Yang, Yuhong
RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories
Shao, Huiyang, Xia, Xin, Yang, Yuhong, Ren, Yuxi, Wang, Xing, Xiao, Xuefeng
Diffusion models have achieved remarkable success across various domains. However, their slow generation speed remains a critical challenge. Existing acceleration methods, while aiming to reduce steps, often compromise sample quality, controllability, or introduce training complexities. Therefore, we propose RayFlow, a novel diffusion framework that addresses these limitations. Unlike previous methods, RayFlow guides each sample along a unique path towards an instance-specific target distribution. This method minimizes sampling steps while preserving generation diversity and stability. Furthermore, we introduce Time Sampler, an importance sampling technique to enhance training efficiency by focusing on crucial timesteps. Extensive experiments demonstrate RayFlow's superiority in generating high-quality images with improved speed, control, and training efficiency compared to existing acceleration techniques.
Model Privacy: A Unified Framework to Understand Model Stealing Attacks and Defenses
Wang, Ganghua, Yang, Yuhong, Ding, Jie
The use of machine learning (ML) has become increasingly prevalent in various domains, highlighting the importance of understanding and ensuring its safety. One pressing concern is the vulnerability of ML applications to model stealing attacks. These attacks involve adversaries attempting to recover a learned model through limited query-response interactions, such as those found in cloud-based services or on-chip artificial intelligence interfaces. While existing literature proposes various attack and defense strategies, these often lack a theoretical foundation and standardized evaluation criteria. In response, this work presents a framework called ``Model Privacy'', providing a foundation for comprehensively analyzing model stealing attacks and defenses. We establish a rigorous formulation for the threat model and objectives, propose methods to quantify the goodness of attack and defense strategies, and analyze the fundamental tradeoffs between utility and privacy in ML models. Our developed theory offers valuable insights into enhancing the security of ML models, especially highlighting the importance of the attack-specific structure of perturbations for effective defenses. We demonstrate the application of model privacy from the defender's perspective through various learning scenarios. Extensive experiments corroborate the insights and the effectiveness of defense mechanisms developed under the proposed framework.
Golden Ratio-Based Sufficient Dimension Reduction
Yang, Wenjing, Yang, Yuhong
Many machine learning applications deal with high dimensional data. To make computations feasible and learning more efficient, it is often desirable to reduce the dimensionality of the input variables by finding linear combinations of the predictors that can retain as much original information as possible in the relationship between the response and the original predictors. We propose a neural network based sufficient dimension reduction method that not only identifies the structural dimension effectively, but also estimates the central space well. It takes advantages of approximation capabilities of neural networks for functions in Barron classes and leads to reduced computation cost compared to other dimension reduction methods in the literature. Additionally, the framework can be extended to fit practical dimension reduction, making the methodology more applicable in practical settings.
Minimax rates of convergence for nonparametric regression under adversarial attacks
Peng, Jingfu, Yang, Yuhong
Recent research shows the susceptibility of machine learning models to adversarial attacks, wherein minor but maliciously chosen perturbations of the input can significantly degrade model performance. In this paper, we theoretically analyse the limits of robustness against such adversarial attacks in a nonparametric regression setting, by examining the minimax rates of convergence in an adversarial sup-norm. Our work reveals that the minimax rate under adversarial attacks in the input is the same as sum of two terms: one represents the minimax rate in the standard setting without adversarial attacks, and the other reflects the maximum deviation of the true regression function value within the target function class when subjected to the input perturbations. The optimal rates under the adversarial setup can be achieved by a plug-in procedure constructed from a minimax optimal estimator in the corresponding standard setting. Two specific examples are given to illustrate the established minimax results.
