Goto

Collaborating Authors

 Yeh, Mi-Yen


STAR: Spectral Truncation and Rescale for Model Merging

arXiv.org Artificial Intelligence

Model merging is an efficient way of obtaining a multi-task model from several pretrained models without further fine-tuning, and it has gained attention in various domains, including natural language processing (NLP). Despite the efficiency, a key challenge in model merging is the seemingly inevitable decrease in task performance as the number of models increases. In this paper, we propose $\mathbf{S}$pectral $\mathbf{T}$runcation $\mathbf{A}$nd $\mathbf{R}$escale (STAR) that aims at mitigating ``merging conflicts'' by truncating small components in the respective spectral spaces, which is followed by an automatic parameter rescaling scheme to retain the nuclear norm of the original matrix. STAR requires no additional inference on original training data and is robust to hyperparamater choice. We demonstrate the effectiveness of STAR through extensive model merging cases on diverse NLP tasks. Specifically, STAR works robustly across varying model sizes, and can outperform baselines by 4.2$\%$ when merging 12 models on Flan-T5. Our code is publicly available at https://github.com/IBM/STAR.


Accelerating Continuous Normalizing Flow with Trajectory Polynomial Regularization

arXiv.org Machine Learning

In this paper, we propose an approach to effectively accelerating the computation of continuous normalizing flow (CNF), which has been proven to be a powerful tool for the tasks such as variational inference and density estimation. The training time cost of CNF can be extremely high because the required number of function evaluations (NFE) for solving corresponding ordinary differential equations (ODE) is very large. We think that the high NFE results from large truncation errors of solving ODEs. To address the problem, we propose to add a regularization. The regularization penalizes the difference between the trajectory of the ODE and its fitted polynomial regression. The trajectory of ODE will approximate a polynomial function, and thus the truncation error will be smaller. Furthermore, we provide two proofs and claim that the additional regularization does not harm training quality. Experimental results show that our proposed method can result in 42.3% to 71.3% reduction of NFE on the task of density estimation, and 19.3% to 32.1% reduction of NFE on variational auto-encoder, while the testing losses are not affected at all.


Attribute-aware Collaborative Filtering: Survey and Classification

arXiv.org Machine Learning

Attribute-aware CF models aims at rating prediction given not only the historical rating from users to items, but also the information associated with users (e.g. age), items (e.g. price), or even ratings (e.g. rating time). This paper surveys works in the past decade developing attribute-aware CF systems, and discovered that mathematically they can be classified into four different categories. We provide the readers not only the high level mathematical interpretation of the existing works in this area but also the mathematical insight for each category of models. Finally we provide in-depth experiment results comparing the effectiveness of the major works in each category.


PRUNE: Preserving Proximity and Global Ranking for Network Embedding

Neural Information Processing Systems

We investigate an unsupervised generative approach for network embedding. A multi-task Siamese neural network structure is formulated to connect embedding vectors and our objective to preserve the global node ranking and local proximity of nodes. We provide deeper analysis to connect the proposed proximity objective to link prediction and community detection in the network. We show our model can satisfy the following design properties: scalability, asymmetry, unity and simplicity. Experiment results not only verify the above design properties but also demonstrate the superior performance in learning-to-rank, classification, regression, and link prediction tasks.