Yoon, Hongkyu
Efficient machine-learning surrogates for large-scale geological carbon and energy storage
Kadeethum, Teeratorn, Verzi, Stephen J., Yoon, Hongkyu
Geological carbon and energy storage are pivotal for achieving net-zero carbon emissions and addressing climate change. However, they face uncertainties due to geological factors and operational limitations, resulting in possibilities of induced seismic events or groundwater contamination. To overcome these challenges, we propose a specialized machine-learning (ML) model to manage extensive reservoir models efficiently. While ML approaches hold promise for geological carbon storage, the substantial computational resources required for large-scale analysis are the obstacle. We've developed a method to reduce the training cost for deep neural operator models, using domain decomposition and a topology embedder to link spatio-temporal points. This approach allows accurate predictions within the model's domain, even for untrained data, enhancing ML efficiency for large-scale geological storage applications.
Subsurface Characterization using Ensemble-based Approaches with Deep Generative Models
Bao, Jichao, Yoon, Hongkyu, Lee, Jonghyun
Estimating spatially distributed properties such as hydraulic conductivity (K) from available sparse measurements is a great challenge in subsurface characterization. However, the use of inverse modeling is limited for ill-posed, high-dimensional applications due to computational costs and poor prediction accuracy with sparse datasets. In this paper, we combine Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), a deep generative model that can accurately capture complex subsurface structure, and Ensemble Smoother with Multiple Data Assimilation (ES-MDA), an ensemble-based inversion method, for accurate and accelerated subsurface characterization. WGAN-GP is trained to generate high-dimensional K fields from a low-dimensional latent space and ES-MDA then updates the latent variables by assimilating available measurements. Several subsurface examples are used to evaluate the accuracy and efficiency of the proposed method and the main features of the unknown K fields are characterized accurately with reliable uncertainty quantification. Furthermore, the estimation performance is compared with a widely-used variational, i.e., optimization-based, inversion approach, and the proposed approach outperforms the variational inversion method, especially for the channelized and fractured field examples. We explain such superior performance by visualizing the objective function in the latent space: because of nonlinear and aggressive dimension reduction via generative modeling, the objective function surface becomes extremely complex while the ensemble approximation can smooth out the multi-modal surface during the minimization. This suggests that the ensemble-based approach works well over the variational approach when combined with deep generative models at the cost of forward model runs unless convergence-ensuring modifications are implemented in the variational inversion.
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
Kadeethum, Teeratorn, Ballarin, Francesco, O'Malley, Daniel, Choi, Youngsoo, Bouklas, Nikolaos, Yoon, Hongkyu
We propose a unified data-driven reduced order model (ROM) that bridges the performance gap between linear and nonlinear manifold approaches. Deep learning ROM (DL-ROM) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal. Besides, most DL-ROM models rely on convolutional layers, which might limit its application to only a structured mesh. The proposed framework in this study relies on the combination of an autoencoder (AE) and Barlow Twins (BT) self-supervised learning, where BT maximizes the information content of the embedding with the latent space through a joint embedding architecture. Through a series of benchmark problems of natural convection in porous media, BT-AE performs better than the previous DL-ROM framework by providing comparable results to POD-based approaches for problems where the solution lies within a linear subspace as well as DL-ROM autoencoder-based techniques where the solution lies on a nonlinear manifold; consequently, bridges the gap between linear and nonlinear reduced manifolds. We illustrate that a proficient construction of the latent space is key to achieving these results, enabling us to map these latent spaces using regression models. The proposed framework achieves a relative error of 2% on average and 12% in the worst-case scenario (i.e., the training data is small, but the parameter space is large.).
Connectivity-informed Drainage Network Generation using Deep Convolution Generative Adversarial Networks
Kim, Sung Eun, Seo, Yongwon, Hwang, Junshik, Yoon, Hongkyu, Lee, Jonghyun
Stochastic network modeling is often limited by high computational costs to generate a large number of networks enough for meaningful statistical evaluation. In this study, Deep Convolutional Generative Adversarial Networks (DCGANs) were applied to quickly reproduce drainage networks from the already generated network samples without repetitive long modeling of the stochastic network model, Gibb's model. In particular, we developed a novel connectivity-informed method that converts the drainage network images to the directional information of flow on each node of the drainage network, and then transform it into multiple binary layers where the connectivity constraints between nodes in the drainage network are stored. DCGANs trained with three different types of training samples were compared; 1) original drainage network images, 2) their corresponding directional information only, and 3) the connectivity-informed directional information. Comparison of generated images demonstrated that the novel connectivity-informed method outperformed the other two methods by training DCGANs more effectively and better reproducing accurate drainage networks due to its compact representation of the network complexity and connectivity. This work highlights that DCGANs can be applicable for high contrast images common in earth and material sciences where the network, fractures, and other high contrast features are important.