Yarowsky, David
DialUp! Modeling the Language Continuum by Adapting Models to Dialects and Dialects to Models
Bafna, Niyati, Chang, Emily, Robinson, Nathaniel R., Mortensen, David R., Murray, Kenton, Yarowsky, David, Sirin, Hale
Most of the world's languages and dialects are low-resource, and lack support in mainstream machine translation (MT) models. However, many of them have a closely-related high-resource language (HRL) neighbor, and differ in linguistically regular ways from it. This underscores the importance of model robustness to dialectical variation and cross-lingual generalization to the HRL dialect continuum. We present DialUp, consisting of a training-time technique for adapting a pretrained model to dialectical data (M->D), and an inference-time intervention adapting dialectical data to the model expertise (D->M). M->D induces model robustness to potentially unseen and unknown dialects by exposure to synthetic data exemplifying linguistic mechanisms of dialectical variation, whereas D->M treats dialectical divergence for known target dialects. These methods show considerable performance gains for several dialects from four language families, and modest gains for two other language families. We also conduct feature and error analyses, which show that language varieties with low baseline MT performance are more likely to benefit from these approaches.
Pointer-Generator Networks for Low-Resource Machine Translation: Don't Copy That!
Bafna, Niyati, Koehn, Philipp, Yarowsky, David
While Transformer-based neural machine translation (NMT) is very effective in high-resource settings, many languages lack the necessary large parallel corpora to benefit from it. In the context of low-resource (LR) MT between two closely-related languages, a natural intuition is to seek benefits from structural "shortcuts", such as copying subwords from the source to the target, given that such language pairs often share a considerable number of identical words, cognates, and borrowings. We test Pointer-Generator Networks for this purpose for six language pairs over a variety of resource ranges, and find weak improvements for most settings. However, analysis shows that the model does not show greater improvements for closely-related vs. more distant language pairs, or for lower resource ranges, and that the models do not exhibit the expected usage of the mechanism for shared subwords. Our discussion of the reasons for this behaviour highlights several general challenges for LR NMT, such as modern tokenization strategies, noisy real-world conditions, and linguistic complexities. We call for better scrutiny of linguistically motivated improvements to NMT given the blackbox nature of Transformer models, as well as for a focus on the above problems in the field.
A Representation Learning Framework for Multi-Source Transfer Parsing
Guo, Jiang (Harbin Institute of Technology) | Che, Wanxiang (Harbin Institute of Technology) | Yarowsky, David (Johns Hopkins University) | Wang, Haifeng (Baidu Inc.) | Liu, Ting (Harbin Institute of Technology)
Cross-lingual model transfer has been a promising approach for inducing dependency parsers for low-resource languages where annotated treebanks are not available. The major obstacles for the model transfer approach are two-fold: 1. Lexical features are not directly transferable across languages; 2. Target language-specific syntactic structures are difficult to be recovered. To address these two challenges, we present a novel representation learning framework for multi-source transfer parsing. Our framework allows multi-source transfer parsing using full lexical features straightforwardly. By evaluating on the Google universal dependency treebanks (v2.0), our best models yield an absolute improvement of 6.53% in averaged labeled attachment score, as compared with delexicalized multi-source transfer models. We also significantly outperform the state-of-the-art transfer system proposed most recently.
Hierarchical Bayesian Models for Latent Attribute Detection in Social Media
Rao, Delip (Johns Hopkins University) | Paul, Michael (Johns Hopkins University) | Fink, Clay (Johns Hopkins University) | Yarowsky, David (Johns Hopkins University) | Oates, Timothy (University of Maryland Baltimore County) | Coppersmith, Glen (JHU Human Language Technology Center of Excellence)
We present several novel minimally-supervised models for detecting latent attributes of social media users, with a focus on ethnicity and gender. Previouswork on ethnicity detection has used coarse-grained widely separated classes of ethnicity and assumed the existence of large amounts of training data such as the US census, simplifying the problem. Instead, we examine content generated by users in addition to name morpho-phonemics to detect ethnicity and gender. Further, weaddress this problem in a challenging setting where the ethnicity classes are more fine grained -- ethnicity classes in Nigeria -- and with very limited training data.