gain kernels within a predefined backstepping controller, while the second one directly learns a boundary control law. The Lyapunov analysis is conducted to evaluate the stability of the NO-approximated gain kernels and control law. It is proved that the NO-based closed-loop system is practical stable under certain approximation accuracy conditions in NO-learning. To validate the efficacy of the proposed approach, simulations are conducted to compare the performance of the two neural operator controllers with a PDE backstepping controller and a Proportional Integral (PI) controller. While the NO-approximated methods exhibit higher errors compared to the backstepping controller, they consistently outperform the PI controller, demonstrating faster computation speeds across all scenarios. This result suggests that neural operators can significantly expedite and simplify the process of obtaining boundary controllers in traffic PDE systems.
Learning "Look-Ahead" Nonlocal Traffic Dynamics in a Ring Road
Zhao, Chenguang, Yu, Huan
The macroscopic traffic flow model is widely used for traffic control and management. To incorporate drivers' anticipative behaviors and to remove impractical speed discontinuity inherent in the classic Lighthill-Whitham-Richards (LWR) traffic model, nonlocal partial differential equation (PDE) models with ``look-ahead" dynamics have been proposed, which assume that the speed is a function of weighted downstream traffic density. However, it lacks data validation on two important questions: whether there exist nonlocal dynamics, and how the length and weight of the ``look-ahead" window affect the spatial temporal propagation of traffic densities. In this paper, we adopt traffic trajectory data from a ring-road experiment and design a physics-informed neural network to learn the fundamental diagram and look-ahead kernel that best fit the data, and reinvent a data-enhanced nonlocal LWR model via minimizing the loss function combining the data discrepancy and the nonlocal model discrepancy. Results show that the learned nonlocal LWR yields a more accurate prediction of traffic wave propagation in three different scenarios: stop-and-go oscillations, congested, and free traffic. We first demonstrate the existence of ``look-ahead" effect with real traffic data. The optimal nonlocal kernel is found out to take a length of around 35 to 50 meters, and the kernel weight within 5 meters accounts for the majority of the nonlocal effect. Our results also underscore the importance of choosing a priori physics in machine learning models.
CapsuleBot: A Novel Compact Hybrid Aerial-Ground Robot with Two Actuated-wheel-rotors
Zheng, Zhi, Cai, Qifeng, Xu, Xinhang, Cao, Muqing, Yu, Huan, Li, Jihao, Lu, Guodong, Wang, Jin
This paper presents the design, modeling, and experimental validation of CapsuleBot, a compact hybrid aerial-ground vehicle designed for long-term covert reconnaissance. CapsuleBot combines the manoeuvrability of bicopter in the air with the energy efficiency and noise reduction of ground vehicles on the ground. To accomplish this, a structure named actuated-wheel-rotor has been designed, utilizing a sole motor for both the unilateral rotor tilting in the bicopter configuration and the wheel movement in ground mode. CapsuleBot comes equipped with two of these structures, enabling it to attain hybrid aerial-ground propulsion with just four motors. Importantly, the decoupling of motion modes is achieved without the need for additional drivers, enhancing the versatility and robustness of the system. Furthermore, we have designed the full dynamics and control for aerial and ground locomotion based on the bicopter model and the two-wheeled self-balancing vehicle model. The performance of CapsuleBot has been validated through experiments. The results demonstrate that CapsuleBot produces 40.53% less noise in ground mode and consumes 99.35% less energy, highlighting its potential for long-term covert reconnaissance applications.
Intention-Aware Planner for Robust and Safe Aerial Tracking
Ren, Qiuyu, Yu, Huan, Dai, Jiajun, Zheng, Zhi, Meng, Jun, Xu, Li
The intention of the target can help us to estimate its future motion state more accurately. This paper proposes an intention-aware planner to enhance safety and robustness in aerial tracking applications. Firstly, we utilize the Mediapipe framework to estimate target's pose. A risk assessment function and a state observation function are designed to predict the target intention. Afterwards, an intention-driven hybrid A* method is proposed for target motion prediction, ensuring that the target's future positions align with its intention. Finally, an intention-aware optimization approach, in conjunction with particular penalty formulations, is designed to generate a spatial-temporal optimal trajectory. Benchmark comparisons validate the superior performance of our proposed methodology across diverse scenarios. This is attributed to the integration of the target intention into the planner through coupled formulations.
