Goto

Collaborating Authors

 Yates, Andrew


Rank1: Test-Time Compute for Reranking in Information Retrieval

arXiv.org Artificial Intelligence

We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.


Enhancing Lexicon-Based Text Embeddings with Large Language Models

arXiv.org Artificial Intelligence

Recent large language models (LLMs) have demonstrated exceptional performance on general-purpose text embedding tasks. While dense embeddings have dominated related research, we introduce the first Lexicon-based EmbeddiNgS (LENS) leveraging LLMs that achieve competitive performance on these tasks. Regarding the inherent tokenization redundancy issue and unidirectional attention limitations in traditional causal LLMs, LENS consolidates the vocabulary space through token embedding clustering, and investigates bidirectional attention and various pooling strategies. Specifically, LENS simplifies lexicon matching by assigning each dimension to a specific token cluster, where semantically similar tokens are grouped together, and unlocking the full potential of LLMs through bidirectional attention. Extensive experiments demonstrate that LENS outperforms dense embeddings on the Massive Text Embedding Benchmark (MTEB), delivering compact feature representations that match the sizes of dense counterparts. Notably, combining LENSE with dense embeddings achieves state-of-the-art performance on the retrieval subset of MTEB (i.e. BEIR).


Table Question Answering for Low-resourced Indic Languages

arXiv.org Artificial Intelligence

TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output. TableQA research has focused primarily on high-resource languages, leaving medium- and low-resource languages with little progress due to scarcity of annotated data and neural models. We address this gap by introducing a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget. We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models. TableQA models trained on our large-scale datasets outperform state-of-the-art LLMs. We further study the trained models on different aspects, including mathematical reasoning capabilities and zero-shot cross-lingual transfer. Our work is the first on low-resource tableQA focusing on scalable data generation and evaluation procedures. Our proposed data generation method can be applied to any low-resource language with a web presence. We release datasets, models, and code (https://github.com/kolk/Low-Resource-TableQA-Indic-languages).


Meta-Task Prompting Elicits Embedding from Large Language Models

arXiv.org Artificial Intelligence

In this work, we introduce a new unsupervised embedding method, Meta-Task Prompting with Explicit One-Word Limitation (MetaEOL), for generating high-quality sentence embeddings from Large Language Models (LLMs) without the need for model fine-tuning or taskspecific engineering. Leveraging meta-task prompting, MetaEOL guides LLMs to produce embeddings through a series of carefully designed prompts that address multiple representational aspects. Our comprehensive experiments demonstrate that embeddings averaged from various meta-tasks yield competitive performance Figure 1: The highest decoding probabilities are largely on Semantic Textual Similarity (STS) allocated to stop words that carry little useful information benchmarks and excel in downstream tasks, when conducting a meaning compression prompting, surpassing contrastive-trained models. Our even if employing a constraint of "in one word" findings suggest a new scaling law for embedding following (Jiang et al., 2023b). Although the general generation, offering a versatile, resourceefficient semantic, movie, is contained, other aspects of this sentence approach for embedding extraction are missing, like sentiments.


Corpus-Steered Query Expansion with Large Language Models

arXiv.org Artificial Intelligence

Recent studies demonstrate that query expansions generated by large language models (LLMs) can considerably enhance information retrieval systems by generating hypothetical documents that answer the queries as expansions. However, challenges arise from misalignments between the expansions and the retrieval corpus, resulting in issues like hallucinations and outdated information due to the limited intrinsic knowledge of LLMs. Inspired by Pseudo Relevance Feedback (PRF), we introduce Corpus-Steered Query Expansion (CSQE) to promote the incorporation of knowledge embedded within the corpus. CSQE utilizes the relevance assessing capability of LLMs to systematically identify pivotal sentences in the initially-retrieved documents. These corpus-originated texts are subsequently used to expand the query together with LLM-knowledge empowered expansions, improving the relevance prediction between the query and the target documents. Extensive experiments reveal that CSQE exhibits strong performance without necessitating any training, especially with queries for which LLMs lack knowledge.


Demonstrating and Reducing Shortcuts in Vision-Language Representation Learning

arXiv.org Artificial Intelligence

Vision-language models (VLMs) mainly rely on contrastive training to learn general-purpose representations of images and captions. We focus on the situation when one image is associated with several captions, each caption containing both information shared among all captions and unique information per caption about the scene depicted in the image. In such cases, it is unclear whether contrastive losses are sufficient for learning task-optimal representations that contain all the information provided by the captions or whether the contrastive learning setup encourages the learning of a simple shortcut that minimizes contrastive loss. We introduce synthetic shortcuts for vision-language: a training and evaluation framework where we inject synthetic shortcuts into image-text data. We show that contrastive VLMs trained from scratch or fine-tuned with data containing these synthetic shortcuts mainly learn features that represent the shortcut. Hence, contrastive losses are not sufficient to learn task-optimal representations, i.e., representations that contain all task-relevant information shared between the image and associated captions. We examine two methods to reduce shortcut learning in our training and evaluation framework: (i) latent target decoding and (ii) implicit feature modification. We show empirically that both methods improve performance on the evaluation task, but only partly reduce shortcut learning when training and evaluating with our shortcut learning framework. Hence, we show the difficulty and challenge of our shortcut learning framework for contrastive vision-language representation learning.


