Goto

Collaborating Authors

 Yang, Soyoung


Building Resource-Constrained Language Agents: A Korean Case Study on Chemical Toxicity Information

arXiv.org Artificial Intelligence

Language agents powered by large language models (LLMs) face significant deployment challenges in resource-constrained environments, particularly for specialized domains and less-common languages. This paper presents Tox-chat, a Korean chemical toxicity information agent devised within these limitations. We propose two key innovations: a context-efficient architecture that reduces token consumption through hierarchical section search, and a scenario-based dialogue generation methodology that effectively distills tool-using capabilities from larger models. Experimental evaluations demonstrate that our fine-tuned 8B parameter model substantially outperforms both untuned models and baseline approaches, in terms of DB faithfulness and preference. Our work offers valuable insights for researchers developing domain-specific language agents under practical constraints.


Single Ground Truth Is Not Enough: Add Linguistic Variability to Aspect-based Sentiment Analysis Evaluation

arXiv.org Artificial Intelligence

Aspect-based sentiment analysis (ABSA) is the challenging task of extracting sentiment along with its corresponding aspects and opinions from human language. Due to the inherent variability of natural language, aspect and opinion terms can be expressed in various surface forms, making their accurate identification complex. Current evaluation methods for this task often restrict answers to a single ground truth, penalizing semantically equivalent predictions that differ in surface form. To address this limitation, we propose a novel, fully automated pipeline that augments existing test sets with alternative valid responses for aspect and opinion terms. This approach enables a fairer assessment of language models by accommodating linguistic diversity, resulting in higher human agreement than single-answer test sets (up to 10%p improvement in Kendall's Tau score). Our experimental results demonstrate that Large Language Models (LLMs) show substantial performance improvements over T5 models when evaluated using our augmented test set, suggesting that LLMs' capabilities in ABSA tasks may have been underestimated. This work contributes to a more comprehensive evaluation framework for ABSA, potentially leading to more accurate assessments of model performance in information extraction tasks, particularly those involving span extraction.


Evaluating Span Extraction in Generative Paradigm: A Reflection on Aspect-Based Sentiment Analysis

arXiv.org Artificial Intelligence

In the era of rapid evolution of generative language models within the realm of natural language processing, there is an imperative call to revisit and reformulate evaluation methodologies, especially in the domain of aspect-based sentiment analysis (ABSA). This paper addresses the emerging challenges introduced by the generative paradigm, which has moderately blurred traditional boundaries between understanding and generation tasks. Building upon prevailing practices in the field, we analyze the advantages and shortcomings associated with the prevalent ABSA evaluation paradigms. Through an in-depth examination, supplemented by illustrative examples, we highlight the intricacies involved in aligning generative outputs with other evaluative metrics, specifically those derived from other tasks, including question answering. While we steer clear of advocating for a singular and definitive metric, our contribution lies in paving the path for a comprehensive guideline tailored for ABSA evaluations in this generative paradigm. In this position paper, we aim to provide practitioners with profound reflections, offering insights and directions that can aid in navigating this evolving landscape, ensuring evaluations that are both accurate and reflective of generative capabilities.


HistRED: A Historical Document-Level Relation Extraction Dataset

arXiv.org Artificial Intelligence

Despite the extensive applications of relation extraction (RE) tasks in various domains, little has been explored in the historical context, which contains promising data across hundreds and thousands of years. To promote the historical RE research, we present HistRED constructed from Yeonhaengnok. Yeonhaengnok is a collection of records originally written in Hanja, the classical Chinese writing, which has later been translated into Korean. HistRED provides bilingual annotations such that RE can be performed on Korean and Hanja texts. In addition, HistRED supports various self-contained subtexts with different lengths, from a sentence level to a document level, supporting diverse context settings for researchers to evaluate the robustness of their RE models. To demonstrate the usefulness of our dataset, we propose a bilingual RE model that leverages both Korean and Hanja contexts to predict relations between entities. Our model outperforms monolingual baselines on HistRED, showing that employing multiple language contexts supplements the RE predictions. The dataset is publicly available at: https://huggingface.co/datasets/Soyoung/HistRED under CC BY-NC-ND 4.0 license.


Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation

arXiv.org Artificial Intelligence

Understanding voluminous historical records provides clues on the past in various aspects, such as social and political issues and even natural science facts. However, it is generally difficult to fully utilize the historical records, since most of the documents are not written in a modern language and part of the contents are damaged over time. As a result, restoring the damaged or unrecognizable parts as well as translating the records into modern languages are crucial tasks. In response, we present a multi-task learning approach to restore and translate historical documents based on a self-attention mechanism, specifically utilizing two Korean historical records, ones of the most voluminous historical records in the world. Experimental results show that our approach significantly improves the accuracy of the translation task than baselines without multi-task learning. In addition, we present an in-depth exploratory analysis on our translated results via topic modeling, uncovering several significant historical events.


Meta-Learning for Low-Resource Unsupervised Neural MachineTranslation

arXiv.org Artificial Intelligence

Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-4 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baseline models.