Catch Planner: Catching High-Speed Targets in the Flight
Yu, Huan, Wang, Pengqin, Wang, Jin, Ji, Jialin, Zheng, Zhi, Tu, Jie, Lu, Guodong, Meng, Jun, Zhu, Meixin, Shen, Shaojie, Gao, Fei
Catching high-speed targets in the flight is a complex and typical highly dynamic task. In this paper, we propose Catch Planner, a planning-with-decision scheme for catching. For sequential decision making, we propose a policy search method based on deep reinforcement learning. In order to make catching adaptive and flexible, we propose a trajectory optimization method to jointly optimize the highly coupled catching time and terminal state while considering the dynamic feasibility and safety. We also propose a flexible constraint transcription method to catch targets at any reasonable attitude and terminal position bias. The proposed Catch Planner provides a new paradigm for the combination of learning and planning and is integrated on the quadrotor designed by ourselves, which runs at 100hz on the onboard computer. Extensive experiments are carried out in real and simulated scenes to verify the robustness of the proposed method and its expansibility when facing a variety of high-speed flying targets.
Roller-Quadrotor: A Novel Hybrid Terrestrial/Aerial Quadrotor with Unicycle-Driven and Rotor-Assisted Turning
Zheng, Zhi, Wang, Jin, Wu, Yuze, Cai, Qifeng, Yu, Huan, Zhang, Ruibin, Tu, Jie, Meng, Jun, Lu, Guodong, Gao, Fei
The Roller-Quadrotor is a novel quadrotor that combines the maneuverability of aerial drones with the endurance of ground vehicles. This work focuses on the design, modeling, and experimental validation of the Roller-Quadrotor. Flight capabilities are achieved through a quadrotor configuration, with four thrust-providing actuators. Additionally, rolling motion is facilitated by a unicycle-driven and rotor-assisted turning structure. By utilizing terrestrial locomotion, the vehicle can overcome rolling and turning resistance, thereby conserving energy compared to its flight mode. This innovative approach not only tackles the inherent challenges of traditional rotorcraft but also enables the vehicle to navigate through narrow gaps and overcome obstacles by taking advantage of its aerial mobility. We develop comprehensive models and controllers for the Roller-Quadrotor and validate their performance through experiments. The results demonstrate its seamless transition between aerial and terrestrial locomotion, as well as its ability to safely navigate through gaps half the size of its diameter. Moreover, the terrestrial range of the vehicle is approximately 2.8 times greater, while the operating time is about 41.2 times longer compared to its aerial capabilities. These findings underscore the feasibility and effectiveness of the proposed structure and control mechanisms for efficient navigation through challenging terrains while conserving energy.
Machine Learning Accelerated PDE Backstepping Observers
Shi, Yuanyuan, Li, Zongyi, Yu, Huan, Steeves, Drew, Anandkumar, Anima, Krstic, Miroslav
State estimation is important for a variety of tasks, from forecasting to substituting for unmeasured states in feedback controllers. Performing real-time state estimation for PDEs using provably and rapidly converging observers, such as those based on PDE backstepping, is computationally expensive and in many cases prohibitive. We propose a framework for accelerating PDE observer computations using learning-based approaches that are much faster while maintaining accuracy. In particular, we employ the recently-developed Fourier Neural Operator (FNO) to learn the functional mapping from the initial observer state and boundary measurements to the state estimate. By employing backstepping observer gains for previously-designed observers with particular convergence rate guarantees, we provide numerical experiments that evaluate the increased computational efficiency gained with FNO. We consider the state estimation for three benchmark PDE examples motivated by applications: first, for a reaction-diffusion (parabolic) PDE whose state is estimated with an exponential rate of convergence; second, for a parabolic PDE with exact prescribed-time estimation; and, third, for a pair of coupled first-order hyperbolic PDEs that modeling traffic flow density and velocity. The ML-accelerated observers trained on simulation data sets for these PDEs achieves up to three orders of magnitude improvement in computational speed compared to classical methods. This demonstrates the attractiveness of the ML-accelerated observers for real-time state estimation and control.