Masked and Swapped Sequence Modeling for Next Novel Basket Recommendation in Grocery Shopping

arXiv.org Artificial Intelligence

Next basket recommendation (NBR) is the task of predicting the next set of items based on a sequence of already purchased baskets. It is a recommendation task that has been widely studied, especially in the context of grocery shopping. In next basket recommendation (NBR), it is useful to distinguish between repeat items, i.e., items that a user has consumed before, and explore items, i.e., items that a user has not consumed before. Most NBR work either ignores this distinction or focuses on repeat items. We formulate the next novel basket recommendation (NNBR) task, i.e., the task of recommending a basket that only consists of novel items, which is valuable for both real-world application and NBR evaluation. We evaluate how existing NBR methods perform on the NNBR task and find that, so far, limited progress has been made w.r.t. the NNBR task. To address the NNBR task, we propose a simple bi-directional transformer basket recommendation model (BTBR), which is focused on directly modeling item-to-item correlations within and across baskets instead of learning complex basket representations. To properly train BTBR, we propose and investigate several masking strategies and training objectives: (i) item-level random masking, (ii) item-level select masking, (iii) basket-level all masking, (iv) basket-level explore masking, and (v) joint masking. In addition, an item-basket swapping strategy is proposed to enrich the item interactions within the same baskets. We conduct extensive experiments on three open datasets with various characteristics. The results demonstrate the effectiveness of BTBR and our masking and swapping strategies for the NNBR task. BTBR with a properly selected masking and swapping strategy can substantially improve NNBR performance.


Reducing Predictive Feature Suppression in Resource-Constrained Contrastive Image-Caption Retrieval

arXiv.org Artificial Intelligence

To train image-caption retrieval (ICR) methods, contrastive loss functions are a common choice for optimization functions. Unfortunately, contrastive ICR methods are vulnerable to predictive feature suppression. Predictive features are features that correctly indicate the similarity between a query and a candidate item. However, in the presence of multiple predictive features during training, encoder models tend to suppress redundant predictive features, since these features are not needed to learn to discriminate between positive and negative pairs. While some predictive features are redundant during training, these features might be relevant during evaluation. We introduce an approach to reduce predictive feature suppression for resource-constrained ICR methods: latent target decoding (LTD). We add an additional decoder to the contrastive ICR framework, to reconstruct the input caption in a latent space of a general-purpose sentence encoder, which prevents the image and caption encoder from suppressing predictive features. We implement the LTD objective as an optimization constraint, to ensure that the reconstruction loss is below a bound value while primarily optimizing for the contrastive loss. Importantly, LTD does not depend on additional training data or expensive (hard) negative mining strategies. Our experiments show that, unlike reconstructing the input caption in the input space, LTD reduces predictive feature suppression, measured by obtaining higher recall@k, r-precision, and nDCG scores than a contrastive ICR baseline. Moreover, we show that LTD should be implemented as an optimization constraint instead of a dual optimization objective. Finally, we show that LTD can be used with different contrastive learning losses and a wide variety of resource-constrained ICR methods.


Unsupervised Dense Retrieval with Relevance-Aware Contrastive Pre-Training

arXiv.org Artificial Intelligence

Dense retrievers have achieved impressive performance, but their demand for abundant training data limits their application scenarios. Contrastive pre-training, which constructs pseudo-positive examples from unlabeled data, has shown great potential to solve this problem. However, the pseudo-positive examples crafted by data augmentations can be irrelevant. To this end, we propose relevance-aware contrastive learning. It takes the intermediate-trained model itself as an imperfect oracle to estimate the relevance of positive pairs and adaptively weighs the contrastive loss of different pairs according to the estimated relevance. Our method consistently improves the SOTA unsupervised Contriever model on the BEIR and open-domain QA retrieval benchmarks. Further exploration shows that our method can not only beat BM25 after further pre-training on the target corpus but also serves as a good few-shot learner. Our code is publicly available at https://github.com/Yibin-Lei/ReContriever.


Adapting Learned Sparse Retrieval for Long Documents

arXiv.org Artificial Intelligence

Learned sparse retrieval (LSR) is a family of neural retrieval methods that transform queries and documents into sparse weight vectors aligned with a vocabulary. While LSR approaches like Splade work well for short passages, it is unclear how well they handle longer documents. We investigate existing aggregation approaches for adapting LSR to longer documents and find that proximal scoring is crucial for LSR to handle long documents. To leverage this property, we proposed two adaptations of the Sequential Dependence Model (SDM) to LSR: ExactSDM and SoftSDM. ExactSDM assumes only exact query term dependence, while SoftSDM uses potential functions that model the dependence of query terms and their expansion terms (i.e., terms identified using a transformer's masked language modeling head). Experiments on the MSMARCO Document and TREC Robust04 datasets demonstrate that both ExactSDM and SoftSDM outperform existing LSR aggregation approaches for different document length constraints. Surprisingly, SoftSDM does not provide any performance benefits over ExactSDM. This suggests that soft proximity matching is not necessary for modeling term dependence in LSR. Overall, this study provides insights into handling long documents with LSR, proposing adaptations that improve its performance.