Goto

Collaborating Authors

 Yang, Libin


A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design

arXiv.org Artificial Intelligence

Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor - intensive trial - and - error methods and limited data interoperability. Here, we introduce CrossMatAgent -- a novel multi - agent framework that synergistically integrates large language models with state - of - the - art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents -- e ach specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback -- our system leverages the multimodal reasoning of GPT - 4o alongside the generative precision of DALL - E 3 and a fine - tuned Stable Diffusion Extra Large ( XL) model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation - and 3D printing - ready metamaterial patterns. Comprehensive evaluations, including Contrastive Language - Image Pre - training ( C LIP) - based alignment, SHAP ( SHapley Additive exPlanations) interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application - ready designs . CrossMatAgent thus establishes a scalable, AI - driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.


Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models

arXiv.org Artificial Intelligence

Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.


MoDULA: Mixture of Domain-Specific and Universal LoRA for Multi-Task Learning

arXiv.org Artificial Intelligence

The growing demand for larger-scale models in the development of \textbf{L}arge \textbf{L}anguage \textbf{M}odels (LLMs) poses challenges for efficient training within limited computational resources. Traditional fine-tuning methods often exhibit instability in multi-task learning and rely heavily on extensive training resources. Here, we propose MoDULA (\textbf{M}ixture \textbf{o}f \textbf{D}omain-Specific and \textbf{U}niversal \textbf{L}oR\textbf{A}), a novel \textbf{P}arameter \textbf{E}fficient \textbf{F}ine-\textbf{T}uning (PEFT) \textbf{M}ixture-\textbf{o}f-\textbf{E}xpert (MoE) paradigm for improved fine-tuning and parameter efficiency in multi-task learning. The paradigm effectively improves the multi-task capability of the model by training universal experts, domain-specific experts, and routers separately. MoDULA-Res is a new method within the MoDULA paradigm, which maintains the model's general capability by connecting universal and task-specific experts through residual connections. The experimental results demonstrate that the overall performance of the MoDULA-Flan and MoDULA-Res methods surpasses that of existing fine-tuning methods on various LLMs. Notably, MoDULA-Res achieves more significant performance improvements in multiple tasks while reducing training costs by over 80\% without losing general capability. Moreover, MoDULA displays flexible pluggability, allowing for the efficient addition of new tasks without retraining existing experts from scratch. This progressive training paradigm circumvents data balancing issues, enhancing training efficiency and model stability. Overall, MoDULA provides a scalable, cost-effective solution for fine-tuning LLMs with enhanced parameter efficiency and generalization capability.


General2Specialized LLMs Translation for E-commerce

arXiv.org Artificial Intelligence

Existing Neural Machine Translation (NMT) models mainly handle translation in the general domain, while overlooking domains with special writing formulas, such as e-commerce and legal documents. Taking e-commerce as an example, the texts usually include amounts of domain-related words and have more grammar problems, which leads to inferior performances of current NMT methods. To address these problems, we collect two domain-related resources, including a set of term pairs (aligned Chinese-English bilingual terms) and a parallel corpus annotated for the e-commerce domain. Furthermore, we propose a two-step fine-tuning paradigm (named G2ST) with self-contrastive semantic enhancement to transfer one general NMT model to the specialized NMT model for e-commerce. The paradigm can be used for the NMT models based on Large language models (LLMs). Extensive evaluations on real e-commerce titles demonstrate the superior translation quality and robustness of our G2ST approach, as compared with state-of-the-art NMT models such as LLaMA, Qwen, GPT-3.5, and even GPT-4.


EdgeNet : Encoder-decoder generative Network for Auction Design in E-commerce Online Advertising

arXiv.org Artificial Intelligence

We present a new encoder-decoder generative network dubbed EdgeNet, which introduces a novel encoder-decoder framework for data-driven auction design in online e-commerce advertising. We break the neural auction paradigm of Generalized-Second-Price(GSP), and improve the utilization efficiency of data while ensuring the economic characteristics of the auction mechanism. Specifically, EdgeNet introduces a transformer-based encoder to better capture the mutual influence among different candidate advertisements. In contrast to GSP based neural auction model, we design an autoregressive decoder to better utilize the rich context information in online advertising auctions. EdgeNet is conceptually simple and easy to extend to the existing end-to-end neural auction framework. We validate the efficiency of EdgeNet on a wide range of e-commercial advertising auction, demonstrating its potential in improving user experience and platform revenue.


Generative Adversarial Network Based Heterogeneous Bibliographic Network Representation for Personalized Citation Recommendation

AAAI Conferences

Network representation has been recently exploited for many applications, such as citation recommendation, multi-label classification and link prediction. It learns low-dimensional vector representation for each vertex in networks. Existing network representation methods only focus on incomplete aspects of vertex information (i.e., vertex content, network structure or partial integration), moreover they are commonly designed for homogeneous information networks where all the vertices of a network are of the same type. In this paper, we propose a deep network representation model that integrates network structure and the vertex content information into a unified framework by exploiting generative adversarial network, and represents different types of vertices in the heterogeneous network in a continuous and common vector space. Based on the proposed model, we can obtain heterogeneous bibliographic network representation for efficient citation recommendation. The proposed model also makes personalized citation recommendation possible, which is a new issue that a few papers addressed in the past. When evaluated on the AAN and DBLP datasets, the performance of the proposed heterogeneous bibliographic network based citation recommendation approach is comparable with that of the other network representation based citation recommendation approaches. The results also demonstrate that the personalized citation recommendation approach is more effective than the non-personalized citation recommendation approach.