Drift to Remember
Du, Jin, Zhang, Xinhe, Shen, Hao, Xian, Xun, Wang, Ganghua, Zhang, Jiawei, Yang, Yuhong, Li, Na, Liu, Jia, Ding, Jie
Lifelong learning in artificial intelligence (AI) aims to mimic the biological brain's ability to continuously learn and retain knowledge, yet it faces challenges such as catastrophic forgetting. Recent neuroscience research suggests that neural activity in biological systems undergoes representational drift, where neural responses evolve over time, even with consistent inputs and tasks. We hypothesize that representational drift can alleviate catastrophic forgetting in AI during new task acquisition. To test this, we introduce DriftNet, a network designed to constantly explore various local minima in the loss landscape while dynamically retrieving relevant tasks. This approach ensures efficient integration of new information and preserves existing knowledge. Experimental studies in image classification and natural language processing demonstrate that DriftNet outperforms existing models in lifelong learning. Importantly, DriftNet is scalable in handling a sequence of tasks such as sentiment analysis and question answering using large language models (LLMs) with billions of parameters on a single Nvidia A100 GPU. DriftNet efficiently updates LLMs using only new data, avoiding the need for full dataset retraining. Tested on GPT-2 and RoBERTa, DriftNet is a robust, cost-effective solution for lifelong learning in LLMs. This study not only advances AI systems to emulate biological learning, but also provides insights into the adaptive mechanisms of biological neural systems, deepening our understanding of lifelong learning in nature.
Additive-Effect Assisted Learning
Zhang, Jiawei, Yang, Yuhong, Ding, Jie
It is quite popular nowadays for researchers and data analysts holding different datasets to seek assistance from each other to enhance their modeling performance. We consider a scenario where different learners hold datasets with potentially distinct variables, and their observations can be aligned by a nonprivate identifier. Their collaboration faces the following difficulties: First, learners may need to keep data values or even variable names undisclosed due to, e.g., commercial interest or privacy regulations; second, there are restrictions on the number of transmission rounds between them due to e.g., communication costs. To address these challenges, we develop a two-stage assisted learning architecture for an agent, Alice, to seek assistance from another agent, Bob. In the first stage, we propose a privacy-aware hypothesis testing-based screening method for Alice to decide on the usefulness of the data from Bob, in a way that only requires Bob to transmit sketchy data. Once Alice recognizes Bob's usefulness, Alice and Bob move to the second stage, where they jointly apply a synergistic iterative model training procedure. With limited transmissions of summary statistics, we show that Alice can achieve the oracle performance as if the training were from centralized data, both theoretically and numerically.
Maximizing Information Gain in Privacy-Aware Active Learning of Email Anomalies
Chung, Mu-Huan Miles, Li, Sharon, Kongmanee, Jaturong, Wang, Lu, Yang, Yuhong, Giang, Calvin, Jerath, Khilan, Raman, Abhay, Lie, David, Chignell, Mark
Redacted emails satisfy most privacy requirements but they make it more difficult to detect anomalous emails that may be indicative of data exfiltration. In this paper we develop an enhanced method of Active Learning using an information gain maximizing heuristic, and we evaluate its effectiveness in a real world setting where only redacted versions of email could be labeled by human analysts due to privacy concerns. In the first case study we examined how Active Learning should be carried out. We found that model performance was best when a single highly skilled (in terms of the labelling task) analyst provided the labels. In the second case study we used confidence ratings to estimate the labeling uncertainty of analysts and then prioritized instances for labeling based on the expected information gain (the difference between model uncertainty and analyst uncertainty) that would be provided by labelling each instance. We found that the information maximization gain heuristic improved model performance over existing sampling methods for Active Learning. Based on the results obtained, we recommend that analysts should be screened, and possibly trained, prior to implementation of Active Learning in cybersecurity applications. We also recommend that the information gain maximizing sample method (based on expert confidence) should be used in early stages of Active Learning, providing that well-calibrated confidence can be obtained. We also note that the expertise of analysts should be assessed prior to Active Learning, as we found that analysts with lower labelling skill had poorly calibrated (over-) confidence in their labels.
