Yang, Seunghan
Chain-of-Rank: Enhancing Large Language Models for Domain-Specific RAG in Edge Device
Lee, Juntae, Bang, Jihwan, Yang, Seunghan, Shim, Kyuhong, Chang, Simyung
Retrieval-augmented generation (RAG) with large language models (LLMs) is especially valuable in specialized domains, where precision is critical. To more specialize the LLMs into a target domain, domain-specific RAG has recently been developed by allowing the LLM to access the target domain early via finetuning. The domain-specific RAG makes more sense in resource-constrained environments like edge devices, as they should perform a specific task (e.g. personalization) reliably using only small-scale LLMs. While the domain-specific RAG is well-aligned with edge devices in this respect, it often relies on widely-used reasoning techniques like chain-of-thought (CoT). The reasoning step is useful to understand the given external knowledge, and yet it is computationally expensive and difficult for small-scale LLMs to learn it. Tackling this, we propose the Chain of Rank (CoR) which shifts the focus from intricate lengthy reasoning to simple ranking of the reliability of input external documents. Then, CoR reduces computational complexity while maintaining high accuracy, making it particularly suited for resource-constrained environments. We attain the state-of-the-art (SOTA) results in benchmarks, and analyze its efficacy.
Feature Diversification and Adaptation for Federated Domain Generalization
Yang, Seunghan, Choi, Seokeon, Park, Hyunsin, Choi, Sungha, Chang, Simyung, Yun, Sungrack
Federated learning, a distributed learning paradigm, utilizes multiple clients to build a robust global model. In real-world applications, local clients often operate within their limited domains, leading to a `domain shift' across clients. Privacy concerns limit each client's learning to its own domain data, which increase the risk of overfitting. Moreover, the process of aggregating models trained on own limited domain can be potentially lead to a significant degradation in the global model performance. To deal with these challenges, we introduce the concept of federated feature diversification. Each client diversifies the own limited domain data by leveraging global feature statistics, i.e., the aggregated average statistics over all participating clients, shared through the global model's parameters. This data diversification helps local models to learn client-invariant representations while preserving privacy. Our resultant global model shows robust performance on unseen test domain data. To enhance performance further, we develop an instance-adaptive inference approach tailored for test domain data. Our proposed instance feature adapter dynamically adjusts feature statistics to align with the test input, thereby reducing the domain gap between the test and training domains. We show that our method achieves state-of-the-art performance on several domain generalization benchmarks within a federated learning setting.
Crayon: Customized On-Device LLM via Instant Adapter Blending and Edge-Server Hybrid Inference
Bang, Jihwan, Lee, Juntae, Shim, Kyuhong, Yang, Seunghan, Chang, Simyung
The customization of large language models (LLMs) for user-specified tasks gets important. However, maintaining all the customized LLMs on cloud servers incurs substantial memory and computational overheads, and uploading user data can also lead to privacy concerns. On-device LLMs can offer a promising solution by mitigating these issues. Yet, the performance of on-device LLMs is inherently constrained by the limitations of small-scaled models. To overcome these restrictions, we first propose Crayon, a novel approach for on-device LLM customization. Crayon begins by constructing a pool of diverse base adapters, and then we instantly blend them into a customized adapter without extra training. In addition, we develop a device-server hybrid inference strategy, which deftly allocates more demanding queries or non-customized tasks to a larger, more capable LLM on a server. This ensures optimal performance without sacrificing the benefits of on-device customization. We carefully craft a novel benchmark from multiple question-answer datasets, and show the efficacy of our method in the LLM customization.
Improving Small Footprint Few-shot Keyword Spotting with Supervision on Auxiliary Data
Yang, Seunghan, Kim, Byeonggeun, Shim, Kyuhong, Chang, Simyung
Few-shot keyword spotting (FS-KWS) models usually require large-scale annotated datasets to generalize to unseen target keywords. However, existing KWS datasets are limited in scale and gathering keyword-like labeled data is costly undertaking. To mitigate this issue, we propose a framework that uses easily collectible, unlabeled reading speech data as an auxiliary source. Self-supervised learning has been widely adopted for learning representations from unlabeled data; however, it is known to be suitable for large models with enough capacity and is not practical for training a small footprint FS-KWS model. Instead, we automatically annotate and filter the data to construct a keyword-like dataset, LibriWord, enabling supervision on auxiliary data. We then adopt multi-task learning that helps the model to enhance the representation power from out-of-domain auxiliary data. Our method notably improves the performance over competitive methods in the FS-KWS benchmark.
Label Shift Adapter for Test-Time Adaptation under Covariate and Label Shifts
Park, Sunghyun, Yang, Seunghan, Choo, Jaegul, Yun, Sungrack
Test-time adaptation (TTA) aims to adapt a pre-trained model to the target domain in a batch-by-batch manner during inference. While label distributions often exhibit imbalances in real-world scenarios, most previous TTA approaches typically assume that both source and target domain datasets have balanced label distribution. Due to the fact that certain classes appear more frequently in certain domains (e.g., buildings in cities, trees in forests), it is natural that the label distribution shifts as the domain changes. However, we discover that the majority of existing TTA methods fail to address the coexistence of covariate and label shifts. To tackle this challenge, we propose a novel label shift adapter that can be incorporated into existing TTA approaches to deal with label shifts during the TTA process effectively. Specifically, we estimate the label distribution of the target domain to feed it into the label shift adapter. Subsequently, the label shift adapter produces optimal parameters for the target label distribution. By predicting only the parameters for a part of the pre-trained source model, our approach is computationally efficient and can be easily applied, regardless of the model architectures. Through extensive experiments, we demonstrate that integrating our strategy with TTA approaches leads to substantial performance improvements under the joint presence of label and covariate shifts.