One-dimensional Adapter to Rule Them All: Concepts, Diffusion Models and Erasing Applications
Lyu, Mengyao, Yang, Yuhong, Hong, Haiwen, Chen, Hui, Jin, Xuan, He, Yuan, Xue, Hui, Han, Jungong, Ding, Guiguang
The prevalent use of commercial and open-source diffusion models (DMs) for text-to-image generation prompts risk mitigation to prevent undesired behaviors. Existing concept erasing methods in academia are all based on full parameter or specification-based fine-tuning, from which we observe the following issues: 1) Generation alternation towards erosion: Parameter drift during target elimination causes alternations and potential deformations across all generations, even eroding other concepts at varying degrees, which is more evident with multi-concept erased; 2) Transfer inability & deployment inefficiency: Previous model-specific erasure impedes the flexible combination of concepts and the training-free transfer towards other models, resulting in linear cost growth as the deployment scenarios increase. To achieve non-invasive, precise, customizable, and transferable elimination, we ground our erasing framework on one-dimensional adapters to erase multiple concepts from most DMs at once across versatile erasing applications. The concept-SemiPermeable structure is injected as a Membrane (SPM) into any DM to learn targeted erasing, and meantime the alteration and erosion phenomenon is effectively mitigated via a novel Latent Anchoring fine-tuning strategy. Once obtained, SPMs can be flexibly combined and plug-and-play for other DMs without specific re-tuning, enabling timely and efficient adaptation to diverse scenarios. During generation, our Facilitated Transport mechanism dynamically regulates the permeability of each SPM to respond to different input prompts, further minimizing the impact on other concepts. Quantitative and qualitative results across ~40 concepts, 7 DMs and 4 erasing applications have demonstrated the superior erasing of SPM. Our code and pre-tuned SPMs will be available on the project page https://lyumengyao.github.io/projects/spm.
A comparative study of Grid and Natural sentences effects on Normal-to-Lombard conversion
Chen, Hongyang, Yang, Yuhong, Liu, Qingmu, Li, Baifeng, Tu, Weiping, Lin, Song
Grid sentence is commonly used for studying the Lombard effect and Normal-to-Lombard conversion. However, it's unclear if Normal-to-Lombard models trained on grid sentences are sufficient for improving natural speech intelligibility in real-world applications. This paper presents the recording of a parallel Lombard corpus (called Lombard Chinese TIMIT, LCT) extracting natural sentences from Chinese TIMIT. Then We compare natural and grid sentences in terms of Lombard effect and Normal-to-Lombard conversion using LCT and Enhanced MAndarin Lombard Grid corpus (EMALG). Through a parametric analysis of the Lombard effect, We find that as the noise level increases, both natural sentences and grid sentences exhibit similar changes in parameters, but in terms of the increase of the alpha ratio, grid sentences show a greater increase. Following a subjective intelligibility assessment across genders and Signal-to-Noise Ratios, the StarGAN model trained on EMALG consistently outperforms the model trained on LCT in terms of improving intelligibility. This superior performance may be attributed to EMALG's larger alpha ratio increase from normal to Lombard speech.
Pruning Deep Neural Networks from a Sparsity Perspective
Diao, Enmao, Wang, Ganghua, Zhan, Jiawei, Yang, Yuhong, Ding, Jie, Tarokh, Vahid
In recent years, deep network pruning has attracted significant attention in order to enable the rapid deployment of AI into small devices with computation and memory constraints. Pruning is often achieved by dropping redundant weights, neurons, or layers of a deep network while attempting to retain a comparable test performance. Many deep pruning algorithms have been proposed with impressive empirical success. However, existing approaches lack a quantifiable measure to estimate the compressibility of a sub-network during each pruning iteration and thus may underprune or over-prune the model. In this work, we propose PQ Index (PQI) to measure the potential compressibility of deep neural networks and use this to develop a Sparsity-informed Adaptive Pruning (SAP) algorithm. Our extensive experiments corroborate the hypothesis that for a generic pruning procedure, PQI decreases first when a large model is being effectively regularized and then increases when its compressibility reaches a limit that appears to correspond to the beginning of underfitting. Subsequently, PQI decreases again when the model collapse and significant deterioration in the performance of the model start to occur. Additionally, our experiments demonstrate that the proposed adaptive pruning algorithm with proper choice of hyper-parameters is superior to the iterative pruning algorithms such as the lottery ticket-based pruning methods, in terms of both compression efficiency and robustness. Our code is available here. These deep neural networks have significantly expanded in size. For example, LeNet-5 (LeCun et al., 1998) (1998; image classification) has 60 thousand parameters whereas GPT-3 (Brown et al., 2020) (2020; language modeling) has 175 billion parameters.